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INTERSECTION COHOMOLOGY OF STRATIFIED CIRCLE
ACTIONS

G. PADILLA

To grandmother Cira and her sisters, in loving memory

Abstract. For any stratified pseudomanifold X and any action of the

unit circle S1 on X preserving the stratification and the local structure,
the orbit space X/S1 is also a stratified pseudomanifold. For each per-

versity q in X the orbit map π : X → X/S1 induces a Gysin sequence
relating the q-intersection cohomologies of X and X/S1. The third term

of this sequence can be given by means of a spectral sequence on X/S1

whose second term is the cohomology of the set of fixed points XS
1

with

values on a constructible sheaf.

0. Introduction

A stratified pseudomanifold is a topological space X with two features: the
stratification and the local conical behavior. The stratification is a decompo-
sition of X into a family of manifolds, called strata, endowed with a partial
order of incidence. The union of open strata is a dense smooth manifold called
the regular part, and its complement Σ is called the singular part of X. The
local conical behavior is given by the existence of charts, the local model being
a product U × c(L), where U is a smooth manifold and c(L) is the cone of a
compact stratified pseudomanifold L with lower length. We call L a link of U .

When S1 acts on X preserving the stratification and the local structure,
then the orbit space X/S1 is again a stratified pseudomanifold. The orbit
map π : X → X/S1 preserves the strata and, for each perversity q in X, it
induces a long exact sequence, the Gysin sequence,

· · · → H
i

q
(X)→ H

i

(G
q
(X/S1)) ∂→ H

i+1

q
(X/S1) π

∗

→ H
i+1

q
(X)→ · · · ,

which relates the q-intersection cohomologies of X and X/S1. The connecting
homomorphism ∂ depends on the Euler class ε ∈ H2

2
(X/S1); it vanishes if and

only if there is a foliation on the regular part of X that is transverse to the
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orbits of the action [18]. The third complex G∗
q
(X/S1) in the above expres-

sion is the Gysin term induced by the action. Its cohomology H
∗
(G

q
(X/S1))

depends on basic cohomological data of two types: local and global. There is
a second long exact sequence

· · · → H
i

(Gq (X/S1))→ H
i

(Lowq (X/S1))
∂′→ H

i+1

q−e(X/S1)
ı→ H

i+1
(Gq (X/S1))→ · · · ,

where e is a perversity in X/S1 vanishing on the mobile strata. The residual
term H

∗
(Lowq (X/S

1)) is calculated trough a spectral sequence whose second
term E2 = H

j

(XS
1
,P i) is the cohomology of the set of fixed points XS

1
with

values on a graded constructible sheaf P∗ . For each fixed point x ∈ X, the
group S1 acts on the link L of the stratum containing x and the stalks

P
i

x
=


H
i

(Low
q
(L/S1)), i ≤ q(x)− 3,

ker{∂′ : H
q(x)−1

(Lowq (L/S
1))→ H

q(x)

q−e
(L/S1)}, i = q(x)− 2,

ker{∂ : H
q(x)−1

(G
q
(L/S1))→ H

q(x)+1

q
(L/S1)}, i = q(x)− 1,

0, i ≥ q(x),

are related to the Gysin sequence and the residual term of L.
Henceforth, by manifold we always mean a smooth differential manifold of

class C∞.

1. Stratified spaces

Recall the definition of a stratified spaces [16].

Definition 1.1. Let X be a Hausdorff, paracompact, 2nd countable topo-
logical space. A stratification ofX is a locally finite partition S whose elements
are called strata and satisfy:

(1) Each stratum with the induced topology is a connected manifold.
(2) For any two strata S, S′ ∈ S, if S ∩ S′ is nonempty, then S ⊂ S′. In

this case we say that S is in the border of S′, and we write S ≤ S′.
We say that X is a stratified space whenever it has some stratification S.

The border relationship (2) is a partial order. Since the stratification S is
locally finite, the strict order chains

S0 < S1 < · · · < Sl

on S are always finite. By Zorn’s Lemma there are minimal and maximal
strata. The length of X is the supremum of the integers l such that there is a
strict order chain as above; we denote it by len(X). A stratum is maximal if
and only if it is open, and we say it is regular. Similarly, a stratum is minimal
if and only if it is closed. A singular stratum is one that is not regular. We
denote the family of singular strata by Ssing. The singular part Σ ⊂ X is the
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union of the singular strata. Its complement X −Σ is called the regular part ;
it is a dense open subset of X.

