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PSEUDODIFFERENTIAL OPERATORS ASSOCIATED TO
LINEAR ORDINARY DIFFERENTIAL EQUATIONS

MIN HO LEE

Abstract. We investigate connections between pseudodifferential op-
erators and linear ordinary differential equations via their respective

links to automorphic forms. We also introduce Hecke operators on the
space of pseudodifferential operators as well as on the space of certain
meromorphic functions associated to ordinary differential equations and
prove that the actions of those Hecke operators are compatible with the
correspondence between pseudodifferential operators and linear ordinary

differential equations.

1. Introduction

Automorphic forms for discrete subgroups of SL(2,R) or for those of more
general semisimple Lie groups play an important role in modern number the-
ory, and they are closely linked to various other areas of pure and applied
mathematics. One of the examples of such links can be found in the the-
ory of linear ordinary differential equations. Indeed, certain types of second
order linear ordinary differential equations with regular singular points on a
Riemann surface determine meromorphic automorphic forms of weight three
for the monodromy groups of the given equations. Meromorphic automorphic
forms of weight k ≥ 3 can also be obtained from differential equations of order
k − 1 associated to such second order equations.

Pseudodifferential operators are formal Laurent series in the formal inverse
∂−1 of the differential operator ∂ = d/dz on the complex plane C. One
of the most widely known applications of such operators can be found in
the theory of integrable nonlinear partial differential equations, also known
as soliton equations. Soliton equations have been the subject of numerous
studies for the past few decades, and they include many well-known equations
in mathematical physics such as the nonlinear Schrödinger equation, the Sine-
Gordon equation, the Korteweg-de Vries (KdV) equation, and the Katomtsev-
Petviashvili (KP) equation (see e.g. [3], [4]).
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In a recent paper [2], Cohen, Manin and Zagier studied relations between
pseudodifferential operators and automorphic forms. Given a discrete sub-
group Γ of SL(2,R), they constructed a Γ-invariant pseudodifferential oper-
ator associated to an automorphic form for Γ, which determines a lifting for
the symbol map of pseudodifferential operators.

Hecke operators are an important tool for the study of automorphic forms,
and the connections between automorphic forms and differential equations
allow us to consider Hecke operators for differential equations (see [5]). The
goal of this paper is to investigate connections between pseudodifferential op-
erators and linear ordinary differential equations via their respective links to
automorphic forms. We also introduce Hecke operators on the space of pseu-
dodifferential operators as well as on the space of certain meromorphic func-
tions associated to ordinary differential equations and prove that the actions
of those Hecke operators are compatible with the correspondence between
pseudodifferential operators and linear ordinary differential equations.

2. Differential equations and automorphic forms

In this section we review connections between meromorphic automorphic
forms of one variable and a certain class of linear ordinary differential equa-
tions, following closely the work of Stiller in [6].

Let H = {z ∈ C | Im z > 0} be the Poincaré upper half plane on which the
group SL(2,R) acts by linear fractional transformations. Thus we have

(2.1) γz =
az + b

cz + d
∈ H

for all z ∈ H and γ =
(
a b
c d

)
∈ SL(2,R). Given such a matrix γ, a function

h : H → C, and an integer `, we set

(2.2) (h|`γ)(z) = (cz + d)−`h(γz)

for all z ∈ H. Let Γ ⊂ SL(2,R) be a Fuchsian group of the first kind, that is,
a discrete subgroup such that the quotient space Γ\H∗ is compact, where H∗
denotes the union of H and the set of cusps of Γ.

Definition 2.1. A meromorphic automorphic form of weight k for Γ is
a meromorphic function f : H → C which is meromorphic at the cusps of Γ
and satisfies

f |kγ = f

for all γ =
(
a b
c d

)
∈ Γ. We denote by Mk(Γ) the space of all meromorphic

automorphic forms of weight k for Γ.

