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OPERATORS ON GENERALIZED POWER SERIES

JORIS VAN DER HOEVEN

Abstract. Given a ring C and a totally (resp. partially) ordered set

of “monomials” M, Hahn (resp. Higman) defined the set of power se-
ries C[[M]] with well-ordered (resp. Noetherian or well-quasi-ordered)
support in M. This set C[[M]] can usually be given a lot of additional
structure: if C is a field and M a totally ordered group, then Hahn
proved that C[[M]] is a field. More recently, we have constructed fields
of “transseries” of the form C[[M]] on which we defined natural deriva-
tions and compositions.

In this paper we develop an operator theory for generalized power
series of the above form. We first study linear and multilinear oper-

ators. We next isolate a big class of so-called Noetherian operators
Φ : C[[M]] → C[[N]], which include (when defined) summation, multi-
plication, differentiation, composition, etc. Our main result is the proof

of an implicit function theorem for Noetherian operators. This theorem
may be used to explicitly solve very general types of functional equations

in generalized power series.

1. Introduction

In [Hah07], Hahn introduced an abstract framework for algebraic compu-
tations on power series with generalized exponents like

f = 1 + zlog 2 + zlog 3 + zlog 4 + · · · ;
g = 1 + z + z2 + ze + z3 + z1+e + z4 + z2+e + z5 + z2e + z3+e + · · · ;

h = 1 + z1/2 + z3/4 + z7/8 + · · ·+ z + z3/2 + z7/4 + · · ·+ z2 + · · ·+ · · · .
One of his main results states that, given a field C and a totally ordered
monomial group M, the set C[[M]] of series f : C → M with well-ordered
support in M carries a natural field structure. This result was generalized by
Higman [Hig52] to the case of partially ordered monomial monoids M.

More recently, Dahn and Göring [DG86] and Écalle [É92] constructed so-
called fields of “transseries”, which are fields of generalized power series C[[M]]
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in the sense of Hahn, with additional structure, such as exponentiation, dif-
ferentiation, integration, composition, etc. Examples of transseries are

ϕ = x+ log x+ log log x+ log log log x+ · · · ;

ψ = ee
x+ex/2+ex/3+··· + ee

x/2+ex/3+ex/4+··· + ee
x/3+ex/4+ex/5+··· + · · · ;

ξ = Γ(x) =
√

2πex log x−x− 1
2 log x + · · ·

In [vdH97], we have shown how to differentiate, integrate and compose such
transseries, and how to solve algebraic differential equations (whenever possi-
ble).

In this paper, we will be concerned with the development of an abstract
operator theory for generalized power series, in the setting of partially ordered
monomial sets introduced by Higman. We start by recalling some basic results
about Noetherian orderings (also called well-quasi-orderings) in Section 2. In
Higman’s setting, generalized power series have Noetherian support. For this
reason, we shall actually call them Noetherian series.

In Section 3, we recall the definition of Noetherian series and develop the
theory of strongly linear and strongly multilinear operators. More precisely,
it is possible to define a notion of infinite summation on algebras C[[M]] of
Noetherian power series. One may think of this as something analogous to
normal summable families in analysis. Strongly linear mappings will then be
linear mappings which also preserve infinite summation.

The remainder of this article focuses on the resolution of certain functional
equations. Translated into the terminology of operators, this comes down to
the isolation of nice classes of operators on which some kind of implicit func-
tion theorem holds (actually, we will rather prove “parameterized fixed point
theorems”). As a basic example, one would like to solve implicit equations
like

(1.1) f = g + f ′f ′′

in fields of transseries, where g is a sufficiently small parameter (say g =
o(e−x)) and f the unknown.

In Section 4, we start by developing a theory of continuous and contracting
functions for Noetherian series and we will prove the existence of a solution
f = Ψ(g) to equations like (1.1) using the technique of fixed points. Actually,
we will prove an implicit function theorem which is very similar to fixed point
theorems from [PC90] and [PCR93], although our proof is more constructive.

A more natural and even more explicit way of getting solutions to (1.1)
would be to replace the left hand side by the right hand side in a recursive
manner, while expanding all sums. This would lead to a formal solution of
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the form

f = g + f ′f ′′

= g + g′g′′ + (f ′f ′′)′g′′ + g′(f ′f ′′)′′ + (f ′f ′′)′(f ′f ′′)′′

= g + g′g′′ + (g′g′′)′g′′ + g′(g′g′′)′′ + · · · .

The main difficulty then resides in proving that the obtained formal expansion
is indeed summable in our generalized sense. In Sections 5 and 6, we will prove
that this is indeed the case for a suitable class of “Noetherian operators”.

2. Noetherian orderings

Throughout this paper, orderings are understood to be partial, except when
we explicitly state them to be total. Actually, almost all ordered sets consid-
ered in this paper are monomial sets, and we denote them by fraktur letters
M,N, . . .. We denote by < (or by <M,<N, . . .) the orderings on such mono-
mial sets. Usually, M is even a monomial monoid or group, on which the
multiplication is assumed to be compatible with the ordering, i.e.,

m 4 n ⇔ mv 4 nv ⇔ vm 4 vn,

for all m, n, v ∈M.

Example 2.1.

(1) M = {xαeβx | α, β ∈ R} with xαeβx < 1⇔ (β > 0 ∨ (β = 0 ∧ α > 0))
is a totally ordered monomial group.

(2) If M and N are monomial sets, then their disjoint union M q N is
naturally ordered, by taking the orderings on M and N on each part
of the disjoint union, and by taking M and N mutually incomparable
in MqN.

(3) If M and N are monomial sets, then the Cartesian product M×N is
naturally ordered by (m, n) <M×N (m′, n′) ⇔ m <M m′ ∧ n <N n′.

(4) Let M? be the set of non-commutative words over a monomial set M
(and where one may think of the elements of M as infinitesimals).
Such words are denoted by sequences m1 · · ·mm, with m1, . . . ,mm ∈
M. The empty word is denoted by ε. The set M? is “naturally”
ordered by m1 · · ·mm <M? n1 · · · nn, if and only if there exists a
strictly increasing mapping ϕ : {1, . . . ,m} → {1, . . . , n}, such that
mi <M nϕ(i) for all i.

Let M be a monomial set. A chain in M is a subset of M which is totally
ordered for the induced ordering. An antichain is a subset of M of pairwise
incomparable elements. The ordering on M is said to be well-founded, if there
are no infinite sequences m1 ≺ m2 ≺ · · · of elements in M. A Noetherian
ordering is a well-founded ordering without infinite antichains.
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Remark 2.2. In the literature, an ordered set (E,6) is usually said to be
well-founded, if there are no infinite sequences x1 > x2 > · · · of elements in
E. This definition is compatible with ours, if one interprets a monomial set
M to be ordered by the opposite ordering < of 4 (as we did).

Let M be a monomial set. A final segment is a subset F of M, such that
m ∈ F ∧ m < n ⇒ n ∈ F, for all m, n ∈ M. Given an arbitrary subset S
of M, we denote by (S) = {n ∈ M | ∃m ∈ S,m < n} the final segment
generated by S. Dually, an initial segment is a subset I of M, such that
n ∈ I ∧ m < n ⇒ m ∈ I, for all m, n ∈M. The following characterizations of
Noetherian orderings are classical [Mil85], [Pou85].

Proposition 2.3. Let M be a monomial set. Then the following are
equivalent:

(a) The ordering < on M is Noetherian.
(b) Any final segment of M is finitely generated.
(c) The ascending chain condition w.r.t. inclusion holds for final seg-

ments of M.
(d) Each sequence m1,m2, . . . ∈M admits a subsequence mi1 < mi2 < · · · .
(e) Any extension of the ordering on M to a total ordering on M yields

a well-ordering. �

The most elementary examples of Noetherian orderings are well-orderings,
and orderings on finite sets. Proposition 2.3 allows us to construct more
complicated Noetherian orderings from simpler ones:

Proposition 2.4. Assume that M and N are Noetherian monomial sets.
Then:

(a) Any subset of M with the induced ordering is Noetherian.
(b) Let M→ V be an increasing mapping into a monomial set V. Then

Imϕ is Noetherian.
(c) Any extension of the ordering < on M is Noetherian.
(d) MqN is Noetherian.
(e) M×N is Noetherian. �

The following theorem is due to Higman [Hig52]. We will recall a proof
due to Nash-Williams [NW63], because a similar proof technique will be used
in Section 6.1.

Theorem 2.5. Let M be a Noetherian monomial set. Then M? is Noe-
therian.

Proof. We say that n1, n2, . . . is a bad sequence in M?, if there do not exist
i < j with ni <M? nj . An ordering is Noetherian if and only if there are no
bad sequences. Now assume for contradiction that n1, n2, . . . is a bad sequence
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in M?. Without loss of generality, we may assume that each ni is chosen in
M?\(n1, . . . , ni−1) such that it has minimal length as a word. We say that
n1, n2, . . . is a minimal bad sequence.