Examples 1.2. Each manifold is trivially stratified by the family of its
connected components. For each stratified space X and each manifold M , the
canonical stratification of M ×X is

{S × S′ : S is a connected component of M and S′ is a stratum of X ′}.
Any compact stratified space L has a finite number of strata, so the cone of
L is also a stratified space; it is by definition the quotient space

c(L) = L× [0,∞)/L× {0}.
We write [p, r] for the equivalence class of a point (p, r), and ? for the equiv-
alence class of L× {0}, which we call the vertex of the cone. The family

{?} t {S × R+ : S is a stratum of L}
is a stratification of c(L). By convention we let c(∅) = {?}. The radium of
the cone is the function ρ : c(L)→ [0,∞) given by ρ[p, r] = r. For each ε > 0
we write cε(L) = ρ−1[0, ε); it is also a stratified space.

Let X be a stratified space. For each paracompact subspace Y ⊂ X the
induced partition is

SY/X = {C : C a connected component of Y ∩ S, S a stratum of X}.
If this family is a stratification of Y , then we say that Y is a stratified subspace
of X.

A function α : X → X ′ between two stratified spaces is a morphism (resp.
isomorphism) if it satisfies the following conditions:

(1) α is a continuous function (resp. homeomorphism).
(2) α preserves the regular part, i.e., α(X − Σ) ⊂ (X ′ − Σ′).
(3) α sends smoothly (resp. diffeomorphically) strata into strata.

In particular, α is an embedding if α(X) ⊂ Y is open and α : X → α(X) is
an isomorphism. For instance, there is a natural isomorphism c(L)→ cε(L).

Definition 1.3. Take a stratified space X, a compact abelian Lie group
G and a continuous effective action

Φ : G×X → X.

We write Φ(g, x) = gx, B = X/G and π : X → B for the orbit map. We say
that Φ is stratified whenever it satisfies:

(1) The action Φ : G×X → X is a morphism, and its restriction to X−Σ
is free.

(2) For each singular stratum S in X, the points of S have all the same
isotropy GS .
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By convention, a stratum S in X is mobile (resp. fixed) if GS 6= S
1 (resp.

GS = S
1).

Notice that, by 1.3(2) and the equivariant slice theorem, the quotient π(S)
of any stratum S is a smooth manifold. By the properties of the group G and
the orbit map π the orbit space B is a stratified space. The family

(1.1) SB = {π(S) : S is a stratum in X}

is the stratification of B induced by the action Φ. The orbit map is a morphism
by construction. We leave the details to the reader.

2. Stratified pseudomanifolds and unfoldings

Stratified pseudomanifolds were introduced by Goresky and MacPherson
in order to extend the Poincaré duality to the family of stratified spaces. The
reader will find in [1] and [6] a detailed exposition of the subject.

Definition 2.1. Let X be a stratified space, and S a stratum of X. A
chart of S in X is an embedding

α : U × c(L)→ X,

where c(L) is the cone of a compact stratified space, U ⊂ S is open in S and
α(u, ?) = u for each u ∈ U . Notice that len(L) < len(X).

The definition of stratified pseudomanifolds is made by induction on the
length: we say that X is a stratified pseudomanifold if for each stratum S
there is a family of charts,

AS = {α : Uα × c(L)→ X}α,

such that {Uα}α is an open cover of S, and L is a compact stratified pseudo-
manifold which depends only on S. We call L a link of S.

Notice that any open subset of a stratified pseudomanifold is also a strati-
fied pseudomanifold. (This is not true for an arbitrary stratified space.)

Examples 2.2. Every manifold is a stratified pseudomanifold with the
trivial stratification. For each stratified pseudomanifold X and each manifold
M , the product M ×X is also a stratified pseudomanifold. If L is a compact
stratified pseudomanifold, then c(L) is again a stratified pseudomanifold. For
any stratified pseudomanifold the link of the regular strata is the empty set.

Recall the definition of an unfolding. We use this notion in order to de-
fine the intersection cohomology of a stratified pseudomanifold by means of
differential forms. For an introduction to unfoldings and their properties, see
[21].
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Definition 2.3. Let X be a stratified pseudomanifold. An unfolding of
X is a manifold X̃, a surjective, proper, continuous function

L : X̃ → X,

and a family of unfoldings {LL : L̃→ L}L of the links of X satisfying:

(1) The restriction L : L−1(X − Σ) → X − Σ is a smooth trivial finite
covering.

(2) Each z ∈ L−1(Σ) has an unfoldable chart, i.e., we have a commutative
diagram

U × L̃× R α̃→ X̃
↓c ↓L

U × c(L) α→ X

where:
(a) α is a chart.
(b) α̃ is a diffeomorphism onto L−1(Im(α)).
(c) The left vertical arrow is c(u, p̃, t) = (u, [LL(p̃), |t|]) for each u ∈

U , p̃ ∈ L̃, t ∈ R.

