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A COMPARISON THEOREM ON SIMPLY CONNECTED
COMPLETE RIEMANNIAN MANIFOLDS

ANA GRANADOS

Abstract. We consider simply connected complete Riemannian man-
ifolds with sectional curvature bounded above by −C2 < 0, and curves

on such manifolds with geodesic curvature at most C > 0 in absolute
value. We give an estimate for the rate at which such curves approach
the boundary of the manifold.

1. Introduction and main results

The Theorem of Hayman and Wu [HaW] establishes that there is a uni-
versal constant which bounds from above the Euclidean length of level curves
for conformal mappings from the disk onto a simply connected domain. This
theorem is in fact a statement of hyperbolic geometry in the unit disk, and
it can be interpreted as an estimate for the rate at which curves of controlled
hyperbolic curvature approach the boundary of the disk. Namely, from [FG]
it follows that

(1)
∫ ∞
−∞

1

2 cosh2(d(σ(0),σ(s))
2 )

ds ≤ π

for curves σ on the unit disk with hyperbolic curvature bounded above in
absolute value by 1. Here ds is the hyperbolic arclength element.

Throughout, M will be a simply connected complete Riemannian manifold
of sectional curvature bounded above by −1 (i.e., the upper half space in Rn

endowed with a metric of negative variable curvature).
We generalize the estimate (1) to such manifolds and curves of geodesic

curvature bounded above by 1, thus showing that these curves approach the
boundary of the manifold “fast”.
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All results stated in this work also hold, with obvious modifications, when
the upper curvature bounds are −C2 < 0 for the manifold and C > 0 for the
curve.

Dekster, as an application of his main result in [D], showed that an infinitely
long curve in a simply connected complete space of curvature ≤ K ≤ 0 goes
to infinity if its total curvature does not grow “too fast”. He also established
the rate of escape.

When considering points a, b of M , d(a, b) denotes the distance between a
and b. Our main result is the following geometric version of the Hayman-Wu
Theorem:

Theorem 1. Let M be as above, and let σ be a curve in M parameterized
by arclength whose geodesic curvature is, in absolute value, at most 1. Then

d(σ(0), σ(s)) −→∞ as s→∞.
Moreover,

(2)
∫ ∞
−∞

1

2 cosh2(d(σ(0),σ(s))
2 )

ds ≤ π.

In the hyperbolic disk, a similar result also holds for any point, not neces-
sarily on the curve, with the integral being strictly less than 2π (see [FG]).

Roughly speaking, if the curve σ does not curve too much, the distance
between the fixed point σ(0) and σ(s) grows fast enough for the given integral
to converge (see [C, p. 36] and [FG] for surfaces of zero and negative constant
curvature, respectively). The main idea in the proof of Theorem 1 comes
from the Aleksandrov-Toponogov Triangle Comparison Theorem (see, e.g.,
[CE, Ch. 2], [K, p. 197]). A suitable version for our purposes is:

Theorem 2 (Theorem AT). Let T be a triangle in M and let ak, k =
1, 2, 3, be its angles. Then, in the simply connected surface of constant curva-
ture −1, there is a triangle, T alek, whose sides have the same length as those
of T and whose internal angles, aalek

k , satisfy

ak ≤ aalek
k , k = 1, 2, 3.

For the particular group of manifolds under consideration, Theorem AT can
be generalized to curves: If the curvature of the manifold M is increased and
the curvature of the curve σ is kept fixed, the distance between the endpoints
of the arc will decrease. That is, we have:

Theorem 3. Let M be as above and let σ : R −→ M be a curve param-
eterized by arclength whose geodesic curvature is, in absolute value, bounded
above by |b|. If b > 1 assume also that its length is less than π/

√
b2 − 1. Then

(3) dM (σ(0), σ(s)) ≥ N(s, b),
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where the bound N(s, b) is attained on a curve in D of constant curvature b.
Moreover, if b = 1 then

dM (σ(0), σ(s)) ≥ dD (0,H(s))
(

= log
1 + c(s)
1− c(s)

)
,

where c(s) =
√

1− 4/(s2 + 4). Here H is any curve in D of constant curvature
+1 with 0 = H(0).

Here and in the sequel, D denotes the surface of constant sectional curvature
−1, i.e., the unit disk endowed with the metric

(4) ds =
2|dz|

1− |z|2
.

