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SEMILINEAR AND SEMIALGEBRAIC LOCI OF
O-MINIMAL SETS

ARTUR PIȨKOSZ

Abstract. We consider some semilinear (= semiaffine) and semialge-
braic loci of o-minimal sets in euclidean spaces. Semilinear loci have

good properties. Some of these properties hold for semialgebraic loci
when we restrict to a smaller class of analytically o-minimal sets.

1. O-minimal sets and geometric loci

A structure τ on the set of real numbers R is a family τn (n ∈ N) such
that (cf. [4] or [5]):

(S1) τn is a boolean algebra of subsets of Rn,
(S2) if A ∈ τn, then R×A, A×R belong to τn+1,
(S3) if A ∈ τn+1, then π(A) ∈ τn, where π : Rn+1 → Rn is the natural

projection obtained by dropping the last component,
(S4) the diagonals {x ∈ Rn : xi = xj} for 1 ≤ i < j ≤ n belong to τn.

If also
(S5) singletons {r} for r ∈ R belong to τ1,
(S6) the linear order {(x, y) ∈ R2 : x ≤ y} belongs to τ2,
(S7) every set from τ1 is a finite union of intervals (of any type),

then this structure is o-minimal. We will say that A ⊂ Rn (not necessary a
proper subset of Rn) belongs to τ if A ∈ τn.

The following two examples of o-minimal structures are widely known (see,
for example, [5]):

• The system of semilinear sets.
• The system of semialgebraic sets.

For a finite collection F of subsets of R,R2,R3, . . . , we define Tarski(F)
to be the smallest structure on R containing F and the semialgebraic sets. We
call F (or a single set A) o-minimal if Tarski(F) (or Tarski(A)) is o-minimal.
In Section 3 we prove:
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Theorem 1.1. If A is o-minimal, B ⊃ A is semilinear, and all germs of
A at points of B are semilinear, then A is semilinear.

We assume that all stratifications considered here have connected strata.
A structure τ admits analytic stratification if, for every finite collection of
elements of any τn, there exists a finite analytic stratification of the ambient
space Rn into elements of τn that is compatible with the given finite collection
of sets. (This notion is equivalent to admitting analytic cell decomposition.) A
set A ⊂ Rn is analytically o-minimal if Tarski(A) is contained in a structure
admitting analytic stratification. Recently, J.-Ph. Rolin, P. Speissegger, and
A. Wilkie have constructed new o-minimal structures which give examples of
o-minimal sets that are not analytically o-minimal, and o-minimal sets A1, A2

such that {A1, A2} is not o-minimal (see [3]). In Section 4 we prove:

Theorem 1.2. If A is analytically o-minimal, B ⊃ A is semialgebraic,
and all germs of A at points of B are semialgebraic, then A is semialgebraic.

Let A ⊂ Rn. Its tangent semicone1 at a ∈ Rn is the set

C+
a (A) = {0} ∪ {x ∈ Rn | ∃bk ∈ A\{a} ∃λk > 0 : bk → a, λk(bk − a)→ x}.

We introduce the semilinear and the semialgebraic tangent semicone locus
of A:

SLC+(A) = {a ∈ Rn | the tangent semicone C+
a (A) is semilinear},

SC+(A) = {a ∈ Rn | the tangent semicone C+
a (A) is semialgebraic}.

Similarly, we define the semilinear and the semialgebraic germ locus of A:

SL(A) = {x ∈ Rn | the germ Ax is semilinear},
S(A) = {x ∈ Rn | the germ Ax is semialgebraic}.

The semilinear and the semialgebraic grassmannian of A at a ∈ Rn are:

SLaG
k
n(A) = {l ∈ Gk

n | (a+ l) ∩A is semilinear},

SaG
k
n(A) = {l ∈ Gk

n | (a+ l) ∩A is semialgebraic}.

For A ⊂ Rm+n and given m,n ∈ N, we introduce the semilinear and the
semialgebraic fiber locus of A as follows:

SLnm(A)={x ∈ Rm |the fiber A(x) = {y ∈ Rn |(x, y) ∈ A} is semilinear},
Snm(A)={x ∈ Rm |the fiber A(x) = {y ∈ Rn |(x, y) ∈ A} is semialgebraic}.