We say that X is unfoldable if it has an unfolding.
Let L : X̃ → X, L : X̃ ′ → X ′ be two unfoldings. A morphism α : X → X ′

is said to be unfoldable if there is a smooth function α̃ : X̃ → X̃ ′ such that
the square

X̃
α̃→ X̃ ′

↓L ↓L′

X
α→ X ′

is commutative.

Examples 2.4. For each manifold M the identity ı : M → M is an
unfolding. If L : X̃ → X is an unfolding, then the product ı× L : M × X̃ →
M×X is also an unfolding, for any manifold M . If LL : L̃→ L is an unfolding
on a compact stratified pseudomanifold L, then the map c : L̃ × R → c(L)
given by the rule c(p̃, t) = [LL(p̃), |t|] is an unfolding (cf. the left vertical
arrow in diagram 2.3(2)).

The proof of the following statement is left to the reader.

Lemma 2.5. Let L : X̃ → X be an unfolding. Then:

(1) The restriction L : L−1(A)→ A is an unfolding for each open subset
A ⊂ X.

(1) The restriction L : L−1(S)→ S is a smooth locally trivial fiber bundle
with fiber L̃, for each singular stratum S with link L.
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3. Intersection cohomology

In this work we take the differential point of view of intersection cohomology
as presented in [4], [21].

Definition 3.1 (Liftable Forms). Let us fix an unfolding L : X̃ → X.
A form ω ∈ Ω

∗
(X − Σ) is liftable if there is a form ω̃ ∈ Ω

∗
(X̃) such that

L∗(ω) = ω̃ on L−1(X − Σ). If such an ω̃ exists, then it is unique by density,
and we call it the lifting of ω. If ω, η are liftable forms, then dω is also liftable
and we have the following equalities:

d̃ω = dω̃, ω̃ + η = ω̃ + η̃, ω̃ ∧ η = ω̃ ∧ η̃.

Definition 3.2. Let p : M → B be a surjective submersion. A smooth
vector field ξ in M is vertical if it is tangent to the fibers of p. Write iξ for the
contraction by ξ. The perverse degree ‖ω‖B of a differential form ω ∈ Ω(M)
on B is the first integer m such that, for all vertical vector fields ξ0, . . . , ξm,

iξ0 · · · iξm(ω) = 0.

Since contractions are antiderivatives of degree −1, for each ω, ν ∈ Ω(M),

(3.1) ‖ω + ν‖B ≤ max {‖ω‖B , ‖ν‖B} , ‖ω ∧ ν‖B ≤ ‖ω‖B + ‖ν‖B .
By convention ‖0‖B = −∞.

Definition 3.3. We define the DeRham-like intersection cohomology of
X by means of liftable differential forms and an additional parameter which
controls their behavior when approaching Σ. This new parameter is just a
map q : Ssing → Z, which we call a perversity in X. For instance, for each
integer n ∈ Z we denote by n the constant perversity assigning n to any
singular stratum. The top perversity in X is defined by t(S) = codim(S)− 2
for each singular stratum S. Also any liftable form ω in X defines a natural
perversity ‖ω‖ : Ssing → Z in the following way: We map any singular stratum
S into the perverse degree ‖ω̃‖S of (the restriction of) the lifting ω̃ |L−1(S)

with respect to the submersion L : L−1(S)→ S.
Fix a perversity q. The complex of q-forms on X is by definition

Ω
∗

q
(X) = {ω ∈ Ω

∗
(X − Σ) : ω is liftable and ‖ω‖, ‖dω‖ ≤ q}.

The cohomology H
∗

q
(X) of this complex is the q-intersection cohomology of

X; some of its main properties are stated below:
(a) H

∗

q
(X) does not depend on the particular choice of an unfolding, for

any perversity q.
(b) If q > t, then H

∗

q
(X) = H

∗
(X − Σ) is the DeRham cohomology of

X − Σ.
(c) If q < 0, then H

∗

q
(X) = H

∗
(X,Σ) is the relative cohomology of the

pair.
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(d) If X is a manifold and 0 ≤ q ≤ t, then H
∗

q
(X) coincides with the

DeRham cohomology H
∗
(X).

(e) For any two perversities p, q the wedge product of the forms takes into
account the perversities in the following way:

H
i

p
(X)×H

j

q
(X) ∧→ H

i+j

p+q
(X).

In particular, the 0-intersection cohomology H
∗

0
(X) is a differential

graded algebra and H
∗

q
(X) is an H

0
(X)-module for any perversity q.

A controlled form is a 0-form.