(That is, D is the Poincaré disk. For relations in hyperbolic geometry, see [B].)
Curves of constant curvature b in D are arcs of Euclidean circles intersecting
the unit circle at an angle whose cosine is b; if |b| < 1, (3) holds for all s.

The main tool in the proof of Theorem 3 will be an iterative triangle com-
parison process using both the Aleksandrov-Toponogov Theorem and the co-
sine law.

The outline of the paper is as follows: Section 2 contains some tools and
known facts. In Section 3 we prove some technical lemmas. Section 5 is
devoted to Theorem 3, a basic tool in the proof of Theorem 1, whose proof is
given in Section 4.

Acknowledgement. This work originated in my doctoral thesis at the
Universidad Autónoma de Madrid. I thank my advisor J. L. Fernández for
many stimulating discussions, and L. Guijarro and M. Melián for their help
in clarifying some ideas. I would also like to thank the referee for a thorough
job in reading this paper and helpful suggestions to improve it.

2. Tools and known facts

2.1. Angles will play an important role throughout the paper. We will be
considering two kinds: angles between curves and angles of triangles. The
former are oriented angles and can be positive or negative. The latter are
always positive and less than π. Some notation is needed:

The angle between two curves σ1, σ2 at a point p = σ1(t1) = σ2(t2) is

α = ∠(σ′1(t1), σ′2(t2)) ∈ [−π, π).

T is a geodesic triangle in M with sides given by the geodesic arcs (γ1, γ2, γ3),
parameterized by arclength in such a way that, if their respective lengths are
lj , j = 1, 2, 3, then γj(lj) = γj+1(0), j = 1, 2, γ3(l3) = γ1(0). The interior
angles of T , a1, a2 and a3 are

aj = |∠ ((γj+1)′(0),−(γj)′(lj))| , j = 1, 2; a3 = |∠ ((γ1)′(0),−(γ3)′(l3))| .
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We shall specify a triangle by giving either its sides or its vertices (ordered
with respect to the orientation of the triangle). Observe that aj ∈ [0, π).

2.2 Aleksandrov triangles. Let T be a geodesic triangle in M of sides
(γ1, γ2, γ3) and interior angles ai, i = 1, 2, 3. Denote by T alek a corresponding
Aleksandrov triangle, that is, a geodesic triangle in D with sides (γalek

1 , γalek
2 ,

γalek
3 ) and interior angles aalek

i , such that length(γalek
i ) = length(γi). (Observe

that they are all the same via Möbius transformations.)

2.3. Let σ be a curve in M . The following observation will be useful in
Section 5. Let P,Q,R be three consecutive points on σ such that

d(P,Q) = d(Q,R) = L.

Let γ, γ̃ : [0, L] −→ M be two geodesic arcs parametrized by arclength so
that γ(0) = P , γ(L) = γ̃(0) = Q and γ̃(L) = R. If we denote by α the angle
between γ and γ̃ at Q, and if Q is kept fixed, then

lim
L→0

α

L
= geodesic curvature of σ at Q.

The curvature of a triangle T = (γ1, γ2, γ3) at the vertex γ2(0) is π−a1 (with
the above notation).

In particular, if the curvature of σ is constant and equal to 1 or −1, the
value of the angle α is

β = 2 arctan
(

sinh
L

2

)
.

Notice that if the curvature of σ at Q is bounded by 1, then |α| ≤ β.

3. Some lemmas for triangles

Let M be as in the introduction. Theorem AT gives an angle comparison
between a triangle in M and a corresponding triangle in D, both having the
same side lengths. Here we consider triangles with different side lengths.

Given three points a, b, c, we let ∠abc be the angle at vertex b of the triangle
with vertices a, b and c. In what follows, let 0, z, w be three points in D
satisfying

(5) d(0, w) < d(0, z) ≤ d(z, w).

The first two lemmas compare triangles in the surface D.

Lemma 1. Subdivide the triangle (0, z, w) into triangles (0, z̃, w) and
(z̃, z, w), with z̃ satisfying d(z̃, w) ≥ d(0, z̃) ≥ d(0, w). Then,

(6) ∠0z̃w ≥ ∠0zw

Proof. As a function of the point z̃, the angle ∠0z̃w is minimal when z̃ = z.
�
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Lemma 2. With the same notation as above, let w̃ be so that

d(w̃, 0) = d(w, 0),(i)

∠w0z ≤ ∠w̃0z ≤ π.(ii)

Then,

(7) ∠0zw̃ ≤ ∠0z̃w.