Throughout the rest of this paper we fix a meromorphic automorphic form
ϕ ∈ M1(Γ) of weight one for the Fuchsian group Γ of the first kind. Then
the associated compact Riemann surface X = Γ\H∗ may be considered as an
algebraic curve over C. We denote by K(X) the function field of the algebraic
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curve X, and choose a nonconstant element x of K(X). If the functions ϕ(z)
and zϕ(z) on H are regarded as functions on X, they satisfy a second order
homogeneous linear ordinary differential equation Dϕ,Xf = 0 on X with

(2.3) Dϕ,X =
d2

dx2
+ PX(x)

d

dx
+QX(x)

that has regular singular points, where PX(x) and QX(x) are elements of
K(X). Given an element f ∈ K(X), we have df/dx = (df/dz)(dz/dx) and

d2f

dx2
=

d

dz

( df
dz
· dz
dx

)
· dz
dx

=
[d2f

dz2
· dz
dx

+
df

dz
· d
dz

((dx
dz

)−1)]
· dz
dx

=
[d2f

dz2
− df

dz
·
(dx
dz

)−1

· d
2x

dz2

]
·
(dz
dx

)2

=
[d2f

dz2
− df

dz
· d
dz

log
dx

dz

]
·
(dz
dx

)2

,

where z is the standard coordinate in C. Using this, we can pull the differential
operator (2.3) back via the natural projection H∗ → X = Γ\H∗. Thus the
homogeneous equation Dϕ,Xf = 0 on X is equivalent to the equation Dϕf = 0
on H with

(2.4) Dϕ =
d2

dz2
+ P (z)

d

dz
+Q(z),

where P (z) and Q(z) are meromorphic functions on H given by

P (z) = PX(x(z))
dx

dz
− d

dz
log

dx

dz
, Q(z) = QX(x(z))

(dx
dz

)2

(cf. [6, p. 63]). Thus the functions zϕ(z) and ϕ(z) for z ∈ H are linearly
independent solutions of the associated homogeneous equation Dϕf = 0, and
the regular singular points of Dϕ coincide with the cusps of Γ (see [6] for
details).

Given a positive integer m, let SmDϕ be the linear ordinary differential
operator of order m+ 1 such that the solutions of the corresponding homoge-
neous equation SmDϕf = 0 are of the form

(2.5)
m∑
i=0

Ci(zϕ(z))m−i(ϕ(z))i =
m∑
i=0

Ciz
m−iϕ(z)m

for some constants Ci ∈ C.
We now consider a more general ordinary differential operator of order n

of the form

D =
dn

dxn
+ Pn−1

dn−1

dxn−1
+ · · ·+ P1

d

dx
+ P0,

where Pi ∈ K(X) for 0 ≤ i ≤ n− 1. Let S ⊂ X be the set of singular points
of P0, . . . , Pn−1, and let X0 = X − S. We choose a base point x0 ∈ X0 and
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let ω1, . . . , ωn be a basis for the space of local solutions of Df = 0 near x0.
Then the Wronskian

(2.6) WD = detMD

is the determinant of the n × n matrix MD = (dj−1ωi/dx
j−1) whose (i, j)

entry is dj−1ωi/dx
j−1 for 1 ≤ i, j ≤ n. Given x ∈ X, let η = {η1, . . . , ηn−1}

be the set of n − 1 local solutions of Df = 0 near x, and let Aη be the
(n−1)× (n−1) matrix whose (i, j) entry is dj−1ηi/dx

j−1 for 1 ≤ i, j ≤ n−1.
Then a function ψ ∈ K(X) is said to satisfy the residue conditions with respect
to D if the differential (Aηψ/W )dx has zero residue at every x ∈ X0 = X −S
for each set η of n− 1 local solutions of Df = 0 near x.

Definition 2.2. An element ψ ∈ K(X) is said to satisfy the parabolic
residue conditions with respect to D if it satisfies the residue conditions and
if for each η the differential (Aηψ/W )dx has zero residue at every singular
point x ∈ S whenever Aη is single-valued.

Let ν be a positive integer, and let Pν,ϕ be the set of meromorphic functions
ψ on H whose associated elements ψX in K(X) satisfy the parabolic residue
conditions with respect to S2νDϕ. Given ψ ∈ Pν,ϕ, we denote by S(ψ) a
solution of the differential equation S2νDϕf = ψ, and set

(2.7) ρν,ϕ(ψ) =
d2ν+1

dz2ν+1

(S(ψ)
ϕ2ν

)
.