Now for all i, we must have ni 6= ε, so we can factor ni = mivi, where
mi is the first letter of ni. By Proposition 2.3(d), we can extract a sequence
mi1 <M mi2 <M · · · from m1,m2, . . .. Now consider the sequence

n1, . . . , ni1−1, vi1 , vi2 , . . . .

By the minimality of n1, n2, . . ., this sequence is good. Hence, there exist
j < i1 and k with nj <M? vik , or j < k with vij <M? vik . But then,
nj <M? vik <M? mikvik = nik resp. nij = mijvij <M? mikvik = nik . This
contradicts the badness of n1, n2, . . .. �

3. Noetherian series

3.1. Noetherian series and infinite summation. Let C be a commu-
tative additive group of coefficients and M a set of monomials. The support
of a mapping f : M→ C is defined by

supp f = {m ∈M | f(m) 6= 0}.

If supp f is Noetherian for the induced ordering, then we call f a generalized
power series or a Noetherian series. We denote the set of all Noetherian
series with coefficients in C and monomials in M by C[[M]]. We also write
fm = f(m) for the coefficient of m ∈ M in such a series and

∑
m∈M fmm for

f . Each fmm with m ∈ supp f is called a term occurring in f .
Given two Noetherian series f, g ∈M, we define their sum by

f + g =
∑

m∈supp f∪supp g

(fm + gm)m.

This gives C[[M]] the structure of a commutative group. More generally, con-
sider a family (fi)i∈I of series in C[[M]]. We say that (fi)i∈I is a Noetherian
family, if

⋃
i∈I supp fi is Noetherian and for each m ∈ M there exist only a

finite number of i ∈ I such that m ∈ supp fi. In that case, we define its sum
by

(3.1)
∑
i∈I

fi =
∑

m∈M

(∑
i∈I

fi,m

)
m.

This sum is again a Noetherian series. In particular, given a series f ∈ C[[M]],
the family (fmm)m∈supp f is Noetherian and we have f =

∑
m∈supp f fmm in

the sense of (3.1).
It is useful to see C[[M]] as a strong commutative group, i.e., a commuta-

tive group with an additional “infinite summation structure” on it. In our
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case, this structure is reflected through the infinite summation of Noetherian
families; it satisfies the following fundamental properties:

Proposition 3.1.

(a) Any zero family (0)i∈I is Noetherian, and
∑
i 0 = 0.

(b) For any f1 ∈ [[M]], the family (fi)i∈{1} is Noetherian, and
∑
i∈{1} fi =

f1.
(c) If (fi)i∈I ∈ C[[M]]I and (fi)i∈J ∈ C[[M]]J are Noetherian and I∩J =

∅, then (fi)i∈IqJ is Noetherian and
∑
i∈IqJ fi =

∑
i∈I fi +

∑
i∈J fi.

(d) If (fi)i∈I ∈ C[[M]]I is a Noetherian family, then for any bijective
mapping ϕ : J → I, the family (fϕ(j))j∈J is Noetherian, and∑
j∈J fϕ(j) =

∑
i∈I fi.

(e) If (fi)i∈I ∈ C[[M]]I is a Noetherian family and I =
∐
j∈J Ij a decom-

position of I into pairwise disjoint subsets, then (fi)i∈Ij is a Noether-
ian family for each j ∈ J , (

∑
i∈Ij fi)j∈J is a Noetherian family, and∑

j∈J
∑
i∈Ij fi =

∑
i∈I fi.

Proof. All properties are straightforward to prove. For illustration, we will
prove (e). Let (fi)i∈I ∈ C[[M]]I be a Noetherian family and let I =

∐
j∈J Ij

be a partition of I. For each m ∈ M and j ∈ J , let I;m = {i ∈ I | fi,m 6= 0}
and Ij;m = Ij ∩ I;m, so that

(3.2) I;m =
∐
j∈J

Ij;m.

Now (fi)i∈Ij is a Noetherian family for all j ∈ J , since⋃
i∈Ij

supp fi ⊆
⋃
i∈I

supp fi

and Ij;m ⊆ I;m is finite for all m ∈M. Furthermore,⋃
j∈J

supp
∑
i∈Ij

fi ⊆
⋃
j∈J

⋃
i∈Ij

supp fi =
⋃
i∈I

supp fi

and for all m ∈M, the set

{j ∈ J |

∑
i∈Ij

fj


m

6= 0} ⊆ {j ∈ J | Ij;m 6= ∅}

is finite, because of (3.2). Hence, the family
(∑

i∈Ij fi

)
j∈J

is Noetherian and

for all m ∈M, we have∑
j∈J

∑
i∈Ij

fi


m

=
∑
j∈J

∑
i∈Ij;m

fi,m =
∑
i∈I;m

fi,m =

(∑
i∈I

fi

)
m

.
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This proves (e). �

Remark 3.2. Given two monomial sets M and N, it is often convenient
to identify C[[M]]×C[[N]] = C[[M]]⊕C[[N]] with C[[MqN]] via the natural
isomorphism

C[[MqN]] → C[[M]]× C[[N]]

f 7→ (
∑

m∈M

fmm,
∑
n∈N

fnn).

In particular, multivariate operators

Φ : C[[M1]]× · · · × C[[Mm]]→ C[[N1]]× · · · × C[[Nn]]

may actually be regarded as a univariate operators

Φ : C[[M1 q · · · qMm]]→ C[[N1 q · · · qNm]].

Similarly, given a monomial set M, the Noetherian families (fi)i∈I ∈ C[[M]]I

may be identified with series in C[[I ×M]], where I ×M is strictly ordered
by (i,m) ≺ (j, n)⇔ m ≺ n. We may thus view an operator Φ : C[[I ×M]]→
C[[N]] as an operator “in infinitely many variables”, which assigns to each
Noetherian family (fi)i∈I ∈ C[[M]]I a series in C[[N]].

3.2. Algebras of Noetherian series. Assume now that C is a (not nec-
essarily commutative) ring, and M a (not necessarily commutative) monomial
monoid. Then we may naturally see C and M as subsets of C[[M]] via c 7→ c·1
resp. m 7→ 1 ·m. Given f and g in C[[M]], we define their product by

fg =
∑

(m,n)∈supp f×supp g

fmgnmn.

The right hand side is well defined by Propositions 2.4(e) and 2.4(b). Higman
[Hig52] first observed that C[[M]] is a ring for this product. Actually, it is even
a strong ring, because the product is compatible with the infinite summation
structure on C[[M]] in the following way:

Proposition 3.3. For all Noetherian families (fi)i∈I ∈ C[[M]]I and
(gj)j∈J ∈ C[[M]]J , the family (figj)(i,j)∈I×J is also Noetherian, and

∑
(i,j)∈I×J

figj =

(∑
i∈I

fi

)∑
j∈J

gj

 .
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Proof. First of all,⋃
(i,j)∈I×J

supp figj ⊆
⋃

(i,j)∈I×J

(supp fi)(supp gj)

=

(⋃
i∈I

supp fi

)⋃
j∈J

supp gj


is Noetherian. Given m ∈M, the set of couples

(v,w) ∈

(⋃
i∈I

supp fi

)
×

⋃
j∈J

supp gj


with vw = m forms a finite anti-chain; let (v1,w1), . . . , (vn,wn) denote those
couples. Then

{(i, j) ∈ I × J | (figj)m 6= 0} ⊆
n⋃
k=1

{(i, j) ∈ I × J | fi,vk 6= 0 ∧ gj,wk 6= 0}

is finite, whence (figj)(i,j)∈I×J is a Noetherian family. Given m ∈M, we also
have  ∑

(i,j)∈I×J

figj


m

=
∑

(i,j)∈I×J

n∑
k=1

fi,vkgj,wk

=
n∑
k=1

(∑
i∈I

fi

)
vk

∑
j∈J

gj


wk

=

(∑
i∈I

fi

)∑
j∈J

gj


m

,

with (v1,w1), . . . , (vn,wn) as above. �

Remark 3.4. Also, if (fi)i∈I ∈ C[[M]]I is a Noetherian family, then so is
(λifi)i∈I , for each family (λi)i∈I ∈ CI of scalars.

3.3. Extension by strong linearity. Let C be a ring and let M, N be
monomial sets. In all what follows, we understand that C operates on the
left on C-modules and C-algebras. A linear mapping L : C[[M]] → C[[N]] is
said to be strongly additive, if for all Noetherian families (fi)i∈I ∈ C[[M]]I ,
the family (L(fi))i∈I ∈ C[[N]]I is also Noetherian and

L

(∑
i∈I

fi

)
=
∑
i∈I

L(fi).
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Notice that this condition implies that L is strongly linear, i.e.,

L

(∑
i∈I

λifi

)
=
∑
i∈I

λiL(fi),

for every Noetherian family (fi)i∈I ∈ C[[M]]I and every family (λi)i∈I ∈ CI
of scalars. Notice also that the composition of two strongly linear mappings
is again strongly linear.

A mapping ϕ : M → C[[N]] is said to be Noetherian, if (ϕ(m))m∈S is a
Noetherian family for every Noetherian subset S of M.