Proof. By Lemma 1 it suffices to show that ∠0z̃w̃ ≤ 0z̃w.
Given a triangle in D of side lengths A,B,C and opposite angles α, β, γ,

we have the following trigonometric relations (see, e.g., [Bu, p. 33]):

coshB =
cosα cos γ + cosβ

sinα sin γ
;(1)

sinhC
sin γ

=
sinhA
sinα

=
sinhB
sinβ

;(2)

Cosine law: coshA = coshB coshC − sinhB sinhC cosα.(3)

Since 0, z̃, w also satisfy (5), the cosine law gives that the angles ∠0z̃w and
∠z̃w0 are at most π/2. Similarly, the same holds for the angles ∠0z̃w̃, ∠z̃w̃0.

Therefore, to prove the lemma is enough to show that when A < B <
C, α, β ∈ [0, π/2], and the lengths A,B are kept fixed, the angle α will
continuously decrease as γ increases. Indeed, when γ ≥ π/2, this follows from
the first equality in relation (2) above, and if γ < π/2, it follows from the
second equality in (2) together with (1). �

Next, we state a comparison result between triangles in M and triangles in
the disk D.

Lemma 3. Take 0, z̃, w ∈ D satisfying (5). Consider triangles in M and
D given by TM = (m0,m1,m2) and (w, 0, z̃), respectively. If

dM (m0,m1) = dD(0, w), dM (m1,m2) ≥ dD(0, z̃), ∠m0m1m2 ≥ ∠w0z̃,

then

(8) ∠m1m2m0 ≤ ∠0z̃w.

Proof. Let z ∈ D be so that the triangle (0, z, w) is equal to (0, z̃, w) ∪
(z̃, z, w), and let T alek ∈ D be an Aleksandrov triangle of TM (see Section
2.2). Without loss of generality, we can take malek

1 to be 0, malek
0 to be w̃ in

Lemma 2, and malek
2 to be z above. The result then follows from Theorem

AT and Lemma 2. �
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4. Proof of Theorem 1

We now take Theorem 3 for granted.
Let H be the curve in the hyperbolic disk D of constant curvature +1

parameterized by (hyperbolic) arclength with H(0) = 0. Theorem 3 gives

dM (σ(0), σ(s)) ≥ dD (0,H(s))→∞ as s→∞
and

(9)
∫ ∞
−∞

1

2 cosh2(dM (σ(0),σ(s))
2 )

ds ≤
∫ ∞
−∞

1

2 cosh2(dD(0,H(s))
2 )

ds = π,

where the last equality follows from the following observation:

Euclidean-length(H) =
∫
H

|ds| =
∫
H

1− |s|2

2
2

1− |s|2
|ds|.

In order to express the integrand in terms of hyperbolic distance, note that if
z ∈ D, then

1
1− |z|2

=
1+|z|
1−|z| + 1−|z|

1+|z|

4
+

1
2

=
edD(0,z) + e−dD(0,z) + 2

4
= cosh2

(
1
2
dD(0, z)

)
.

This, together with (4), implies the equality in (9).

5. Proof of Theorem 3

In applications, we shall only need the case where b = 1. The proof will be
given in this case only; the proof in the general case is similar.

We first prove a polygonal line version of Theorem 3 (Section 5.1). Then
(Section 5.2) we describe a procedure that allows us to derive the general
comparison theorem for curves from this discrete version.

5.1. Comparison theorem for polygonal lines. We fix a point m0 ∈
M which will serve as a reference point; in the case of the disk D, we take 0.

We denote by PM(α1,...,αn−1;L) a piecewise geodesic polygonal line in M pa-
rameterized by arclength, consisting of a number of geodesic arcs, whose sides,
γ1, . . . , γn, are of the same length L, connecting vertices m0, . . . ,mn, so that

m0 = γ1(0), mn = γn(L), mi = γi(L) = γi+1(0), i = 1, . . . , n− 1,

and such that the αi’s are angles between consecutive segments,

αi = ∠ ((γi)′(L), (γi+1)′(0)) (∈ [−π, π]).