4. Modelled actions

Now we introduce a family of actions, called modelled actions, which we
will use throughout this work. We will show that each modelled action on a
stratified pseudomanifold X induces a commutative diagram

(4.1)
X̃

L→ X
↓π̃ ↓π

B̃
LB→ B

,

where the upper horizontal row is an unfolding of X, B̃ = X̃/G is the quotient
of X̃ by a smooth free action, B = X/G is again a stratified pseudomanifold,
the vertical rows are the respective orbit maps and the lower horizontal row
is an unfolding of B. Roughly speaking, this is a suitable adaptation of the
unfolding of a stratified pseudomanifold (cf. 2.3) to the equivariant context.

Definition 4.1. A stratified action Φ : G×X → X is modelled whenever
it satisfies the conditions (MAI) and (MAII) stated below. (MAI) is a recur-
sive statement on the links, which allows us to use induction on the length
of X. (MAII) has two features: a global requirement (the existence of an
equivariant unfolding) and a local requirement (the existence of good charts).
More precisely, we define:

(MAI) For each singular stratum S there is a modelled action

Ψ : GS × L→ L

of the isotropy subgroup GS on the link L of S.

A modelled unfolding of X is an unfolding L : X̃ → X in the usual sense,
together with a free smooth action Φ̃ : G× X̃ → X̃ such that L is equivariant
and satisfies:

(1) For each link L of X the induced unfolding LL : L̃→ L is modelled.
(2) For each singular stratum S and each z ∈ L−1(S) there is a modelled

chart, i.e., an unfoldable chart as in 2.3(2), such that:
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(a) The diagram 2.3(2) is GS-equivariant. Here the action of GS on
U × c(L) is given by the rule g(u, [p, r]) = (u, [gp, r]). The free
action of GS on U × L̃× R is defined as well.

(b) The transformations of G are cone-preserving: For each u ∈ U ,
g ∈ G, if Φg(α({u} × c(L))) ∩ Im(α) 6= ∅, then the map

α−1Φgα |u: {u} × c(L)→ {gu} × c(L)

is an (unfoldable) isomorphism and preserves the conical radium.
(MAII) X has a modelled unfolding.

Examples 4.2. In order to illustrate the recursion in Definition 4.1 we
consider several special cases. If len(X) = 0, then Σ = ∅ and the condi-
tions (MAI), (MAII) are trivial. If len(X) = 1, then (MAI) is trivial again;
condition (MAII) can be simplified by taking into account the existence of
an equivariant normalization of the action; see [14] and [15]. In general, if
len(X) > 0, then, for any singular stratum S, the link L of S is a stratified
pseudomanifold with len(L) < len(X), so the definition of modelled actions
on L has been already done before we define modelled actions on X.

Remark 4.3. Modelled actions, i.e., stratified actions which induce square
diagrams as in 4.1, constitute a new category of actions. The morphisms in
this new category are not the equivariant stratified morphisms, although they
are modelled morphisms, and they do preserve the Euler class of the orbit
space. We will have to wait until 5.8 before we can describe them in a precise
way.

Examples 4.4. Here there are some examples of modelled actions:
(1) If Ψ : G × L → L is a modelled action with a modelled unfolding

LL : L̃→ L, then for any manifold U the induced action

Φ : G× U × c(L)→ U × c(L), g(u, [p, r]) = (u, [gp, r])

is modelled. The canonical unfolding c : U × L̃×R→ U × c(L) given
in diagram 2.3(2) is a modelled unfolding.

(2) Let X be a Thom-Mather space. Any stratified action Φ : G×X → X
preserving the tubular neighborhoods is a modelled action (see [23]).

(3) If X is a manifold and Φ is a smooth effective action, then X can be
endowed with the decomposition in orbit types. This decomposition is
a stratification and X inherits an equivariant Thom-Mather structure.
By Example (1) above, Φ is a modelled action.

As we have said at the beginning of this section, unfoldable pseudomani-
folds are stable under taking quotients by modelled actions. Now we prove
this assertion.
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Proposition 4.5. For each modelled action Φ : G×X → X we have:
(1) The orbit space B = X/G is a pseudomanifold.
(2) The induced map LB : B̃ = X̃/G→ B given by the rule LB(π̃(x)) =

π(L(x)) is an unfolding—see diagram ( 4.1).
(3) The orbit map π : X → B is an unfoldable morphism.