Proposition 3.5. Let C[[M]] and C[[N]] be C-modules of Noetherian se-
ries. Then any Noetherian mapping ϕ : M → C[[N]] extends to a unique
strongly linear mapping ϕ̂ : C[[M]]→ C[[N]].

Proof. Let f ∈ C[[M]]. By definition, (ϕ(m))m∈supp f is a Noetherian fam-
ily, and so is (fmϕ(m))m∈supp f . We will prove that

ϕ̂ : C[[M]] −→ C[[N]]

f 7−→
∑

m∈supp f

fmϕ(m)

is the unique strongly linear mapping which coincides with ϕ on M.
Given λ ∈ C and f ∈ C[[M]] we clearly have ϕ̂(λf) = λϕ̂(f). Now let

(fi)i∈I ∈ C[[M]]I be a Noetherian family and let S =
⋃
i∈I supp fi. We claim

that (fi,mϕ(m))(i,m)∈I×S is a Noetherian family. First of all,⋃
(i,m)∈I×S

supp fi,mϕ(m) ⊆
⋃

m∈S

suppϕ(m)

is Noetherian. Secondly, given n ∈ N, the set {m ∈ S | ϕ(m)n 6= 0} is
finite, since (ϕ(m))m∈S is a Noetherian family. Finally, for each m ∈ S
with ϕ(m)n 6= 0, the set {i ∈ I | fi,m 6= 0} is also finite, since (fi)i∈I is a
Noetherian family. Hence, the set {(i,m) ∈ I ×S | fi,mϕ(m)n 6= 0} is finite,
which proves our claim. Now our claim, together with Proposition 3.1(d)
proves that (ϕ̂(fi))i∈I =

(∑
m∈S fi,mϕ(m)

)
i∈I is a Noetherian family and∑

i∈I
ϕ̂(fi) =

∑
i∈I

∑
m∈S

fi,mϕ(m) =
∑

(i,m)∈I×S

fi,mϕ(m)

=
∑
m∈S

(∑
i∈I

fi,m

)
ϕ(m) = ϕ̂

(∑
i∈I

fi

)
.

This establishes the strong linearity of ϕ̂.
In order to see that ϕ̂ is unique with the desired properties, it suffices to

observe that for each f ∈ C[[M]], we must have ϕ̂(fmm) = fmϕ(m) by linearity
and ϕ̂(f) =

∑
m∈supp f fmϕ(m) by strong linearity. �
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Actually, the above proposition generalizes to the “strongly multilinear”
case. If M1, . . . ,Mn and N are monomial sets, then we call a multilinear
mapping

M : C[[M1]]× · · · × C[[Mn]]→ C[[N]]

strongly multilinear (or strongly multi-additive), if for all Noetherian families
(f1,i1)i1∈I1 ∈ C[[M1]]I1 , . . . , (fn,in)in∈In ∈ C[[Mn]]In , the family

(M(f1,i1 , . . . , fn,in))(i1,...,in)∈I1×···×In

is also Noetherian and

M

(∑
i1∈I1

f1,i1 , . . . ,
∑
in∈In

fn,in

)
=

∑
(i1,...,in)∈I1×···×In

M(f1,i1 , . . . , fn,in).

In particular, if M is a monomial monoid, then the multiplication on C[[M]]
is strongly bilinear, by Proposition 3.3. Also, compositions

N ◦
m∏
i=1

Mi :
m∏
i=1

ni∏
j=1

C[[Mi,j ]] −→ C[[V]];

((fi,j)16j6nm)16i6m 7−→ N(M1(f1,1, . . . , f1,n1), . . . ,
Mm(fm,1, . . . , fm,nm))

of strongly multilinear mappings N : C[[N1]] × · · · × C[[Nm]] → C[[V]] and
Mi : C[[Mi,1]] × · · · × C[[Mi,ni ]] → C[[Ni]] for i ∈ {1, . . . ,m} are strongly
multilinear.

Recall that a mapping ϕ : M1 × · · · × Mn → C[[N]] is Noetherian, if
(ϕ(m1, . . . ,mn))(m1,...,mn)∈S is a Noetherian family for every Noetherian sub-
set S of M1× · · · ×Mn. The following proposition is proved in a similar way
as Proposition 3.5:

Proposition 3.6. Let C[[M1]], . . . , C[[Mn]] and C[[N]] be C-modules of
Noetherian series. Then any Noetherian mapping ϕ : M1×· · ·×Mn → C[[N]]
extends to a unique strongly multilinear mapping ϕ̂ : C[[M1]]×· · ·×C[[Mn]]→
C[[N]]. �

Remark 3.7. In a similar way as we identified C[[MqN]] with C[[M]]×
C[[N]] in Remark 3.2, we may see C[[M×N]] as the strong tensor product of
C[[M]] and C[[N]]. We have a natural strongly bilinear mapping P : C[[M]]×
C[[N]]→ C[[M×N]]; (f, g) 7→

∑
(m,n)∈supp f×supp g fmgn(m, n). Furthermore,

for any strongly bilinear mapping B : C[[M]]×C[[N]]→ C[[V]], there exists a
unique strongly linear mapping L : C[[M×N]]→ C[[V]], such that B = L◦P .
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3.4. Applications of strong linearity.

Corollary 3.8. Let M and N be monomial monoids and let ϕ : M →
C[[N]] be a Noetherian mapping which preserves multiplication. Then ϕ̂ pre-
serves multiplication.

Proof. The mappings (f, g) 7→ ϕ̂(fg) and (f, g) 7→ ϕ̂(f)ϕ̂(g) are both
strongly bilinear mappings from C[[M]] × C[[M]] into C[[N]], which coin-
cide on M2. The result now follows from the uniqueness of strongly bilinear
extensions in Proposition 3.6. �

Corollary 3.9. Let M be a monomial monoid and ϕ : M → C[[M]] a
Noetherian mapping, such that ϕ(mn) = ϕ(m)n + mϕ(n) for all m, n ∈ M.
Then ϕ̂ is a (strong) derivation on C[[M]].

Proof. The mappings (f, g) 7→ ϕ(fg) and (f, g) 7→ ϕ(f)g + fϕ(g) are both
strongly bilinear mappings from C[[M]]×C[[M]] into C[[M]], which coincide
on M2. The result again follows from the uniqueness of strongly bilinear
extensions in Proposition 3.6. �

Corollary 3.10. Let ϕ : M → C[[N]] and ψ : N → C[[V]] be two
Noetherian mappings. Then

̂̂ψ ◦ ϕ = ψ̂ ◦ ϕ̂.

Proof. This still follows from the uniqueness of extensions by strong lin-
earity, since ψ̂ ◦ ϕ and ψ̂ ◦ ϕ̂ coincide on M. �

Assume that M is a monomial monoid. We call a series f ∈ C[[M]] in-
finitesimal, if m ≺ 1 for all m ∈ supp f . Then extension by strong linearity
may in particular be used to define the composition g ◦ (f1, . . . , fk) of a mul-
tivariate power series g ∈ C[[z1, . . . , zk]] = C[[zN1 · · · zNk ]] with infinitesimal
series f1, . . . , fk ∈ C[[M]]. Indeed, if ϕ : zN1 · · · zNk → C[[M]] is the multi-
plicative mapping which sends each zn1

1 · · · z
nk
k to fn1

1 · · · f
nk
k , then we define

g◦(f1, . . . , fk) = ϕ̂(g). Then corollaries 3.8 and 3.10 yield the following result:

Corollary 3.11. Let f1, . . . , fk be infinitesimal Noetherian series in
C[[M]]. Then:

(a) (gh) ◦ (f1, . . . , fk) = g ◦ (f1, . . . , fk)h ◦ (f1, . . . , fk), for g, h ∈
C[[z1, . . . , zk]].

(b) (h ◦ (g1, . . . , g l)) ◦ (f1, . . . , fk) = h ◦ (g1 ◦ (f1, . . . , fk), . . . ,
gl ◦ (f1, . . . , fk)), for h ∈ C[[z1, . . . , zl]] and infinitesimal g1, . . . , g l ∈
C[[z1, . . . , zk]]. �
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4. The topological implicit function theorem

4.1. Truncation of Noetherian series. Let M be a monomial set and
f ∈ C[[M]]. Given a subset S ⊆M, we define the restriction f|S ∈ C[[S]] ⊆
C[[M]] of f to S by

f|S =
∑

m∈S∩supp f

fmm.

Given two series f, g ∈ C[[M]], we say that f is a truncation of g (and we
write f P g), if there exists an initial segment I of supp g, such that f = g|I.
Thus P is an ordering on C[[M]].

Let (fi)i∈I ∈ C[[M]]I be a non-empty family of series. A common trunca-
tion of the fi is a series g, such that g P fi for all i ∈ I. A greatest common
truncation of the fi is a common truncation, which is greatest for P. Such a
greatest truncation actually always exists and we denote it by

a
i∈I fi:

Proposition 4.1. Any non-empty family (fi)i∈I ∈ C[[M]] admits a great-
est common truncation.