We want to compare polygonal lines in M with polygonal lines in the disk D.
We denote these by PM and P , respectively.

To each polygonal line PM in M we associate a region, the fanshaped frame,
which consists of the union of the boundaries of the geodesic triangles TMk in
M with vertices at the points (m0,mk,mk+1), k = 1, . . . , n− 1, and vortex at
m0.
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Roughly speaking, with this notation, Theorem AT states that to any 2-
polygonal line in M a comparison polygonal line in D can be associated such
that its curvature and distance between endpoints are at most those of the
polygonal line in M . Our aim in this section is to extend this to n-polygonal
lines.

In what follows, let β = 2 arctan(sinh(L/2)) > 0 (see Section 2.3); we take
P(β,...,β;L) as the comparison n-polygonal line in D with

z0 = P(β,...,β;L)(0) = 0, zk = P(β,...,β;L)(kL),

where the angles are kept fixed. (The appropriate value for the angles comes
from the fact that the curve σ ∈M of Theorem 1 has curvature bounded above
by 1, and thus the polygonal line in M , PM(α1,...,αn−1;L), has angles bounded
above by this value of β.)

Theorem 4. Let PM(α1,...,αn−1;L) and P(β,...,β;L) as above. If |αk| ≤ β, then

(10) dM (m0,mn) ≥ d(z0, zn).

Fix the polygonal lines and consider the (fixed) triangles with vertices
mk,ml,mj , and corresponding triangles with vertices zk, zl, zj . In the course
of the proof we will construct some triangles in D which will serve as inter-
mediate objects for comparison. A convenient notation for angles of triangles
of the fanshaped frame will be the following:

• CM (k; l, j), for 0 ≤ j < k < l: the interior (central) angle at vertex
mk of the triangle in M of vertices mk,ml and mj .
• IM (k; j− 1, j), for any k, j− 1, j distinct: the interior (lateral) angle

at vertex mk of the triangle in M of vertices mk,mj−1 and mj .
The same quantities without the superscript M will be the (corresponding)

magnitudes in D.

Proof. We shall prove (10) by induction on the number of triangles TMk =
(m0,mk,mk+1), k = 1, . . . , n− 1, of the fanshaped frame.

The case n = 2 follows easily from Theorem AT and the cosine rule in the
hyperbolic disk. Indeed, consider the triangle with vertices m0, m1, m2, and
proceed as follows:

(i) Since |α1| ≤ β, we get directly CM (1; 2, 0) ≥ C(1; 2, 0).
(ii) Consider now an Aleksandrov triangle. From Theorem AT, (i) and

the hyperbolic cosine rule we get dM (m0,m2) ≥ dD(z0, z2).
(iii) Lemma 3 together with (i) and d(m1,m2) = d(z1, z2) = L gives

IM (2; 0, 1) ≤ I(2; 0, 1).
For the general case, consider the (n − 1)−polygonal line PM(L;α1,...,αn−2)

and the triangles of its fanshaped frame TMk and suppose that for k ≤ n− 1
(a) CM (k − 1; k, 0) ≥ C(k − 1; k, 0),
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(b) dM (m0,mk) ≥ dD(z0, zk),
(c) IM (n− 1; j − 1, j) ≤ I(n− 1; j − 1, j) for j = 1, . . . , n− 2.

We shall verify that we can continue the process.

(a’) CM (n − 1;n, 0) ≥ C(n − 1;n, 0). Consider the fanshaped frame with
vortex at mn−1, and the corresponding frame with vortex at zn−1.

Since the vertices z0, . . . , zn lie on a curve of constant curvature 1, the
angles at vertex zn−1 of the triangles of the fanshape frame in D trivially
verify

(11) π = C(n− 1;n, 0) +
n−2∑
j=1

I(n− 1; j − 1, j) + β.

Take the exponential map, so that expmn−1
(0) = mn−1. Consider the points

m̂0, . . . , m̂n−2, m̂n lying on the surface of the unit ball, S, that satisfy

dS(m̂k, m̂k−1) = IM (n− 1; k − 1, k) for k = 0, . . . , n− 2,

dS(m̂0, m̂n) = CM (n− 1;n, 0),

dS(m̂n−2, m̂n) = π − |αn−1|.