Proof. (1) B is already a stratified space and π : X → B is a morphism. We
verify the existence of charts in B. We proceed by induction on l = len(X).
The case l = 0 it is trivial. Take some singular stratum S with link L. Ap-
plying induction, by (MAI) the quotient L/GS is a stratified pseudomanifold.
Fix a modelled chart on S

U × L̃× R α̃→ X̃
↓c ↓L

U × c(L) α→ X

whose existence is given by (MAII). Assume that U = WV , where W ⊂ G is a
contractible open neighborhood of 1 ∈ G, V a slice in S. Write πL : L→ L/GS
for the orbit map. Since α is GS-equivariant, the function

β : V × c(L/GS)→ B, β(y, [πL(p), r]) = πα(y, [p, r])

is well defined. We will show that it is an embedding:
• β is injective: Because V is a slice in S and by condition 4.1(2)(b), the

transformations of G are cone-preserving.
• β is continuous: This holds since B and L/GS have the respective quo-

tient topologies.
• β is open: Let A ⊂ V × c(L/GS) be an open subset, z ∈ A. Take

a compact neighborhood z ∈ K ⊂ A. Since β : K → β(K) is a continuous
bijection from a compact space onto a Hausdorff space, it is a homeomorphism.
There is an open set V ′ ⊂ V and ε > 0 such that

z ∈ A′ = V ′ × cε(L/GS) ⊂ K ⊂ A.

So β : A′ → β(A′) is a homeomorphism. We claim that

β(A′) = π(α(WV ′ × cε(L))).

The set on the right hand side is open because WV ′ ⊂ U is open in S and
the orbit map π is open. In order to show the above equality take a point
π(α(wv, [p, r])) ∈ π(α(WV ′ × cε(L))). Then,

w−1α(wv, ?) = w−1(wv) = v ∈ Im(α).

By condition 4.1(2)(b), α−1Φ−1
w α : wv × c(L) → v × c(L) is an isomorphism

and preserves the radium. So

π(α(wv, [p, r])) = π(α(v, [p′, r])) = β(v, [πL(p′), r]).
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This proves that β(A′) ⊃ π(α(WV ′× cε(L))). The other inclusion is straight-
forward.
• β is an embedding: On V ×{?} the restriction β : V ×{?} → π(V ) given

by β(y, ?) → π(y) is a diffeomorphism. For each stratum R ⊂ L there is a
stratum S′ ⊂ X such that α(V × R × R+) ⊂ S′. Since α is GS-equivariant,
we get the commutative diagram

V ×GSR× R+ α→ GS′

↓1×πL ↓π

V × πL(R)× R+ β→ π(S′)
,

where the vertical arrows are submersions. So β is smooth on V ×πL(R)×R+

because α is smooth on V ×GSR × R+. The same argument can be applied
to the inverse map β−1. Up to a change of variable, we can assume that
β(v, ?) = v for all v.

(2) By (MAII), the function LB is well defined because L is equivariant. If
Σ = ∅, the proof is immediate, because X̃ is a smooth equivariant finite trivial
covering of X. In general, if Σ 6= ∅, then by the above remark LB satisfies
2.3(1).

We now show that the charts given in the first step of this proof are
unfoldable; this will prove 2.3(2). We use induction on l = len(X). For
l = 0 there is nothing to do. Take a singular stratum S with link L. By
induction, the GS-equivariant unfolding LL : L̃ → L induces an unfolding
LL/GS : L̃/GS → L/GS . For each modelled chart α, as in the first step of this
proof, the lifted chart α̃ satisfies a smooth-like property analogous to 4.1(2.b).
Hence, the map

β̃ : V × L̃/GS × R→ π̃(Im(α̃)), β̃(y, π̃L(p̃), t) = π̃α̃(y, p̃, t)

is well defined, injective and a smooth embedding onto an open subset of
B̃. Notice that β̃ is the lifting corresponding to the map β given above.
Consequently,

V × L̃/GS × R
β̃→ B̃

↓c ↓LB

V × c(L/GS)
β→ B

is an unfoldable chart in B. The details are left to the reader.
(3) This is immediate from the first two statements. �

5. Circle actions

Since the main goal of this work is the Gysin sequence of a modelled circle
action, from now on we will restrict ourselves to the case G = S

1. We fix
a stratified pseudomanifold X, a modelled circle action Φ : S1 × X → X

with its respective modelled unfolding L : X̃ → X, and a perversity q in X.
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Some results of this section were taken of [9], [12]; these references deal with
smooth non-free circle actions on manifolds, but the proofs remain valid in
our context. The usual case of a smooth free circle action can be seen, for
instance, in [8].

Definition 5.1. A q-form ω on X is invariant if for each g ∈ S1 the
equation g∗(ω) = ω holds. Since

X̃
Φ̃g−→ X̃

↓L ↓L

X
Φg−→ X

is an unfoldable isomorphism, the map g∗ : Ω
∗

q
(X) → Ω

∗

q
(X) is well defined,

and it is an isomorphism of differential complexes. Invariant q-forms define a
differential complex, denoted by IΩ

∗

q
(X). Since S1 is compact and connected,

the inclusion
ı : IΩ

∗

q
(X)→ Ω

∗

q
(X)

induces an isomorphism in cohomology—see [8], [15].