Proof. Fix some j ∈ I and consider the set I of initial segments I of
supp fj , such that fj|I P fi for all i ∈ I. We observe that arbitrary unions of
initial segments of a given ordering are again initial segments. Hence Imax =⋃

I∈I I is an initial segment of each supp fi. Furthermore, for each i ∈ I
and m ∈ Imax, there exists an I ∈ I with fj|I,m = fj,m = fi,m. Hence
fj|Imax = fi|Imax P fi for all i ∈ I. This proves that f|Imax is a common
truncation of the fi. It is also greatest for P, since any common truncation is
of the form fj|I for some initial segment I ∈ I of Imax with fj|I P fj|Imax . �

Let (fi)i∈I ∈ C[[M]]I again be a family of series. A common extension of
the fi is a series g, such that fi P g for all i ∈ I. A least common extension
of the fi is a common extension, which is least for P. If such a least common
extension exists, then we denote it by

`
i∈I fi.

Now consider a directed index set I. In other words, we have an ordering
on I, such that for any i, j ∈ I, there exist a k ∈ I with i 6 k and j 6 k.
Let (fi)i∈I be a P-increasing family of series in C[[M]], i.e., fi P fj whenever
i 6 j. If M is Noetherian or totally ordered, then there exists a least common
extension of the fi:

Proposition 4.2. Assume that M is Noetherian or totally ordered. Then
any directed P-increasing family (fi)i∈I of series in C[[M]] admits a unique
least common extension

`
i∈I fi, and supp

`
i∈I fi =

⋃
i∈I supp fi.

Proof. Let S =
⋃
i∈I supp fi. We claim that S is Noetherian. This is clear

if M is Noetherian. Assume that M is totally ordered and that m1 4 m2 4 · · ·
is an infinite sequence of monomials in S. Since I is directed and supp fi ⊆
supp fj whenever i 6 j, there exist i1 6 i2 6 · · · with mk ∈ supp fik for each
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k. But we also have fi1 P fik for each k, so that m1,m2, . . . ∈ supp fi1 . Since
supp fi1 is Noetherian, the sequence m1,m2, . . . therefore stabilizes.

Given m ∈ S, we claim that the coefficient gm = fi,m is independent of the
choice of i ∈ I, under the condition that m ∈ supp fi. Indeed, let i, j ∈ I be
such that m ∈ supp fi and m ∈ supp fj . Then there exists a k ∈ I with i 6 k
and j 6 k. Hence, fi P fk and fj P fk, so that fi,m = fk,m = fj,m. Now the
series g =

∑
m∈S gmm is the least common extension of the fi. �

4.2. Stationary limits. Let I be a directed index set and (fi)i∈I ∈
C[[M]]I a family of series. We call g ∈ C[[M]] a pseudo-limit of the fi, if
for each final segment F of M and for all i ∈ I, we have

(∀j > i : supp(fj − fi) ⊆ F) ⇒ (supp(g − fi) ⊆ F).

Equivalently, we may require that for each inital segment I of M and for each
i ∈ I, we have

(∀j > i : fj|I = fi|I) ⇒ (g|I = fi|I).
Assume from now on that M is either Noetherian or totally ordered. Below,
we will show that the stationary limit of the fi, which is defined by

stat lim
i∈I

fi =
h

i∈I

i

j>i

fj ,

is in particular a pseudo-limit. We first prove some useful properties of
`

and
a

.

Proposition 4.3. Let (fi)i∈I ∈ C[[M]]I be a family of series and let I be
an initial segment of M.

(a) If I 6= ∅, then
i

i∈I
fi|I =

(
i

i∈I
fi

)
|I

.

(b) If (fi)i∈I is directed and P-increasing, then

h

i∈I
fi|I =

(
h

i∈I
fi

)
|I

.

Proof. We first observe that for all f, g ∈ C[[M]] we have f P g ⇒ f|I P
g|I. In particular, this ensures that

`
i∈I fi|I exists in (b).

Now assume that I 6= ∅ and let g =
a
i∈I fi. Then g P fi, whence

g|I P fi|I, for all i ∈ I. This shows that g|I is a common truncation of the
fi|I. Conversely, assume that h ∈ C[[I]] is such that h P fi|I for all i ∈ I.
Then also h P fi for all i ∈ I, so that h P g. Hence h = h|I P g|I. This
shows that g|I is the greatest common truncation of the fi|I.

Assume now that (fi)i∈I is directed and P-increasing and let g =
`
i∈I fi.

Then fi P g, whence fi|I P g|I, for all i ∈ I. Consequently, g|I is a common
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extension of the fi|I. Furthermore, its support supp g|I = (supp g) ∩ I =
(
⋃
i∈I supp fi) ∩ I =

⋃
i∈I supp fi ∩ I =

⋃
i∈I supp fi|I is the same as the

support of the least common extension of the fi|I. Hence g|I =
`
i∈I fi|I. �

Proposition 4.4. Let (fi)i∈I ∈ C[[M]]I be a directed family and i ∈ I.
Then h

j∈I

i

k>j

fk =
h

j>i

i

k>j

fk.

Proof. Since I ⊇ {j ∈ I | j > i}, we have
`
j∈I

a
k>j fk Q

`
j>i

a
k>j fk.

On the other hand, given m ∈ supp
`
j∈I

a
k>j fk, we have m ∈

a
k>j fk for

some j ∈ I. Choosing l ∈ I with l > i and l > j, we then have m ∈
a
k>l fk Qa

k>j fk and m ∈
⋃
m>i supp

a
k>m fk = supp

`
m>i

a
k>m fk. �

Proposition 4.5. For any directed family (fi)i∈I ∈ C[[M]]I , its station-
ary limit is a pseudo-limit.

Proof. Let I be an initial segment of M and let i ∈ I be such that fj|I = fi|I
for all j > i. Then Proposition 4.3 implies that

(4.1)

h
j>i

i

k>j

fk


|I

=
h

j>i

i

k>j

fk|I =
h

j>i

i

k>j

fi|I = fi|I.

Hence (stat limj∈I fj)|I = fi|I, by Proposition 4.4. �

Given f and g in C[[M]], we will write f≺· g, if for all m ∈ supp f , there
exists an n ∈ supp g with m ≺ n. The following properties of ≺· will be used
frequently in the next section:

Proposition 4.6. Let f, g, h ∈ C[[M]]. Then
(a) f≺· f if and only if f = 0.
(b) f≺· g ∧ g≺· h⇒ f≺· h.
(c) f≺· h ∧ g≺· h⇒ f + g≺· h.
(d) If (fi)i∈I ∈ C[[M]]I now stands for a directed family, then

(∀i ∈ I : fi − g≺· h) ⇒ ((stat lim
i∈I

fi)− g≺· h).

Proof. The first three properties are trivial. Consider the final segment

F = {m ∈M | d � m, for some 4-maximal element d in supph}.

Then our hypothesis means that supp(fi − g) ⊆ F for all i. Now

supp((stat lim
i∈I

fi)− g) ⊆ F,

by Proposition 4.5. But this means that (stat limi∈I fi)− g≺· h. �
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4.3. The implicit function theorem. A final segment F of a monomial
set M is said to be attractive, if for each m ∈ M there exists an n ∈ F
with m < n. If M is totally ordered, then all non-empty final segments
are attractive. The intersection of two attractive final segments is again an
attractive final segment and arbitrary non-empty unions of attractive final
segments are again attractive final segments. In other words, the attractive
final subsets F of M together with the empty set are the open sets of a topology
on M.

Now let C be a commutative additive group. The attractive open sub-
sets of C[[M]] are the subsets of the form f + C[[F]], where f ∈ C[[M]] and
where F is an attractive final segment of M. These sets form a basis for
the open subsets of the natural or attractive topology on C[[M]]. We no-
tice that the attractive topology makes C[[M]] an additive topological group.
Given another monomial set N, we also notice that the attractive topology
on C[[M]] × C[[N]] ∼= C[[M q N]] (recall Remark 3.2) coincides with the
usual product topology on C[[M]]×C[[N]] (if C[[M]] and C[[N]] are given the
attractive topologies).

Consider a mapping Φ : C[[M]] → C[[M]], where M 6= ∅. We call Φ
contracting, if for all f, g ∈ C[[M]], we have Φ(g)−Φ(f)≺· g−f . A contracting
mapping is in particular continuous at each point f ∈ C[[M]], since for any
attractive open neighbourhood Φ(f) +C[[F]] of Φ(f), the set f +C[[F]] is an
open neighbourhood of f with Φ(f + C[[F]]) ⊆ Φ(f) + C[[F]].

Theorem 4.7. Assume that M 6= ∅ is Noetherian or totally ordered and
let Φ : C[[M]] × C[[N]] → C[[M]] be a continuous mapping, such that the
mapping Φg : C[[M]] → C[[M]]; f 7→ Φ(f, g) is contracting for each g ∈
C[[N]]. Then there exists a unique mapping Ψ : C[[N]]→ C[[M]] with Ψ(g) =
Φ(Ψ(g), g) for each g ∈ C[[N]], and Ψ is continuous.