In Section 3 we prove:

1This notion is a little more delicate than the tangent cone where the λk’s are any real
numbers. Several possibilities of defining the tangent cone are presented in [7].
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Theorem 1.3. For an o-minimal set A ⊂ Rm+n, the following sets belong
to Tarski(A), and hence are o-minimal:

SLnm(A), SL0G
n
m+n(A), SLC+(A).

Proposition 1.4. If A ⊂ Rn is o-minimal, then so is SL(A). Moreover,
we have SL(SL(A)) = SL(A).

We will call a germ Aa of a set A ⊂ Rn trivial if it is equal to the germ at
a of the empty set or the whole space Rn.

If Aa is semialgebraic (a ∈ S(A)) or semilinear (a ∈ SL(A)) then we can
define the semialgebraic (semilinear) complexity of this germ as follows: Given
a description of the type

Aa =
k⋃
i=1

li⋂
j=1

Di,j ,

where Di,j = {x ∈ Rn : sgn fi,j(x) = Ti,j}a, Ti,j ∈ T = {+, 0,−} and fi,j are
non-zero polynomials (affine functions), the complexity of the description is
defined as

∑
i,j deg(fi,j).

The semialgebraic (semilinear) complexity of the germ Aa is the least com-
plexity of all possible descriptions of Aa.

Remarks. A semilinear (semialgebraic) germ is trivial iff its complexity is
zero. If a germ is semialgebraic (semilinear) and nontrivial, then we can avoid
polynomials of degree zero in its description. The semilinear complexity is
not the semialgebraic complexity restricted to semilinear germs. The germ of
a singleton in R3 has semialgebraic complexity 2 and semilinear complexity 3.

In Section 3 we prove:

Proposition 1.5. If A is o-minimal, then the semilinear complexity of
its semilinear germs is bounded.

For an o-minimal A, the family of germs Ax, x ∈ SL(A), is uniformly
semilinear in the sense of Theorem 3.1 below.

We recall the following result:

Proposition 1.6 ([2, Theorem 2]). If A is analytically o-minimal, then
the semialgebraic complexity of its semialgebraic germs is bounded.

For an analytically o-minimal A, the family of germs Ax, x ∈ S(A), is
uniformly semialgebraic in the sense of Theorem 4.4 below.

2. Frontiers of any rank

In this section we present a tool needed to deal with the loci of semialgebraic
and semilinear germs.



1354 ARTUR PIȨKOSZ

Let Z be a set in a topological space. Then ∂Z = Z \Z is called the frontier
of Z. Analogously, ∂′Z = Z \ int(Z) will be called the cofrontier of Z.

For any analytically o-minimal set A ⊂ Rn, we define its collection of
semialgebraic frontiers as follows: For any x ∈ Rn, we take the smallest
algebraic subset of Rn containing A∩U for some neighborhood U of x in Rn,
and denote it by Zarx(A). By the Identity Principle, Zarx(A) is constant along
a stratum of an analytic stratification compatible with A, so the collection
{Zarx(A) : x ∈ Rn} is finite (cf. the proof of Theorem 1 in [2]). We set

∂0
xA = the frontier of A ∩ Zarx(A) in Zarx(A),

∂1
xA = the cofrontier of A ∩ Zarx(A) in Zarx(A).

These sets form a finite collection of semialgebraic frontiers of rank 1 for A.
The semialgebraic frontiers of rank k+ 1 for A are the semialgebraic fron-

tiers of rank 1 for all semialgebraic frontiers of rank k for A. We restate a
known fact:

Theorem 2.1 ([2, Theorem 1,3 and Lemma 3]). If A ⊂ Rn is analytically
o-minimal, then so is S(A). Moreover, S(S(A)) = S(A).

Let S be a finite analytic stratification of Rn compatible with A and all
semialgebraic frontiers up to rank n for A. A point x ∈ Rn belongs to S(A) if
and only if, for each stratum S ∈ S, with x ∈ S and S maximal (in the sense
defined below) for A or any of these frontiers, S is a Nash manifold.

Given a C1 stratification S of the space Rn compatible with a set F , a
stratum S ∈ S will be called maximal for F if S ⊂ F and, for any stratum
T ∈ S, S ⊂ ∂T implies T ⊂ Rn \F . A stratum S is flat at x ∈ S if there is a
neighborhood U of x such that y 7→ TyS is constant on U ∩ S. The flat part
of S consists of the points of this stratum at which S is flat.