Note that ρν,ϕ(ψ) is independent of the choice of the solution S(ψ) because
we have

d2ν+1

dz2ν+1

( 1
ϕ2ν

2ν∑
i=0

Ciz
2ν−iϕ2ν

)
=

d2ν+1

dz2ν+1

( 2ν∑
i=0

Ciz
2ν+i

)
= 0

for any constants Ci ∈ C.

Lemma 2.3. The function ρν,ϕ(ψ) on H given by (2.7) is a meromorphic
automorphic form for Γ of weight 2ν+2, and the associated map ρν,ϕ : Pν,ϕ →
M2ν+2(Γ) is a one-to-one linear map of complex vector spaces.

Proof. The fact that ρν,ϕ(ψ) is an element of M2ν+2(Γ) follows from results
in [6, p. 32]. Since the map ρν,ϕ is clearly complex linear, it suffices to show
that its kernel is zero. Suppose ρν,ϕ(ψ) = 0 for some ψ ∈ Pν,ϕ. Then by (2.7)
we see that

S(ψ) = ϕ(z)2ν
2ν∑
i=0

Ciz
i
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for some constants Ci ∈ C. Since S(ψ) is a solution of the differential equation
S2νDϕf = ψ, we have

ψ = S2νDϕS(ψ) = S2νDϕ
(
ϕ(z)2ν

2ν∑
i=0

Ciz
i
)
.

However, by (2.5) the functions ϕ(z)2ν
∑2ν
i=0 Ciz

i are solutions of the homo-
geneous equation S2νDϕf = 0, and therefore it follows that ψ = 0. �

3. Pseudodifferential operators

In this section we review pseudodifferential operators with coefficients in
the space of meromorphic functions on the Poincaré upper half plane H ⊂ C
and discuss their connections with meromorphic automorphic forms.

Let z be the standard coordinate for C, and let ∂ be the differential op-
erator d/dz. We denote by F the ring of meromorphic functions on H. A
pseudodifferential operator L over F is a formal Laurent series in the formal
inverse ∂−1 of ∂ with coefficients in F , that is, a formal series of the form

(3.1) L =
n0∑

n=−∞
ξn(z)∂n

for some n0 ∈ Z with ξn ∈ F for each n. We denote by Ψ DO = Ψ DO(F)
the set of all pseudodifferential operators over F . Then Ψ DO is a ring whose
multiplication operation is given by(∑

n

ξn(z)∂n
)(∑

m

ηm(z)∂m
)

=
∑
n,m

∑
r≥0

(
n

r

)
ξn(z)η(r)

m (z)∂n+m−r,

where (
n

0

)
= 1,

(
n

r

)
=
n(n− 1) · · · (n− r + 1)

r!

for n ∈ Z and r ≥ 1.
Let Γ ⊂ SL(2,R) be a Fuchsian group of the first kind. Then Γ acts on

Ψ DO by

γ · L =
n0∑

n=−∞
ξn(γz)

(d(γz)
dz

∂
)n

for each γ ∈ Γ if L is given by (3.1).

Proposition 3.1. An element

Φ(z) =
∞∑
k=1

(−1)kk!(k − 1)!φ̃k(z)∂−k
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of Ψ DO is Γ-invariant if and only if there is a meromorphic automorphic
form hj ∈M2j(Γ) for Γ for each j ≥ 1 such that

(3.2) φ̃k(z) =
k−1∑
r=0

1
r!(2k − r − 1)!

h
(r)
k−r(z)

for all z ∈ H and k ≥ 1. Furthermore, the formula (3.2) is equivalent to the
relation

hm(z) = (2m− 1)
m−1∑
r=0

(−1)r(2m− r − 2)!
r!

φ̃m−r(z)

for each m ≥ 1.