Proof. Given g ∈ C[[N]], consider the transfinite sequence (fα)α defined as
follows:

f0 ∈ C[[M]] (any choice of f0 will do) ;
fα+1 = Φg(fα) ;
fλ = stat lim

α<λ
fα, for limit ordinals λ.

We will show that (fα)α converges to a solution of the equation f = Φg(f).
The sequence fα+1 − fα decreases for ≺· . Let us prove by (weak)
transfinite induction over α that fα+1 − fα≺· fβ+1 − fβ for all ordinals
β < α. This is clear for α = 0. Assume that α = β + 1 is a successor
ordinal. Since Φg is contracting, the induction hypothesis then implies that
fα+1 − fα≺· fβ+1 − fβ4· fγ+1 − fγ for all γ 6 β < α.

If α is a limit ordinal and β < α, then let us prove by a second (weak)
transfinite induction over γ that fγ − fβ+1≺· fβ+1 − fβ for all β + 1 < γ < α.
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This is indeed true for γ = β+ 2, by the first induction hypothesis. Assuming
that fγ − fβ+1≺· fβ+1 − fβ , we also have

fγ+1 − fβ+1 = (fγ+1 − fγ) + (fγ − fβ+1)≺· fβ+1 − fβ ,

again by the first induction hypothesis and Proposition 4.6(c). If γ is a limit
ordinal, then the second induction hypothesis implies that fδ−fβ+1≺· fβ+1−
fβ for all β < δ < γ. Hence,

fγ − fβ+1 = (stat lim
δ<γ

fδ)− fβ+1 = (stat lim
β<δ<γ

fδ)− fβ+1≺· fβ+1 − fβ ,

by Proposition 4.6(d).
At this point, we have proved that fγ − fβ+1≺· fβ+1 − fβ for all β + 1 <

γ < α. Now Proposition 4.6(d) implies that

fα − fβ+1 = (stat lim
γ<α

fγ)− fβ+1 = ( stat lim
β+1<γ<α

fγ)− fβ+1≺· fβ+1 − fβ .

In a similar way, one proves that fα−fβ+2≺· fβ+1−fβ . Since Φg is contracting,
fα−fβ+1≺· fβ+1−fβ also implies that fα+1−fβ+2≺· fβ+1−fβ . Consequently,
fα+1 − fα = (fα+1 − fβ+2) + (fβ+2 − fβ+1) + (fβ+1 − fα)≺· fβ+1 − fβ , by
Proposition 4.6(c).
Existence and uniqueness. Having shown that the sequence fα+1 − fα is
decreasing for ≺· , we now claim that we must have fα+1 − fα = 0 for some
sufficiently large α. Otherwise, each of the sets d(fα+1 − fα) of 4-maximal
monomials of fα+1− fα would be non empty, so that d(fβ+1− fβ)∩ d(fα+1−
fα) 6= ∅ for some β < α. Indeed, this will happen as soon as the monomials
in M get exhausted, i.e., for some β < α such that the cardinality of α is the
one larger than the cardinality of M. Now let m ∈ d(fβ+1−fβ)∩d(fα+1−fα).
Since fα+1− fα≺· fβ+1− fβ , there exists an n ∈ supp(fβ+1− fβ) with n � m.
But this contradicts the 4-maximality of m in supp fβ+1 − fβ . This shows
our claim and we conclude that the Ψ(g) ≡ fα with fα+1 − fα = 0 satisfies
Ψ(g) = Φg(Ψ(g)).

Assume now that two Noetherian series f and f ′ both satisfy f = Φg(f) and
f ′ = Φg(f ′). Then f ′ − f = Φg(f ′)−Φg(f)≺· f ′ − f , since Φg is contracting.
But we can only have f ′− f≺· f ′− f if f ′ = f . This establishes the existence
and the uniqueness of the mapping Ψ.
Continuity. In order to prove that Ψ is continuous in any given g0 ∈ C[[N]],
let W = Ψ(g0) +C[[H]] be an attractive open neighbourhood of Ψ(g0). Then
there exists an attractive open subset of C[[M]]×C[[N]] of the form U ×V =
(Ψ(g0) + C[[F]]) × (g0 + C[[G]]), such that Φ(U × V ) ⊆ W . We claim that
Ψ(V ) ⊆ W . Indeed, let g ∈ V . Taking f0 = Ψ(g0) in our sequence above, it
suffices to prove that fα ∈W for all α. We prove this by transfinite induction.

For α = 0 and α = 1, we are already done. If α = β + 1 > γ > 0, then
fα − fβ≺· fγ+1 − fγ ∈ C[[H]] implies that fα − fβ ∈ C[[H]], whence fα ∈ W .
If α is a limit ordinal, then we have seen above that fα − fβ+1≺· fβ+1 − fβ
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for all β < α. Taking any such β, we also have fβ+1 − fβ ∈ C[[H]] by the
induction hypothesis, whence again fα − fβ+1 ∈ C[[H]] and fα ∈ W . This
completes the induction and the proof of the theorem. �

Remark 4.8. The theorem still holds for monomial sets M without “in-
finite combs” [PCR93]. Our proof also generalizes to this setting, because it
can be shown in this case that the stationary limit of a sequence (fα)α<β ∈
C[[M]]β exists, whenever fα+1 − fα is strictly decreasing for ≺· .

Remark 4.9. Although the above topological implicit function theorem
may be very useful to solve certain parameterized functional equations over
Noetherian series, one of its major drawbacks is that we needed the very strong
Noetherianity assumption on M in the partial context. Even the slightly
weaker condition about the absence of infinite combs is usually not satisfied.
The functional equation

f(z1, z2) = 1 + (z1 + z2)f (
√
z1,
√
z2 )

with M = {zα1
1 zα2

2 | α1, α2 ∈ Q>0 ∧ α1 + α2 < 2} is an example which
shows that there is not much hope for a stronger implicit function theorem
in the same spirit. Indeed, the natural “solution” to this equation, which is
obtained by recursively replacing the left hand side by the right hand side in
the equation, does not have a Noetherian support.

Remark 4.10. Another drawback of Theorem 4.7 is that it does not
provide us with any additional information about the solutions. The solu-
tions may even be quite pathological: consider the monomial group xR with
xα < xβ ⇔ α > β. Given f ∈ R[[xR]], we denote f↑ =

∑
α>0 fxαx

α. We
define a linear (but not strongly linear) operator L : R[[xR]]→ R[[xR]] by

L(f(x)) = f↑(
√
x) + f↑(1/

√
x), if supp f is finite;

L(f(x)) = f↑(
√
x), otherwise.

Then it is easily verified that L is contracting (whence continuous) on R[[xR]].
The equation

f(x) = x+ L(f(x))

will therefore admit a unique solution, which happens to be f(x) = x+
√
x+√√

x+ · · · . However, we do not have f(x) = x+ L(x) + L(L(x)) + · · · .

5. Noetherian operators and combinatorial representations

5.1. Noetherian operators. Let M and N be sets of monomials. A
Noetherian operator is a mapping Φ : C[[M]]→ C[[N]], such that there exists
a family (Mi)i∈I of strongly multilinear mappings Mi : C[[M]]|i| → C[[N]]
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with

(5.1) Φ

(∑
k∈K

fk

)
=

∑
i ∈ I

k1, . . . , k|i| ∈ K

Mi(fk1 , . . . , fk|i|),

for all Noetherian families (fk)k∈K ∈ C[[M]]K . In particular, this assumes
that the family of summands Mi(fk1 , . . . , fk|i|) is Noetherian. We will call
(Mi)i∈I a multilinear decomposition of Φ. The number |i| ∈ N is the arity of
Mi.

By regrouping the Mi of the same arity, it actually suffices to consider
the case when I = N and there is exactly one Mi for each arity i ∈ N. In
this case, we may write Φ = Φ0 + Φ1 + · · · , with Φi(f) = Mi(f, . . . , f) for
all f and i. In Section 5.4, we will see that this representation is unique,
under the assumption that C ⊇ Q and that the Mi are symmetric (we may
always take the Mi to be symmetric if C ⊇ Q). However, for the purpose of
combinatorial representations in the next section, it is natural to consider more
general multilinear decompositions. Notice also that the space of Noetherian
operators from C[[M]]→ C[[N]] has a natural strong group structure.

Remark 5.1. The formula (5.1) should hold in particular for families that
consist of only one element. In other words, we should have

Φ(f) =
∑
i∈I

Mi(f, . . . , f),

for all f ∈ C[[M]]. However, the more complicated assumption (5.1) is essen-
tial, as one can see in Example 5.5 below.

Remark 5.2. In view of Remark 3.2 the present definition of Noetherian
operators also provides a definition of multivariate Noetherian operators.

Example 5.3.

• Each constant mapping Φ : C[[M]] → C[[N]]; f 7→ c is a Noetherian
operator.
• Any strongly linear or strongly multilinear operator L resp. M is a

Noetherian operator.
• Addition + : C[[M]]2 → C[[M]]; (f, g) 7→ f + g is a Noetherian oper-

ator.
• If M is a monomial monoid, then multiplication on C[[M]] is a Noe-

therian operator.