Now, assume that a finite o-minimal collection F of subsets of some Rn

is given. Let us take a C1 stratification S compatible with F . Take a C1

stratification S ′ compatible with S and with the flat parts of the strata of S
that are maximal for elements of F . We assume that both S and S ′ are taken
from Tarski(F); this is possible, as proved in [6]. The strata of S ′ which
are maximal for elements of F are open subsets of strata of S maximal for
elements of F , and hence are flat or everywhere nonflat.

Take x ∈ Rn. We say that x is linearly Nash for F ∈ F (x ∈ LNash(F ))
if the germ Fx is contained in some germ Gx where G is the union of a finite
number of affine subspaces and dim(Gx)=dim(Fx). This happens if and only
if each stratum S ∈ S ′ that is maximal for F and has x in its closure is flat.
Each set LNash(F ) is open, belongs to Tarski(F ), and its complement is a
finite union of closures of everywhere nonflat strata of S ′ . If x ∈ LNash(F ),
then the smallest finite union of affine subspaces containing Fx, denoted by
LZarx(F ), has the same dimension as the germ Fx, and depends only on the
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stratum on which x lies. Thus the collection of frontiers and cofrontiers of
F ∩ LZarx(F ) in LZarx(F ) for all F ∈ F and x ∈

⋂
F∈F LNash(F ) is a fi-

nite collection of o-minimal sets. This collection will be denoted LFron1(F)
and called the collection of semilinear frontiers of rank 1 for F . Their di-
mensions are strictly smaller than the dimensions of respective elements of
F . Now, LFronk+1(F) = LFron1(LFronk(F)) and LFron0(F) = F . The
following proposition is obvious:

Proposition 2.2. Let S be a finite C1 stratification of Rn compatible
with A and all semilinear frontiers up to rank n for {A}. A point x ∈ Rn

belongs to SL(A) if and only if each stratum S ∈ S that has x in the closure
and is maximal for A or any of these frontiers is flat at x.

3. Semilinear loci

This section contains the proofs in the case of semilinear loci.

Proof of Theorem 1.1.
Case 1: B is an open set. We use induction on l = dimA. The theorem is

obvious for l ≤ 0.
Assume l > 0. The set A is a finite union of C1 submanifolds S, and is

also contained in a countable union of linear subspaces of dimension at most
l. Each of the l-dimensional manifolds S is contained in a single subspace Li
of dimension l. The intersection A ∩ Li is semilinear iff both its frontier and
cofrontier in Li are semilinear. But these, as well as A\

⋃
i Li, have dimensions

less than l.
Case 2: General case. We use the cell decomposition theorem for the

structure of semilinear sets. �

Proof of Theorem 1.3. The set SLnm(A) belongs to Tarski(A): We can
assume that dimA(x) is constant. Let us apply induction on l = dimA(x),
where x ∈ Rm. For l ≤ 0 the statement is obvious. If l > 0, then both
R = {(x, y) ∈ Rm+n | y ∈ Reg1(A(x))} and S = {(x, y) ∈ Rm+n | y ∈
Sing1(A(x))} belong to Tarski(A). (Here Reg1 denotes the set of C1-regular
points of the highest dimension.) The fiber A(x) is semilinear iff

(i) Sing1(A(x)) is semilinear,
(ii) the collection of tangent spaces (of dimension l) at points of Reg1(A(x))

is finite,
(iii) for each affine subspace L of dimension l in Rn, the frontier and

cofrontier of L ∩ Reg1(A(x)) in L are semilinear.
By the induction assumption and simple facts on o-minimal structures, the

set of all x ∈ Rm such that A(x) is semilinear belongs to Tarski(A)m.
Also, the set SL0G

n
m+n(A) belongs to Tarski(A), since it is a finite union of

sets of the form SLnm(Ψ−1(A)), where Ψ: U ×Rn → Rm+n is an appropriate
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semialgebraic mapping which, for a given subspace l ∈ U ⊂ Gn
m+n and the

coordinates of a point in l, produces the coordinates of this point in Rm+n.
The set SLC+(A) belongs to Tarski(A) as a semilinear fiber locus of the

set {(x, y) ∈ R2(m+n) : y ∈ C+
x (A)}. �

Let i be the natural inclusion of the grassmannian space Gk
n into the pro-

jective space P(
∧k Rn), and let pr : Cone(

∧k Rn) → P(
∧k Rn) be the pro-

jectivization mapping for cones in
∧k Rn. A set B ⊂ Gk

n will be called
semilinear if (pr−1 ◦i)(B) is semilinear in

∧k Rn.