Proof. This follows from Proposition 2 in [2]. �

Let
∏∞
ν=1 Pν,ϕ be the set of sequences (ψν)∞ν=1 of meromorphic functions

on H, which has the natural structure of a complex vector space. Given
ψ = (ψν(z))∞ν=1 ∈

∏∞
ν=1 Pν,ϕ, we set

(3.3) Ξϕ(ψ) =
∞∑
k=2

k−1∑
r=0

(−1)kk!(k − 1)!
r!(2k − r − 1)!

(S(ψk−r−1)
ϕ2k−2r−2

)(2k−r−1)

∂−k.

Theorem 3.2. The formula (3.3) determines a linear map

Ξϕ :
∞∏
ν=1

Pν,ϕ → Ψ DOΓ

of complex vector spaces, where Ψ DOΓ denotes the space of Γ-invariant ele-
ments of Ψ DO.

Proof. Given a sequence ψ = (ψν)∞ν=1 ∈
∏∞
ν=1 Pν,ϕ, we set ξ1 = 0 and

(3.4) ξ` =
(S(ψ`−1)

ϕ2`−2

)(2`−1)

for integers ` ≥ 2. Then by Lemma 2.3 we see that ξ` ∈M2`(Γ) for all ` ≥ 1.
Thus by Proposition 3.1 the pseudodifferential operator

∞∑
k=1

k−1∑
r=0

(−1)kk!(k − 1)!
r!(2k − r − 1)!

ξ
(r)
k−r∂

−k

=
∞∑
k=2

k−1∑
r=0

(−1)kk!(k − 1)!
r!(2k − r − 1)!

(S(ψk−r−1)
ϕ2k−2r−2

)(2k−r−1)

∂−k

is Γ-invariant, where we used (3.4) and the fact that ξ1 = 0. Hence we have
Ξϕ(ψ) ∈ Ψ DOΓ. Since the linearity of Ξϕ is clear, the proof of the theorem
is complete. �
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Given a positive integer ν, we define the linear map

Tν : Pν,ϕ → Ψ DO−ν−1

of complex vector spaces by

(3.5) Tν(ψ) =
∞∑

n=ν+1

(−1)nn!(n− 1)!
(n− ν − 1)!(n+ ν)!

(S(ψν)
ϕ2ν

)(n+ν)

∂−n

for all ψ ∈ Pν,ϕ.

Theorem 3.3. For each ψ ∈ Pν,ϕ the pseudodifferential operator Tν(ψ) ∈
Ψ DO−ν−1 is invariant under the action of Γ, and it can be written in the form

(3.6) Tν(ψ) =
∞∑

n=ν+1

(−1)n+1n!(n− 1)!
(n− ν − 1)!(n+ ν)!

(
ϕ2ν+2ψ

W̃ 2ν+1
Dϕ

)(n−ν−1)

∂−n,

where W̃Dϕ(z) is the pullback of the Wronskian WDϕ(x) defined as in (2.6)
via the natural projection map H → X0 = Γ\H.

Proof. Given ψ ∈ Pν,ϕ, let ψ = (ψr)∞r=1 ∈
∏∞
ν=1 Pν,ϕ be a sequence

defined by

ψr =

{
ψ if r = ν,

0 if r 6= ν,

and let Ξϕ be the map given by (3.3). Using (3.3) and (3.5), we obtain

Ξϕ(ψ) =
∞∑

k=ν+1

k−1∑
r=0

(−1)kk!(k − 1)!
r!(2k − r − 1)!

(S(ψk−r−1)
ϕ2k−2r−2

)(2k−r−1)

∂−k

=
∞∑

k=ν+1

(−1)kk!(k − 1)!
(k − ν − 1)!(k + ν)!

(S(ψ)
ϕ2ν

)(k+ν)

∂−k = Tν(ψ).

Hence by Theorem 3.2 it follows that the pseudodifferential operator Tν(ψ) =
Ξϕ(ψ) is Γ-invariant. On the other hand, using [6, Theorem 3 bis. 5], we see
that

(3.7)
(S(ψν)

ϕ2ν

)(2ν+1)

= (−1)2ν+1ϕ
2ν+2ψ

W̃ 2ν+1
Dϕ

= −ϕ
2ν+2ψ

W̃ 2ν+1
Dϕ

.