Example 5.4. Let Φ,Ψ : C[[M]]→ C[[N]] be Noetherian operators.

• Φ + Ψ : f 7→ Φ(f) + Ψ(f) is a Noetherian operator.
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• If N is a monomial monoid, then ΦΨ : f 7→ Φ(f)Ψ(f) is a Noetherian
operator.

Example 5.5. Let Φ : C[[M]] → C[[N]] and Ψ : C[[N]] → C[[V]] be two
Noetherian operators. Then we claim that Ψ◦Φ is also a Noetherian operator.
Indeed, let (Mi)i∈I resp. (Nj)j∈J be multilinear decompositions of Φ and Ψ.
Then for each Noetherian family (fk)k∈K ∈ C[[M]]K we have

Ψ ◦ Φ

(∑
k∈K

fk

)
= Ψ

 ∑
i ∈ I

k1, . . . , k|i| ∈ K

Mi(fk1 , . . . , fk|i|)


=

∑
j ∈ J

i1, . . . , i|j| ∈ I
k1,1, . . . , k1,|i1| ∈ K

.

.

.
k|j|,1, . . . , k|j|,

∣∣∣i|j|∣∣∣ ∈ K

Nj(Mi1(fk1,1 , . . . , fk1,|i1|
), . . . ,

Mi|j|(fk|j|,1 , . . . , fk|j|,|i|j||
)).

This establishes our claim, since the operators Nj ◦
∏|j|
l=1Mil are strongly

multilinear. Notice that Example 5.4 may be regarded as a combination of
the present example and the last two cases in Example 5.3.

One obtains interesting subclasses of Noetherian operators by restricting
the strongly multilinear mappings involved in the multilinear decompositions
to be of a certain type. More precisely, let M be a monomial monoid and let
M be a set of strongly multilinear mappings M : C[[M]]|M | → C[[M]]. We
say that M is a multilinear type if
MT1. The constant mapping {0} 7→ f is in M for each f ∈ C[[M]].
MT2. The i-th projection mapping πi : C[[M]]|M | → C[[M]] is in M for

i = 1, . . . , |M |.
MT3. The multiplication mapping from C[[M]]2 into C[[M]] is in M.
MT4. If M,N1, . . . , N|M | ∈M, then M ◦

∏|M |
i=1 Ni ∈M.

Given subsets V1, . . . ,Vv,W1, . . . ,Ww of M, we say that a strongly multilin-
ear mapping

M : C[[V1]]× · · · × C[[Vv]]→ C[[W1]]× · · · × C[[Ww]]

is of type M, if for i = 1, . . . , w, there exists a mapping Ni : C[[M]]v → C[[M]]
inM, such that πi ◦M coincides with the restriction of the domain and image
of Ni to C[[V1]] × · · · × C[[Vv]] resp. C[[Wi]]. We say that a Noetherian
operator

Φ : C[[V1]]× · · · × C[[Vv]]→ C[[W1]]× · · · × C[[Ww]]
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is of type M, if it admits a multilinear decomposition consisting of strongly
multilinear mappings of typeM only. In Examples 5.4 and 5.5, we may then
replace “Noetherian operator” by “Noetherian operator of type M”.

Example 5.6. For any set S of strongly linear mappings C[[M]]→ C[[M]],
there exists a smallest multilinear type M = 〈S〉 which contains S. Taking
T = C[[M]] to be the field of transseries whose logarithmic and exponential
depths are bounded by ω, interesting special cases are obtained when taking
S = {∂} or S = {

∫
}. Noetherian operators of type 〈{∂}〉 resp. 〈{

∫
}〉 may

then simply be called differential resp. integral Noetherian operators. Given
a finite subset g1, . . . , gn of positive infinitely large transseries in T, another
interesting case is obtained by taking S = {◦g1 , . . . , ◦gn}, where ◦gistands for
right composition with gi.

5.2. Combinatorial representations of Noetherian operators. Let
Φ : C[[M]] → C[[N]] be a Noetherian operator with a multilinear decom-
position (Mi)i∈I . Then Φ is uniquely determined by the action of the Mi

on monomials in M. For the deeper theory of Noetherian operators, it is
convenient to represent this action in a combinatorial way.

Abstractly speaking, a set of M-labeled structures is a set Σ, together with
a map that assigns to each σ ∈ Σ a labeling σ[·] : {1, . . . , |σ|} →M; p 7→ σ[p],
where |σ| ∈ N stands for the size or arity of σ; for simplicity, we denote such
a set of M-labeled structures also by Σ. For each subset S of M, we denote
the subset of S-labeled structures in Σ by

ΣS = {σ ∈ Σ | imσ[·] ⊆ S} .
We strictly order couples in Σ×M by (σ,m) � (σ′,m′)⇔ m � m′. A mapping
θ : Σ → P(N) is called a choice operator. We say that θ is Noetherian, if for
any Noetherian subset S of M, the subset

{(σ, n) | σ ∈ ΣS ∧ n ∈ θ(σ)}
of Σ×N is Noetherian.

Example 5.7. Let f : Mm →M be a strictly increasing m-ary operation
and let Σ = Mm, with (x1, . . . , xm)[p] = xp for all x1, . . . , xm ∈ M and
1 6 p 6 m. Then θ : Σ → P(M); (x1, . . . , xm) 7→ {f(x1, . . . , xm)} is a
Noetherian choice operator.

Returning to our Noetherian operator Φ, each tuple σ = (i,m1, . . . ,m|i|)
may be seen as an M-labeled combinatorial structure with |σ| = |i| and σ[p] =
mp for all 1 6 p 6 |σ|. Let Σ = ΣΦ denote the set of such structures. We
get a natural Noetherian choice operator θ = θΦ : Σ → P(N) by taking
θ(σ) = suppMi(m1, . . . ,m|i|). Graphically speaking (see Figure 1 below), we
may represent the action of θ on σ by a box with (a tuple of) “inputs” in M
and (a set of) “outputs” in N.
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Figure 1. Graphical representation of the action of θM

on the structure σ ∈ ΣM with input (e−e
x

, e−e
x

), for the
strongly bilinear operator M : (f, g) 7→

∫
fg. Notice that∫

e−2ex = e−2ex(− 1
2ex + 1

4e2x −
1

4e3x + 3
8e4x + · · · ).

Conversely, given a Noetherian choice operator θ : Σ → P(N) and an
operator Θ : Σ → C[[N]] with supp Θ(σ) ⊆ θ(σ) for all σ ∈ Σ, we define a
Noetherian operator by

(5.2) Φ(f) =
∑
σ∈Σ

 |σ|∏
p=1

fσ[p]

Θ(σ).

As to its multilinear decomposition, we associate an Mσ : C[[M]]|σ| → C[[N]]
to each σ ∈ Σ by

Mσ(f1, . . . , f|σ|) =

 |σ|∏
p=1

fp,σ[p]

Θ(σ).
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For Noetherian families (fi)i∈I ∈ C[[M]]I , we indeed have

Φ

(∑
i∈I

fi

)
=

∑
σ∈Σ

 |σ|∏
p=1

∑
i∈I

fi,σ[p]

Θ(σ)

=
∑
σ ∈ Σ

i1, . . . , i|σ| ∈ I

 |σ|∏
p=1

fip,σ[p]

Θ(σ)

=
∑
σ ∈ Σ

i1, . . . , i|σ| ∈ I

Mσ(fi1 , . . . , fip),

since for each σ ∈ Σ, there are only finitely many tuples (i1, . . . , i|σ|) ∈ I |σ|,
such that

∏|σ|
p=1 fip,σ[p] 6= 0.

5.3. Composition of choice operators. In Example 5.5, we have shown
that the composition of two Noetherian operators Φ : C[[M]] → C[[N]] and
Ψ : C[[N]] → C[[V]] is again Noetherian. Let us now show how to interpret
the composition Ψ ◦ Φ in a combinatorial way. Denote the natural choice
operators associated to Φ and Ψ by θ : Σ → P(N) resp. ξ : T → P(V). We
first define the composition ξ ◦ θ : Υ→ P(V) of the choice operators ξ and θ.
Then Φ, Ψ and Ψ ◦ Φ will be given by (5.2) and similar formulas, for certain
mappings Θ : Σ→ C[[N]], Ξ : T→ C[[V]] resp. Ξ ◦Θ : Υ→ C[[V]]. Here we
may assume that Θ and Ξ are given and we have to construct Ξ ◦Θ.

Let τ ∈ T be given together with a tuple σ = (σ1, . . . , σ|τ |) ∈ Σ|τ |, such
that τ [q] ∈ θ(σq) for each 1 6 q 6 |τ |. Then these data determine a unique M-
labeled structure υ = τ [σ], with |υ| =

∑|τ |
q=1 |σq| and υ[p+

∑q−1
r=1 |σr|] = σq[p],

for all 1 6 q 6 |τ | and 1 6 p 6 |σq|. We define Υ to be the set of all such
combinatorial structures (see Figure 2 below). Then we claim that the choice
operator ξ ◦ θ : Υ→ P(V); τ [σ] 7→ ξ(τ) is Noetherian.