Remark. Considering mappings of type Ψ̃ = idRm+n ×Ψ, we can show
that the set of points where the semilinear grassmannian of a given definable
set is semilinear also belongs to Tarski(A).

Proof of Proposition 1.4. By Proposition 2.2 we have

SL(A) =
n⋂
i=0

⋂
F∈LFroni({A})

LNash(F ),

so SL(A) belongs to Tarski(A).
Another proof is as follows. The set SL(A) is a projection of the locus

of semilinear fibers of the set Ã = {(x, y, ε) : y ∈ A, |x − y| < ε} (an obser-
vation by L. van den Dries). Also SL(SL(A)) = SL(A) holds because the
complement of SL(A) is a union of closures of manifolds that are everywhere
nonflat. �

Proof of Proposition 1.5. If the semilinear complexity of some semilinear
B,C ⊂ Rn is bounded (from above) by k, then their boolean combina-
tions and unions of their connected components have semilinear complexity
bounded by some M(k). The same applies to germs. The theorem follows by
induction on the dimension of A, using the notion of semilinear frontiers of
rank 1. �

Now take an o-minimal set A ⊂ Rn. By the existence of definable Skolem
functions in o-minimal structures (in our sense), there exists a function ε :
Rn → R, with graph belonging to Tarski(A), such that ε(x) = 0 if x 6∈
SL(A), ε(x) > 0 for x ∈ SL(A), and the complexity of each semilinear germ
Ax is realized by A∩C(x, ε(x)) in C(x, ε(x)). (Here C(x, r) denotes the open

cube
n
×
i=1

(xi − r, xi + r).) Set Â = {(x, y) ∈ R2n : y ∈ A∩C(x, ε(x))}, so that

Â ∈ Tarski(A)2n and each fiber Â(x) is semilinear. Notice that Â(x)x = Ax if
x ∈ SL(A), and Â(x)x = ∅x otherwise. Using again the existence of definable
Skolem functions and Proposition 1.5, we obtain the following theorem:
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Theorem 3.1. There are p ∈ N and functions

fi,j(x, y) =
n∑
k=1

ai,j,k(x)yk + bi,j(x),

where ai,j,k and bi,j (i, j = 1, . . . , p) belong to Tarski(A), such that for each
x ∈ Rn we have

Â(x) =
p⋃
i=1

p⋂
j=1

{y ∈ Rn : sgn fi,j(x, y) = Ti,j}

with Ti,j ∈ {+, 0,−}.

4. Semialgebraic loci

This section gives some examples and contains the proofs for the case of
semialgebraic loci.

Example 1. Let f(x, y) = xy = exp(y log x) for x, y ∈ (1, 2). Then f(·, y)
is semialgebraic iff y ∈ Q. This function belongs to the o-minimal structure
Tarski(e), where e = exp |[−1,1] (we identify functions with their graphs).

Example 2. Let {qi}i∈N? be a sequence of algebraically independent real
numbers such that |qi| < 1

2 for all i. Let

f(x, y) =
∞∑
m=1

xm(y − q1) · · · · · (y − qm).

This function is analytic and globally subanalytic on (− 1
2 ,

1
2 )2. For y = qi,

f(·, y) is a polynomial; if y 6= qi for all i, then f(·, y) is nonsemialgebraic.

Proposition 4.1. Let n ≥ 2 and m ≥ 1. There exist globally subanalytic
sets Γ1,Γ2 ⊂ Rm+n such that Snm(Γ1) and S0G

n
m+n(Γ2) are not o-minimal.

If m + n ≥ 4, then there exists a globally subanalytic set Γ3 such that
SC+(Γ3) is not o-minimal.