By the triangle inequality for dS(m̂n−2, m̂n),

(12) π ≤ CM (n− 1;n, 0) +
n−2∑
j=1

IM (n− 1; j − 1, j) + |αn−1|.

Subtracting (11) from (12), using |αi| ≤ β and (c) above, (a’) follows.

Observe that (a’) also implies that CM (1;n, 0) ≥ C(1;n, 0), since one can
consider, by reordering the vertices, the triangle T = (m0,m1,mn).

(b’) dM (m0,mn) ≥ dD(z0, zn). Consider the triangle with vertices m0,
mn−1, mn, and its comparison triangle with vertices z0, zn−1, zn.

Construct an Aleksandrov triangle in D. Theorem AT together with (a’)
gives Calek(n − 1;n, 0) ≥ CM (n − 1;n, 0) ≥ C(n − 1;n, 0). By induction,
dM (m0,mn−1) ≥ d(z0, zn−1). We claim that (b’) follows from the cosine rule
in D. Indeed, z0, zn−1, zn satisfy (5), for the vertices zk lie on a curve of con-
stant curvature 1, dD(zn−1, zn) = dD(z0, z1), and the distance to z0 increases
as we move along the horocycle and, therefore, dD(z0, zn) ≥ dD(z0, zn−1) ≥ L.
Thus, ∠zn−1z0zn < π/2, and this angle at z0 remains below π/2 while the
edge of length d(z0, zn−1) is lengthened to an edge of length dM (m0,mn−1).
The cosine rule gives the desired inequality.

(c’) IM (n; k − 1, k) ≤ I(n; k − 1, k). It is enough to prove this for k = 1,
since all other cases follow from (c) by reordering the vertices. Consider the
triangles TM = (m0,m1,mn) and T = (z0, z1, zn). We claim that Lemma 3
applies.
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First observe that, by the remark in (b’), z0, z1, zn also satisfy (5). There-
fore dD(z0, zn) ≥ dD(z1, zn) ≥ L. Note that dM (m0,m1) = dD(z0, z1) = L and,
by the observation in (a’), CM (1;n, 0) ≥ C(1;n, 0). Finally, dM (m1,mn) ≥
dD(z1, zn); to see this, simply take the new (n−1)-polygonal line P̃M(α2,...,αn−1;L)

starting at the point m̃0 = m1 and its comparison polygonal line P̃(β,...,β;L)

starting at z̃0 = z1. The claim now follows from (b). Thus, by Lemma 3,
I(n; 0, 1) ≥ IM (n; 0, 1). �

5.2. Comparison theorem for curves. We consider a curve σ in M
parametrized by arclength. On σ, we choose a point m0; we may assume that
σ is parametrized so that m0 = σ(0).

Given ε > 0, we consider as the model space for comparison the surface of
constant sectional curvature −(1+ε)2 and take the curve of constant curvature
1 + ε, say Hε(s), in D to be the unique curve parametrized by arclength that
satisfies H(0) = 0 and is tangent to ∂D at eıπ. We want to show that

(13) dM (m0, σ(s)) ≥ d(0,Hε(s)) for all s.

The general case will then follow by letting ε→ 0.
Fix a small stepsize L of the form L = s/n, where n is a positive integer.

We approximate H(s) and the given curve σ(s) by polygonal lines P(β,...,β;L)

and PM(α1,...,αn−1;L), respectively, in the following way:
To approximate Hε, set z0 = 0 ∈ Hε and determine successive points

{zk}nk=1, zk ∈ Hε, so that d (zk, zk+1) = L for k = 0, . . . , n − 1. The angles
of the polygonal line constructed in this way (see Section 2.3) are all equal to
β = 2 arctan(sinh(1 + ε)L/2).

To approximate σ, we set m0 = m ∈ σ and determine successive points
{mk}nk=1, mi ∈ σ, so that dM (mk,mk+1) = L for k = 0, . . . , n − 1. The
angles of the polygonal line constructed in this way satisfy |αi| ≤ β if L is
sufficiently small. This, of course, is due to the fact that the curvature of σ is
strictly less than 1 + ε in absolute value (see Section 2.3).

By Theorem 4, dM (m0, P
M
(α1,...,αn−1;L)(nL)) ≥ d(0, P(β,...,β;L)(nL)). Let-

ting L→ 0, we get (13).
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