Definitions 5.2. The fundamental vector field on X is the smooth vector
field C defined on X − Σ by the rule

Cx = dΦx(
∂

∂ϑ
)
∣∣∣∣
ϑ=1

.

The fundamental vector field C never vanishes because X − Σ has no fixed
points. The lifted action Φ̃ : S1 × X̃ → X̃ defines a fundamental vector field
C̃ on X̃. Notice that L∗(C̃) = C on L−1(X − Σ).

An unfoldable metric on X is an invariant Riemannian metric µ on X −Σ
such that there is an invariant Riemannian metric µ̃ on X̃ satisfying:

(1) L∗(µ) = µ̃ in L−1(X − Σ).
(2) µ〈C, C〉 = µ̃〈C̃, C̃〉 = 1.
(3) For each mobile stratum S and each vertical vector field ν with respect

to the submersion L−1(S) L→ S, we have µ̃〈C̃, ν〉 = 0.
For each modelled circle action in X there is an unfoldable metric µ. This can
be seen by induction on the length of X. The case len(X) = 0 is a standard
result [2]. The general construction assumes the existence of unfoldable met-
rics for the links. They can be glued together with a liftable partition of unity.
For a rigorous proof the reader is referred to [9]; although the statement is
proved there only for stratified smooth manifolds, the arguments still hold in
our context.

Given an unfoldable metric µ on X, the characteristic form induced by µ
is the invariant 1-form χ defined by the rule χ(v) = µ〈C, v〉.
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Lemma 5.3. The characteristic form χ satisfies

‖χ‖S =

{
1, S a fixed stratum,
0, S a mobile stratum.

Proof. By 5.2(1), the characteristic form χ on X − Σ lifts to the charac-
teristic form χ̃ on X̃. The perverse degree of χ is immediate from 5.2(2) and
5.2(3). �

Each unfoldable metric µ in X induces an algebraic decomposition of the
invariant forms. This decomposition is important in order to give a suitable
presentation of the elements composing the Gysin sequence of X.

5.4. Decomposition of an invariant q-form. A form η on X −Σ is basic if
one of the following equivalent statements holds:

(a) η is invariant and ıC(η) = 0.
(b) There is a unique differential form θ on B −Σ = π(X −Σ) such that

η = π∗(θ).
For each invariant form ω ∈ IΩ

∗

q
(X − Σ) there are ν ∈ Ω

∗
(B − Σ) and

θ ∈ Ω
∗−1

(B − Σ) satisfying

ω = π∗(ν) + χ ∧ π∗(θ).
The above expression is the decomposition of ω. The forms ν, θ are uniquely
determined by the equations

π∗(θ) = ıC(ω), π∗(ν) = ω − χ ∧ ıC(ω).

When ω is a liftable form, then ω̃ is an invariant form in X̃. Recall that,
by density, the lifting of a form in X − Σ is determined by its values on
L−1(X − Σ). From diagram (4.1) it follows that ν,θ are liftable forms on B
and we get

ω̃ = π̃∗(ν̃) + χ̃ ∧ π̃∗(θ̃).

For each perversity q in X, the orbit map induces a well defined morphism

(5.1) π∗ : H
∗

q
(B)→ H

∗

q
(X).

This map makes sense because of the following lemma.

Lemma 5.5. Take a perversity q on X, and denote the perversity induced
on B in the obvious way also by q. Then the map

π∗ : Ω
∗

q
(B)→ IΩ

∗

q
(X)

is well defined. Moreover, for each invariant form ω = π∗(ν) + χ ∧ π∗(θ) we
have

‖ω‖ = max{‖ν‖, ‖χ‖+ ‖θ‖}.
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Proof. For each stratum S we have a diagram of submersions

L−1(S) π̃→ L−1
B (π(S))

↓L ↓LB
S

π→ π(S)
.

Following [9], we have

‖ω‖S = max{‖ν‖π(S), ‖χ‖S + ‖θ‖π(S)}. �

As we shall see later, the morphism (5.1) is contained in a long exact
sequence relating the intersection cohomology of X and B; this is the Gysin
sequence. The second object that appears is an intersection cohomology class
in B uniquely determined by the action Φ; we call it the Euler class. Up to
this point, the situation is the analogous to the smooth case.

Definition 5.6. Take an unfoldable metric µ on X and let χ be the
characteristic form induced by µ. The differential form dχ is basic, so there
is a unique form e on B − Σ such that

dχ = π∗(e).

This form e is the Euler form induced by the action Φ and the metric µ. Since
µ is unfoldable, e lifts to the Euler form ẽ on B̃ induced by the metric µ̃.