Proof. Let f be the function from Example 1 or Example 2. Let Γ1 be the
set

{(x1, . . . , xm+n) ∈ Rm+n : xm+n = f(xm+n−1, x1)},
and define Γ2 as

{(xm+n−1 sin(πx1), x2, . . . , xm+n−2, xm+n−1 cos(πx1), xm+n) :

(x1, . . . , xm+n) ∈ Γ1, x1 > 0, xm+n−1 > 0}.
Finally, take Γ3 to be the following “semicone with parameter”

{(x1, 0, . . . , 0, λ, λxm+n−1, λf(xm+n−1, x1)) :

(xm+n−1, x1) ∈ dom f, λ ∈ [0,+∞)}. �
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We state a result of similar type:

Proposition 4.2. Let τ be an o-minimal structure containing all semial-
gebraic sets whose field of exponents k(τ) (defined in [1]) is a proper subfield
of R. Then, for m ≥ 1 and n ≥ 2, there exists A ⊂ Rm+n belonging to
Tarski(exp), such that the locus of τ -definable fibers, τnm(A) = {x ∈ Rm |
A(x) ∈ τn}, is not o-minimal.

However, for low dimensional ambient spaces, we have o-minimality of the
semialgebraic tangent semicone locus. This follows from a more general fact:

Proposition 4.3. If A ⊂ R3 is o-minimal, then SLC+(A) is cofinite.

Proof. Let S be a finite C1 stratification of Rn, compatible with A, and
whose strata are cells in Tarski(A) (cf. [6, 4.8(1)]). Let us consider C+

x (A)
for some x ∈ Rn. The interesting case holds when x belongs to some one-
dimensional stratum Γ. As C+

x (A) = C+
x (A) = C+

x (A), C+
x (A∪B) = C+

x (A)∪
C+
x (B), and the boundary bd(C+

x (A)) of C+
x (A) is contained in C+

x (bd(A)),
we can assume that Ax = Γx∪Γ′x, where Γ′ is some two-dimensional stratum.
Notice that for all but finitely many points x ∈ Γ the tangent spaces TyΓ′

with Γ′ 3 y → x have a limit in G2
3 (since the set of limit points is finite

and connected). If the limit plane exists, then the tangent cone C+
x (A) is

contained in this plane, so it is semilinear. �

If A ⊂ R2 is an o-minimal set, then SC+(A) = SLC+(A) = R2.

Proof of Theorem 1.2. We can assume that B is the whole space Rn. We
use induction on n. The theorem is obvious for n = 0, 1.

Case 1. A is nowhere dense.
The set A is a finite union of connected analytic submanifolds which is

contained in a countable union of nowhere dense algebraic sets. By Baire’s
theorem, it is contained in a finite union of algebraic sets. Taking a good
direction, we can express A as a subset of a finite union of graphs of semialge-
braic functions. Applying the induction assumption to the domains of these
functions, we obtain that A is semialgebraic.

Case 2. A is open. The analytically o-minimal set bd(A) is nowhere dense.
By Case 1, it is semialgebraic, and so is A.

Case 3. General case. The set A is a union of an open set and a nowhere
dense set, both of them semialgebraic. �

Take an analytically o-minimal set A ⊂ Rn. By the existence of definable
Skolem functions in o-minimal structures, there exists a function ε : Rn → R,
with analytically o-minimal graph, such that ε(x) = 0 if x 6∈ S(A), ε(x) > 0
for x ∈ S(A), and the complexity of each semialgebraic germ Ax is realized by
A∩B(x, ε(x)) in B(x, ε(x)). (B(x, r) denotes the open ball centered at x with
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radius r). Set Ã = {(x, y) ∈ R2n : y ∈ A ∩ B(x, ε(x))}, so each fiber Ã(x) is
semialgebraic. Notice that Ã(x)x = Ax if x ∈ S(A), and Ã(x)x = ∅x other-
wise. Again, by the existence of definable Skolem functions and Proposition
1.6, we conclude that the following theorem holds:

Theorem 4.4. There are p ∈ N and functions

fi,j(x, y) =
∑
|β|≤p

ai,j,β(x)yβ ,

where β ∈ Nn and all ai,j,β (i, j = 1, . . . , p, |β| ≤ p) belong to some structure
admitting analytic stratification, such that for each x ∈ Rn we have

Ã(x) =
p⋃
i=1

p⋂
j=1

{y ∈ Rn : sgn fi,j(x, y) = Ti,j}

with Ti,j ∈ {+, 0,−}.
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