Therefore (3.6) follows from this and (3.5). �

4. Hecke operators

In this section we consider Hecke operators on the spaces Pν,ϕ,
∏∞
ν=1 Pν,ϕ

and Ψ DOΓ and discuss the compatibility of such operators with the usual
Hecke operators on the spaces of automorphic forms.

We first extend the action of SL(2,R) on the Poincaré upper half plane H
given by (2.1) to an action of the multiplicative group GL+(2,R) of 2×2 real
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matrices of positive determinant. Given an integer `, if f is a function on H
and if γ =

(
a b
c d

)
∈ GL+(2,R), we set

(4.1) (f |`γ)(z) = (det γ)`/2(cz + d)−`f(γz)

for all z ∈ H. This definition reduces to (2.2) if γ ∈ SL(2,R).
Two subgroups Γ1 and Γ2 of GL+(2,R) are said to be commensurable if

Γ1 ∩ Γ2 has finite index in both Γ1 and Γ2, in which case we write Γ1 ∼ Γ2.
Let Γ ⊂ SL(2,R) be a Fuchsian group of the first kind, and let Γ̃ ⊂ GL+(2,R)
be its commensurator, that is, the set of elements of g ∈ GL+(2,R) such that
gΓg−1 and Γ are commensurable. Let Γ0 be another Fuchsian group of the
first kind, and such that its commensurator coincides with Γ̃. Then for each
α ∈ Γ̃ the double coset ΓαΓ0 has a decomposition of the form

(4.2) ΓαΓ0 =
d∐
`=1

Γα`

for some α1, . . . , αd ∈ GL+(2,R). The Hecke operator on Mk(Γ) associated
to the double coset ΓαΓ0 is the linear map Tk(α) : Mk(Γ)→Mk(Γ0) defined
by

(4.3) Tk(α)f = det(α)k/2−1
d∑
`=1

(f |kα`)

for all f ∈ Mk(Γ), where f |kα` is as in (4.1). In particular, if Γ0 = Γ, then
Tk(α) is a linear endomorphism of Mk(Γ).

Let Γ,Γ0 ⊂ SL(2,R) be as above with Γ ∼ Γ0, and let ϕ ∈ M1(Γ) and
SmDϕ be as in Section 2. Let ϕ0 : H → C be a nonzero meromorphic
automorphic form of weight one for Γ0. Then, as in (2.4), we can consider the
associated differential operator

Dϕ0 =
d2

dz2
+ P0(z)

d

dz
+Q0(z),

where P0(z) and Q0(z) are meromorphic functions on H, the functions zϕ0(z)
and ϕ0(z) are linearly independent solutions of the associated homogeneous
equation Dϕ0f = 0, and the regular singular points of Dϕ0 coincide with the
cusps of Γ0. Thus SmDϕ0 is the differential operator such that {zm−iϕ0(z)m |
0 ≤ i ≤ m} is the set of linearly independent solutions of the homogeneous
equation SmDϕ0f = 0. We also consider the associated space Pν,ϕ0 and the
complex linear map

ρν,ϕ0 : Pν,ϕ0 →M2ν+2(Γ0)

using (2.7) with ϕ replaced with ϕ0.
Let α be an element of the commensurator Γ̃ of Γ such that ΓαΓ0 is as

in (4.2), and let T2ν+2(α) : M2ν+2(Γ) → M2ν+2(Γ0) be the associated Hecke
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operator in (4.3) with k = 2ν + 2. Given ψ ∈ Pν,ϕ, we set

(4.4) Fν,α(z) = ϕ0(z)2ν

∫
· · ·
∫

(T2ν+2(α))(ρν,ϕ(ψ)) dz · · · dz,

(TP
ν (α)ψ)(z) = det(α)ν

d∑
`=1

det(α`)ν+1ψ(α`z)
j(α`, z)2ν+2

(4.5)

×
(
ϕ(α`z)
ϕ0(z)

)2ν+2( WDϕ0
(z)

WDϕ(α`z)

)2ν+1

for all z ∈ H, where ρν,ϕ(ψ) is as in (2.7) and
∫
· · ·
∫
dz · · · dz denotes the

(2ν + 1)-fold indefinite integral with respect to z.