So let S be a Noetherian subset of M. We will prove that for any sequence
x1 = (τ1[σ1], v1), x2 = (τ2[σ2], v2), . . . of elements in the set

{(τ [σ], v)|τ [σ] ∈ ΥS ∧ v ∈ ξ(τ)},
there exist i < j with (τi[σi], vi) < (τj [σj ], vj). Since θ is Noetherian, T =⋃
σ∈Σ θ(σ) is a Noetherian subset of N, and we observe that τ ∈ TT for each

τ [σ] ∈ ΥS. Since ξ is Noetherian, we may therefore assume that (τi, vi) <
(τj , vj), modulo the extraction of a subsequence. If vi � vj for some i < j,
then we have (τi[σi], vi) � (τj [σj ], vj) and we are done. Hence, we may assume
that (τ1, v1) = (τ2, v2) = · · · . We conclude by the observation that given
τ ∈ T there exist only a finite number of (σ1, . . . , σ|τ |) ∈ Σ|τ |, such that
τ [σ] ∈ ΥS. Indeed, for each q, there are only a finite number of σq ∈ ΣS with
τ [q] ∈ θ(σq), since θ is Noetherian.
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Figure 2. Illustration of the action of ξ ◦ θ on a structure
τ [σ1, σ2, σ3] in Υ. For each σi that we attach to τ , we require
the “output” of σi to coincide with the “input” of τ .

Now consider the operator

Ξ ◦Θ : Υ→ C[[V]]; τ [σ] 7→

 |τ |∏
q=1

Θ(σq)τ [q]

Ξ(τ).

Clearly, supp(Ξ ◦Θ)(υ) ⊆ (ξ ◦ θ)(υ) for all υ ∈ Υ. We claim that

(5.3) (Ψ ◦ Φ)(f) =
∑

υ∈Σξ◦θ

 |υ|∏
r=1

fυ[r]

 (Ξ ◦Θ)(υ),

for all f ∈ C[[M]]. Indeed,

(Ψ ◦ Φ)(f) =
∑
τ∈T

 |τ |∏
q=1

Φ(f)τ [q]

Ξ(τ)

=
∑
τ∈T


|τ |∏
q=1

∑
σq ∈ Σσ

τ [q] ∈ θ(σq)

|σq|∏
p=1

fσq [p]

Θ(σq)τ [q]

Ξ(τ)

=
∑

τ [σ]∈Υ

 |τ |∏
q=1

|σq|∏
p=1

fσq [p]

Θ(σq)τ [q]

Ξ(τ)
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=
∑
υ∈Υ

 |υ|∏
r=1

fυ[r]

 (Ξ ◦Θ)(υ).

This yields the desired combinatorial description of the composition Ψ ◦ Φ.

5.4. Canonical multilinear decompositions. We already noticed that
each Noetherian operator Φ : C[[M]] → C[[N]] has a multilinear decomposi-
tion of the form (Mi)i∈N, such that Mi has arity i for each i ∈ N. Setting
Φi = Mi(f, . . . , f) for all f and i, we then have

(5.4) Φ = Φ0 + Φ1 + Φ2 + · · ·
Now assume that C ⊇ Q (so that C is in particular torsion-free). Then,
modulo replacing each Φi by the operator Φ̃i with

Φ̃i(f1, . . . , fi) =
1
i!

∑
σ∈Si

Φi(fσ(1), . . . , fσ(i)),

we may assume without loss of generality that the Φi are symmetric. Un-
der this additional symmetry assumption, the decomposition (5.4) is actually
unique, and we call Φi the homogeneous part of Φ of degree i.

Proposition 5.8. Let Φ : C[[M]]i → C[[N]] be a Noetherian operator
with a multilinear decomposition (Mi)i∈N, such that Mi is symmetric and of
arity i for each i ∈ N. If C is torsion-free and Φ = 0, then Mi = 0 for each
i ∈ N.

Proof. We observe that it suffices to prove that Φi = 0 for each i ∈ N, since
the Mi are symmetric and C is torsion-free. Assume the contrary and let f ∈
C[[M]] be such that Φi(f) 6= 0 for some i. Choose m ∈ S =

⋃
i∈I supp Φi(f) 6=

∅ is Noetherian. The Noetherianity of (Φi(f))i∈N implies that there exist only
a finite number of indices i, such that m ∈ supp Φi(f). Let i1 < · · · < in be
those indices.

Let ck = Φik(f)m for all k ∈ {1, . . . , n}. For any l ∈ {1, . . . , n}, we have
Φik(lf)m = likck, by multilinearity. On the other hand, Φ(lf)m = Φi1(lf)m +
· · ·+ Φin(lf)m = 0 for each l, so that 1 · · · 1

...
...

ni1 · · · nin


 c1

...
cn

 = 0.

The matrix on the left hand side admits an inverse with rational coefficients.
(Indeed, by the sign rule of Descartes, a real polynomial α1x

i1 + · · ·+ αnx
in

cannot have n distinct positive zeros unless α1 = · · · = αn = 0.) Consequently,
an integer multiple of the vector on the right hand side vanishes. We infer
that c1 = · · · = cn = 0, since C is torsion-free. This contradiction completes
the proof. �
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6. The algebraic implicit function theorem

Let M and N be monomial sets and let

Φ : C[[M]]× C[[N]]→ C[[M]], (f, g) 7→ Φ(f, g)

be a Noetherian operator. We call Φ strictly extensive in f if there exists
a multilinear decomposition (Mi)i∈I of Φ, such that for all i, (v1, . . . , v|i|) ∈
(MqN)|i|, 1 6 j 6 |i| and m ∈ suppMi(v1, . . . , v|i|), we have vj ∈M⇒ m ≺
vj . In particular, such a Φ is contracting in f . The main objective of this
section will be to prove the following theorem:

Theorem 6.1. Let Φ : C[[M]] × C[[N]] → C[[M]], (f, g) 7→ Φ(f, g) be a
Noetherian operator, which is strictly extensive in f . Then for each g ∈ C[[N]]
the operator Φ(·, g) on C[[M]] has a unique fixed point Ψ(g), and the operator
Ψ : C[[N]]→ C[[M]] is Noetherian.

6.1. Iteration of choice operators with parameters. Let Φ : C[[M]]×
C[[N]] → C[[M]] be as in Theorem 6.1 and let θ : Σ → P(M) be the nat-
ural Noetherian choice operator associated to Φ. The fact that Φ is strictly
extensive in f implies that θ may be assumed to be strictly extensive on M,
i.e.,

∀σ ∈ Σ,∀m ∈ (imσ[·] ∩M),∀n ∈ θ(σ), n ≺ m.

Also, let ι : ∆N → P(N) be the natural Noetherian choice operator associated
to the identity mapping IdN : C[[N]]→ C[[N]]. Actually, we take ∆N = {δn |
n ∈ N}, with |δn| = 1, δn[1] = n and ι(δn) = {n} for all n ∈ N.

Now consider the sets T = qh∈NTh of (M q N)-labeled combinatorial
structures, where the Td are defined by

T0 = ΣN ;
Td+1 = (Σ\ΣN) ◦ (Td q∆N).

For each τ ∈ T, the minimal d ∈ N with τ ∈ Td is called the depth of τ . We
have a natural choice operator ξ : T→ P(M), which is defined componentwise
by

ξ|T0 = θ|ΣN
;

ξ|Td+1 = θ|Σ\ΣN
◦ (ξ|Td q ι|∆N

).

Here ξ|Td q ι|∆N
: Tdq∆N → P(MqN) stands for the choice operator which

coincides with ξ on Td and with ι on ∆N. Similarly, the componentwise
definition of ξ means that we take ξ =

∐
d∈N ξ|Td . In Figure 3 below one finds

an illustration of the action of ξ on a structure in T. We will also call θ∗,N

the iteration of θ with parameters in N.
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Figure 3. Illustration of the action of the iterated choice
operator ξ = θ∗,N on a structure in T = Σ∗,N. The connected
“inputs” and “outputs” should match in a similar way as in
Figure 2. The white and black dots correspond to monomials
in M resp. N.

Theorem 6.2. Let Σ be a set of (M qN)-labeled structures and θ : Σ→
P(M) a Noetherian choice operator which is extensive on M. Then θ∗,N is
Noetherian.

Proof. Let A be a Noetherian subset of N. Assume that there exists a bad
sequence

(6.1) (υ1,m1), (υ2,m2), . . . ,

with υi ∈ TA and mi ∈ ξ(τi) for each i. We may assume that we have
chosen this bad sequence minimally in the sense that the depth of each υi is
minimal in the set of all bad sequences with fixed (υ1,m1), . . . , (υi−1,mi−1).
Writing υi = σi[τi,1, . . . , τi,|σi|] for each i, we claim that the induced ordering
on B̌ = {(τi,j ,wi,j) | i ∈ N ∧ 1 6 j 6 |τi| ∧wi,j ∈ ξ(τi,j)} is Noetherian.