The Euler class is the intersection cohomology class ε = [e] ∈ H2

e
(B) of the

Euler form e with respect to a perversity e in B called the Euler perversity and
defined by induction on the length. More precisely, for each singular stratum
S in X we define:

(1) If S is mobile, then we define e(π(S)) = 0.
(2) If S is fixed with link L and the Euler class εL ∈ H

2

eL
(L/S1) vanishes,

then we define e(π(S)) = 1.
(3) If S is fixed with link L and εL ∈ H

2

eL
(L/S1) 6= 0, then we say

that S is a perverse stratum. For any perverse stratum S we define
e(π(S)) = 2.

According to [15], the Euler class vanishes if and only if there is a foliation F
on X − Σ transverse to the orbits of the action.

Proposition 5.7. The Euler class ε ∈ H2

e
(B) is well defined.

Proof. We will show that there is an unfoldable metric µ such that the
Euler form e induced by µ belongs to Ω

2

e
(B), i.e.,

‖e‖π(S) ≤ e(π(S))

for any singular stratum S in X. By 5.2(3), we have ‖e‖π(S) = 0 for any
mobile stratum S, so we only have to verify the above inequality for any fixed
stratum S in X.
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We proceed by induction on the length l = len(X). For l = 0 the action
is free, so there are no fixed strata, and the proposition trivially holds. We
assume the inductive hypothesis, so for any fixed stratum S in X with link
L, there is a metric µL such that the Euler form eL belongs to Ω

2

e
(L/S1).

The Euler class of the link εL ∈ H
2

eL
(L/S1) makes sense, as well as the

classification of S as perverse or non-perverse depending on the vanishing of
εL—see 5.6(3). We will show that there is an unfoldable metric µ such that
for any fixed stratum S in X we have

(5.2) ‖e‖π(S) = 2⇔ S is a perverse stratum.

Such a metric will be called a good metric. Notice also that, by induction, we
can assume that the metric µL given in the link L of S is a good metric.
• Construction of a global good metric µ from a family of local ones: We

define an invariant open cover U = {Xα}α of X, and a family {µα}α of
unfoldable metrics such that each µα is a good metric in Xα as follows:

(a) The complement of the set of fixed points X0 = X −XS1 belongs to
U . We take on X0 an unfoldable metric µ0.

(b) For each fixed stratum S we take a family of modelled charts

α : Uα × c(L)→ X

as in 4.1(2), such that {Uα}α is a good cover of S. We putXα = Im(α)
and take

µα = α−∗(µUα + µL + dr2),

where µUα (resp. µL) is a Riemannian (resp. good) metric in Uα
(resp. in L). So µα is a good metric in Xα.

Fix an invariant controlled partition of the unity {ρα}α subordinated to U
and define

(5.3) µ =
∑
α

ραµα.

• Goodness of µ on a fixed stratum S: We verify the property (5.2) on S.
“⇒”: Write χ, e (resp. χα, eα) for the characteristic form and the Euler

form induced by µ on X (resp. by µα on Xα). Notice that

(5.4) dχ =
∑
α

(dρα) ∧ χα +
∑
α

ραdχα.

In the above expression, the first sum of the right side has perverse degree
1 (see 5.3). Recall that, by 5.5, ‖e‖π(S) = ‖dχ‖S . If ‖dχ‖S = 2, then, by
equation (5.4),

‖dχα‖S∩Xα = ‖eα‖π(S∩Xα) = 2

for some Xα intersecting S. So εL 6= 0 because µα is a good metric.
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“⇐”: In the rest of this proof we use some local properties of intersection
cohomology. In particular, we use the step cohomology of a product U ×
c(L/S1) as defined in [10]. In Section 7 the reader will find more details.

Assume that ‖e‖π(S) < 2 and take some Xα = Im(α) ∈ U , the image
of a modelled chart α on S. Write Bα = π(Xα) ∼= Uα × c(L/S1), so that
‖e |Bα ‖Uα < 2.

Consider the short exact sequence of step intersection cohomology

0→ Ω
∗

1
(Bα) ı→ Ω

∗

2
(Bα)

pr→ Ω
∗

2/1
(Bα)→ 0,

which induces the long exact sequence

· · · → H
2

1
(Bα)→ H

2

2
(Bα)

pr∗→ H
∗

2/1
(Bα) d→ H

3

1
(Bα)→ · · ·

The inclusion ıε : L/S1 → Uα × c(L/S1) given by p 7→ (x0, [p, ε]) induces the
isomorphism

ı∗ε : H
2

2/1
(Uα × c(L/S1))

∼=→ H
2

2
(L/S1),

where x0 ∈ Uα and ε > 0. By the above remarks, (αıε)−∗(εL) = pr∗[e |Bα ] =
0, so εL = 0. �

Definition 5.8. Let Φ : S1 ×X → X be a modelled action. A perverse
point in X is a point of a perverse stratum. We write Xperv for the set of
perverse points, which is the union of the perverse strata, and as usual write
XS

1
for the set of fixed points. Let S1×Y → Y be any other modelled action.