Theorem 4.1. The formula (4.5) determines a linear operator

TP
ν (α) : Pν,ϕ → Pν,ϕ0

on the space Pν,ϕ satisfying

(4.6) TP
ν (α)(ψ) = S2νDϕ0(Fν,α)

for all ψ ∈ Pν,ϕ, where S2νDϕ0(Fν,α) is the function obtained by applying the
differential operator S2νDϕ0 to the function Fν,α given by (4.4).

Proof. Given ψ ∈ Pν,ϕ, by (3.7) and Lemma 2.3 the function

ρν,ϕ(ψ) = −ϕ
2ν+2ψ

W̃ 2ν+1
Dϕ

on H is an element of M2ν+2(Γ). Thus, using (4.3) and (4.5), we obtain

T2ν+2(α)(ρν,ϕ(ψ))(z) = −det(α)ν
d∑
`=1

det(α`)ν+1ϕ2ν+2(α`z)ψ(α`z)

j(α`, z)2ν+2W̃ 2ν+1
Dϕ (α`z)

(4.7)

= −ϕ0(z)2ν+2

W̃Dϕ0
(z)

(TP
ν (α)ψ)(z)

= ρν,ϕ0(TP
ν (α)(ψ))(z)

for all z ∈ H. On the other hand, since Fν,α is a solution of the differential
equation S2νDϕ0f = S2νDϕ0(Fν,α), it follows from (2.7), (4.4) and (4.7) that

ρν,ϕ0(S2νDϕ0(Fν,α)) =
d2ν+1

dz2ν+1

(S(S2νDϕ0(Fν,α))
ϕ2ν

)
=

d2ν+1

dz2ν+1

(Fν,α
ϕ2ν

)
= T2ν+2(α)(ρν,ϕ(ψ)) = ρν,ϕ0(TP

ν (α)(ψ)).

Since ρν,ϕ0 is injective by Lemma 2.3, we obtain (4.6), and therefore the proof
of the theorem is complete. �
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The linear map TP
ν (α) in Theorem 4.1 may be regarded as the Hecke

operator on Pν,ϕ associated to α, and such operators allow us to define the
Hecke operator

TP(α) :
∞∏
ν=1

Pν,ϕ →
∞∏
ν=1

Pν,ϕ0

on
∏∞
ν=1 Pν,ϕ associated to α by setting

TP(α)ψ = (TP
ν (α)(ψν))

for each sequence ψ = (ψν)∞ν=1 ∈
∏∞
ν=1 Pν,ϕ.

We now discuss Hecke operators TΨ(α) on the space Ψ DOΓ of Γ-invariant
pseudodifferential operators (see [1] for another description of Hecke operators
on pseudodifferential operators). Given an element Φ(z) =

∑∞
`=1 φ`(z)∂

−` of
Ψ DOΓ and a positive integer k, we set

(4.8) A(Φ)k(z) =
k−1∑
r=0

(−1)k(2k − r − 2)!
r!(k − r)!(k − r − 1)!

φk−r(z)

for all z ∈ H.

Lemma 4.2. If Φ ∈ Ψ DOΓ, then for each positive integer k, the function
A(Φ)k : H → C is a meromorphic automorphic form of weight 2k for Γ.

Proof. Since Φ is Γ-invariant, using Proposition 3.1, we have

(−1)jφj
j!(j − 1)!

=
j−1∑
r=0

1
r!(2j − r − 1)!

h
(r)
j−r

for each j ≥ 1, where, for each k ≥ 1, hk is a meromorphic automorphic form
of weight 2k for Γ given by

hk = (2k − 1)
k−1∑
`=0

(−1)`(2k − `− 2)!
`!

· (−1)k−`φk−`
(k − `)!(k − `− 1)!

= (2k − 1)
k−1∑
`=0

(−1)k(2k − `− 2)!
`!(k − `)!(k − `− 1)!

φk−`.