Indeed, suppose for contradiction that the claim is false, and let

(τi1,j1 ,wi1,j1), (τi2,j2 ,wi2,j2), . . .

be a bad sequence. Notice that (τik,jk ,wik,jk) ≺ (υik ,mik) for all k, since θ is
strictly extensive on M. Hence, taking k such that ik is minimal, the sequence

(υ1,m1), . . . , (υik−1,mik−1), (τik,jk ,wik,jk), (τik+1,jk+1 ,wik+1,jk+1), . . .

is also bad. This contradicts the minimality of (6.1).
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At this point we have proved that B̌ is Noetherian. In particular, B =
{w | (υ,w) ∈ B̌} is Noetherian. Hence, there exist i1 > i2 > · · · with
(σi1 ,mi1) < (σi2 ,mi2) < · · · , since σ1, σ2, . . . ∈ Σ|BqA. If mim � min for
some m > n, then (υim ,mim) � (υin ,min) and we are done. Otherwise,
(σi1 ,mi1) = (σi2 ,mi2) = · · · . Now for every 1 6 p 6 |σi1 |, the (τ,w) ∈
B̌q{(δn, n) | n ∈ A} with w = σi1 [p] are finite in number, since they form an
antichain. Consequently, υi1 , υi2 , . . . can only take a finite number of values
and there exist m < n with (υim ,mim) = (υin ,min). This contradicts the
badness of (6.1). �

6.2. Proof of the implicit function theorem. With the notations from
the previous section, let Θ : Σ→ C[[M]] be a mapping, such that supp Θ(σ) ⊆
θ(σ) for all σ ∈ Σ, and such that (5.2) holds for all f ∈ C[[M]] × [[N]]. We
now define Ξ : T→ C[[M]] componentwise as follows:

Ξ|T0 = Θ|ΣN
;

Ξ|Td+1 = Θ|Σ\ΣN
◦ (Ξ|Td q I|∆N

),

where I|∆N
: ∆N → C[[N]]; δn 7→ n. Theorem 6.2 implies that we may define

a function Ψ : C[[N]]→ C[[M]] by the formula

(6.2) Ψ(g) =
∑
τ∈T

 |τ |∏
p=1

gτ [p]

Ξ(τ).

We can now prove the following more explicit version of the implicit function
theorem.

Theorem 6.3. Let Φ : C[[M]] × C[[N]] → C[[M]], (f, g) 7→ Φ(f, g) be a
Noetherian operator, which is strictly extensive in f . Then the Noetherian
operator Ψ : C[[N]]→ C[[M]] defined by (6.2) is unique with the property that
Ψ(g) = Φ(Ψ(g), g) for all g ∈ C[[N]].

Proof. Identifying C[[M]]×C[[N]] and C[[MqN]] via the natural isomor-
phism, we have

(Ψ(g), g) = Ψ(g) + g =
∑

τ∈Tq∆N

 |τ |∏
q=1

gτ [q]

 (Ξq I)(τ),

for all g ∈ C[[N]]. Similarly, for all (f, g) ∈ C[[M]]× C[[N]], we have

Φrest(f, g) = Φ(f, g)− Φ(0, g) =
∑

σ∈Σ\ΣN

 |σ|∏
p=1

(f + g)σ[p]

 (Θ|Σ\ΣN
)(σ).
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Applying (5.3), we conclude that

Ψ(g) =
∑
τ∈T0

 |τ |∏
q=1

gτ [q]

Ξ(τ) +
∑

τ∈T\T0

 |τ |∏
q=1

gτ [q]

Ξ(τ)

=
∑
τ∈T0

 |τ |∏
q=1

gτ [q]

Ξ(τ) +

∑
υ∈(Σ\ΣN)◦(Tq∆N)

 |υ|∏
r=1

gυ[r]

 (Θ|Σ\ΣN
◦ (Ξ|T q I|∆N

))(υ)

= Φ(0, g) + Φrest(Ψ(g), g)
= Φ(Ψ(g), g),

for all g ∈ C[[N]]. The uniqueness of Ψ follows in the same way as in the
proof of Theorem 4.7, since Φ is contracting in f . �

Corollary 6.4. Let M be a multilinear type. If Φ is of type M in
Theorem 6.1, then so is Ψ. �

6.3. Applications.

Example 6.5. We first show that the classical implicit function theorem
for bivariate power series follows from Theorem 4.7. So let f =

∑
i,j fi,jv

iuj ∈
C[[v, u]] be a bivariate power series with f0,0 = 0 and f1,0 6= 0. Then we have
to prove that there exists a unique power series g ∈ uC[[u]] with

f(g(u), u) = 0.

Modulo division of f by f1 =
∑
j f1,ju

j and passing f1 to the other side of
the equation, the problem can be reduced to solving the equation

(6.3) g(u) = f(g(u), u)

for f ∈ C[[v, u]] with f0,0 = f1,0 = 0. Under these assumptions, the series
f corresponds to an operator Φ : uC[[u]] × {0} → uC[[u]]; (g, 0) 7→ f(g, u) =∑
i,j fi,jg(u)iuj . Theorem 4.7 then provides us with a unique mapping Ψ :

{0} → vC[[v]] with Ψ(0) = Φ(Ψ(0), 0). Taking g = Ψ(0), we thus find the
unique solution to (6.3).

Moreover, Theorem 6.3 actually tells us that the “natural solution” to (6.3),
which is obtained by recursively plugging in the left hand side of the equation
in the right hand side, is indeed a solution. We also notice that by applying
Theorem 6.3 to the operator

Φ : uC[fi][[u]]× {0} −→ uC[fi][[u]];

(g, 0) 7−→ f(g, u) =
∑
i

fig(u)i
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instead of the previous Φ, we actually get a solution g(u) in terms of the
coefficients of f .

Example 6.6. The above example naturally generalizes to the multivari-
ate case. What is more, we may consider non-commutative power series in
several variables. Given symbols u1, . . . , un, order the free monomial monoid
{u1, . . . , un}? in u1, . . . , un by the ordering < from Example 2.1. Then the
ring of non-commutative power series in u1, . . . , un over C is given by

C〈〈u1, . . . , un〉〉 = C[[{u1, . . . , un}?]].
Now consider the equation

(6.4) g(u1, . . . , un) = f(g(u1, . . . , un), u1, . . . , un),

for f ∈ C[[v, u1, . . . , un]] with f1 = fv = 0. Then it may be proved in a
similar way as in the previous example that this equation admits a unique
infinitesimal solution. Again, this solution is equal to the natural expression
which is obtained when repeatedly plugging in the left hand side of (6.4) into
the right hand side. Again, the solution may be expressed naturally in terms
of the coefficients of the equation.

Example 6.7. Let T = C[[M]] be the field of transseries in x, whose log-
arithmic and exponential depths are bounded by some integer d ∈ N [vdH97].
The transseries e−x

2
+ e−e

x

+ e−e
x/x + · · · is an example of an element in T

if d = 2. Now consider the integral equation

(6.5) f = g +
∫
f2,

for f, g ∈ T and where f, g ≺ e−x. Taking N = {m ∈M | m ≺ e−x} we may
consider the operator Φ : C[[N]]×C[[N]]→ C[[N]]; (f, g) 7→ g+

∫
f2. Theorem

4.7 then implies that there exists a unique function Ψ : C[[N]]→ C[[N]], such
that f = Ψ(g) satisfies (6.5) for all g ∈ C[[N]]. Theorem 6.3 and its corollary
imply that Ψ is actually an integral Noetherian operator. Modulo regrouping
terms, this means that the series

f = g +
∫
g2 + 2

∫
g

∫
g2 + 4

∫
g

∫
g

∫
g2 +

∫ (∫
g2

)2

+ · · ·

is indeed a solution to (6.5) for all g ∈ C[[N]].

Example 6.8. Let T = C[[M]] now be the field of transseries in x, whose
exponential and logarithmic depths are bounded by ω. Consider the functional
equation

(6.6) f(x) = g(x) + h(x)f(x2) + f ′(elog2 x).

for f, g, h ∈ T and f, g, h ≺ e−x. Taking N = {m ∈ M | m ≺ e−x}, Theo-
rem 6.3 yields a Noetherian operator Ψ : C[[N]] × C[[N]] → C[[N]]; (g, h) 7→
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Ψ(g, h), such that f(x) = Ψ(g, h) is a solution to (6.6). Moreover, Ψ is what
one could call a “differential compositional Noetherian operator”.

Example 6.9. For independent infinitely large variables x, y � 1 consider
the monomial group

M = xRyRexReyRexe
x+y

R

and its subset
N = xRyRexReyRe−xe

x+y
R

+
∗ .

Then the equation

(6.7) f = e−xe
x+y

+
∂f

∂x

∂f

∂y
+ e−x−3y ∂

3f

∂x3

∂2f

∂x∂y

admits a unique solution f ∈ R[[N]], which can be expressed as a “partial
differential series”. Theorem 4.7 can not be directly applied in this case.
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