Thus we see that A(Φ)k = (2k−1)−1hk, and therefore the lemma follows. �

Given α ∈ Γ̃ and Φ ∈ Ψ DO, we set

TΨ(α)Φ =
∞∑
k=1

k−1∑
r=0

(−1)k
k!(k − 1)!(2k − 2r − 1)

r!(2k − r − 1)!
(4.9)

× (T2k−2r(α)A(Φ)k−r)(r)∂−k.

We note that
T2k(α)A(Φ)k ∈M2k(Γ0)
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for each k ≥ 1, since A(Φ)k ∈M2k(Γ) by Lemma 4.2. The following theorem
shows that T2k(α) is an operator on Ψ DOΓ, which we call the Hecke operator
on Ψ DOΓ associated to α, and that it is compatible with the Hecke operator
TP(α) on Pν,ϕ.

Theorem 4.3. For each Φ ∈ Ψ DOΓ, the pseudodifferential operator
TΨ(α)Φ given by (4.9) is Γ-invariant, and the diagram∏∞

ν=1 Pν,ϕ
Ξϕ−−−−→ Ψ DOΓ

TP(α)

y yTΨ(α)∏∞
ν=1 Pν,ϕ0

Ξϕ0−−−−→ Ψ DOΓ

is commutative.

Proof. Let ψ = (ψν)∞ν=1 ∈
∏∞
ν=1 Pν,ϕ. Then by (2.7) and (3.3) we have

(4.10) Ξϕ(ψ) =
∞∑
k=1

(−1)kk!(k − 1)!φ̃k∂−k

with φ̃1 = 0 and

(4.11) φ̃k =
k−1∑
r=0

1
r!(2k − r − 1)!

(ρk−r−1,ϕ(ψk−r−1))(r)

for k ≥ 2 with ψ0 = 0. Using Proposition 3.1, we see that (4.11) is equivalent
to the relation

ρk−1,ϕ(ψk−1) = (2k − 1)
k−1∑
r=0

(−1)r(2k − r − 2)!
r!

φ̃k−r.

On the other hand, by (4.8) and (4.10) we have

A(Ξϕ(ψ))k =
k−1∑
r=0

(−1)r(2k − r − 2)!
r!(k − r)!(k − r − 1)!

· (−1)k−r(k − r)!(k − r − 1)!φ̃k−r.

Thus we obtain
ρk−1,ϕ(ψk−1) = (2k − 1)A(Ξϕ(ψ))k.

Hence by (4.9) we have

TΨ(α)(Ξϕ(ψ)) =
∞∑
k=1

k−1∑
r=0

(−1)k
k!(k − 1)!

r!(2k − r − 1)!

× (T2k−2r(α)(ρk−r−1,ϕ(ψk−r−1))(r)∂−k.
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On the other hand, since TP(α)ψ = (TP
ν (α)(ψν)), by (4.10) we obtain

Ξϕ0(TP(α)ψ) =
∞∑
k=1

k−1∑
r=0

(−1)kk!(k − 1)!
r!(2k − r − 1)!

× (ρk−r−1,ϕ0(TP
k−r−1(α)(ψk−r−1)))(r)∂−k.

However, by (4.7) we have

ρk−r−1,ϕ0(TP
k−r−1(α)(ψk−r−1)) = T2k−2r(α)(ρk−r−1,ϕ(ψk−r−1)).

Hence we see that

TΨ(α)(Ξϕ(ψ)) = Ξϕ0(TP(α)ψ),

and therefore the theorem follows. �
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[3] L. Dickey, Soliton equations and Hamiltonian systems, World Scientific, Singapore,

1991.
[4] B. Kupershmidt, KP or mKP: Noncommutative mathematics of Lagrangian, Hamil-

tonian, and integrable systems, Amer. Math. Soc., Providence, 2000.

[5] M. H. Lee, Hecke operators on linear ordinary differential equations, Acta Appl. Math.
59 (1999), 203–213.

[6] P. Stiller, Special values of Dirichlet series, monodromy, and the periods of automorphic

forms, Mem. Amer. Math. Soc., vol. 299, 1984.

Department of Mathematics, University of Northern Iowa, Cedar Falls, Iowa

50614, USA

E-mail address: lee@math.uni.edu