An unfoldable morphism

X̃
α̃−−−−→ Ỹ

L
y yL′
X

α−−−−→ Y

is said to be modelled if and only each arrow in the above diagram is equivari-
ant and α preserves the classification of the strata, i.e., α−1(Y S

1
) ⊂ XS1 and

α−1(Y perv) ⊂ Xperv. For instance, any modelled chart of a fixed stratum in
X is a modelled morphism in this sense.

Theorem 5.9 (Functoriality of the Euler class). The Euler class is pre-
served by modelled morphisms: If α : X → Y is a modelled morphism, then
α∗(εY ) = εX .

Proof. Write eX , eY for the Euler perversities in the orbit spaces BX , BY .
Each modelled morphism α : X → Y induces an unfoldable morphism in the
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orbit spaces

B̃X
α̃−−−−→ B̃Y

L
y yL′
BX

α−−−−→ BY

,

which we also denote by α with a little abuse of notation. In order to see that
the map

(5.5) α∗ : Ω
∗

eY
(BY )→ Ω

∗

eX
(BX)

makes sense, we consider a third perversity α∗[eY ] such that the map

α∗ : Ω
∗

eY
(BY )→ Ω

∗

α∗[eY ]
(BX)

is well defined and α∗[eY ] ≤ eX . Then Ω
∗

α∗[eY ]
(BX) ⊂ Ω

∗

eX
(BY ) and the map

(5.5) is the composition with the inclusion.
The perversity α∗[eY ] in BX is given by the rule

α∗[eY ](π(S)) = eY (π(R))

for any singular strata S,R in X,Y , respectively, such that α(S) ⊂ R. In
this situation, we only need to show that α∗[eY ](π(S)) ≤ eX(π(S)) or, equiv-
alently, that

eY (π(R)) ≤ eX(π(S)).

If R is mobile, then S is mobile because α is equivariant, so eY (π(R)) =
eX(π(S) = 0 and the inequality holds. On the other hand, if R is fixed, then
the inequality is a consequence of 5.8, since α preserves the classification of
the strata. �

6. The Gysin sequence

Take a stratified pseudomanifold X, a modelled action Φ : S1 × X → X
with orbit space B = X/S1, and a perversity q in X. The orbit map π :
X → B preserves the strata and the perverse degree (see 5.5). Passing to the
intersection cohomology we get a map

π∗ : H
∗

q
(B)→ H

∗

q
(X),

which is a string of a long exact sequence, the Gysin sequence of X induced
by the action. The third complex in the Gysin sequence is the Gysin term; its
cohomology depends at the same time on the global and local basic data. The
global data concern the Euler class ε ∈ H∗

2
(B) induced by the action Φ, while

the local data concern the Euler classes of the links of the perverse strata. For
instance, if Σ = ∅, then π : X → B is a smooth S1-principal fiber bundle; we
get the Gysin sequence by integrating along the fibers. If X is a manifold and
Φ is a smooth non-free effective action, then Σ 6= ∅ and B is not a manifold
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anymore, but a stratified pseudomanifold. There is a Gysin sequence relating
the DeRham cohomology of X with the intersection cohomology of B [9].

Definition 6.1. Fix a modelled action Φ : S1 × X → X on a stratified
pseudomanifold X, and a perversity q in X. Write q also for the obvious
perversity induced on B. As usual, write π : X → B for the orbit map. The
Gysin term is the quotient complex

G
∗

q
(B) = IΩ

i+1

q
(X)/π∗(Ω

i+1

q
(B))

with the differential d(ω) = dω, where ω is the equivalence class of a differ-
ential form ω ∈ IΩ

i

q
(X). In other words, G∗

q
(B) is the cokernel in the short

exact sequence

0→ Ω
∗+1

q
(B) π

∗

→ IΩ
∗+1

q
(X)

pr→ G
∗

q
(B)→ 0.

Taking cohomologies we get the long exact sequence

(6.1) · · · → H
i+1

q
(X)

pr∗→ H
i

(G
q
(B)) ∂→ H

i+2

q
(B) π

∗

→ H
i+2

q
(X)→ · · ·

This is the Gysin sequence of X.

When the singular part of X is the empty set, then Φ is a free smooth
action and π : X → B is a smooth principal fiber bundle with group S1,
so (6.1) is the usual Gysin sequence. The cohomology of the Gysin term,
H
∗
(Gq (B)) = H

∗
(B), is the DeRham cohomology, and the connecting homo-

morphism is the multiplication by the Euler class (see [3], [8]). When X has a
nonempty singular part, then, by 3.3, for large perversities q > t the sequence
(6.1) is the usual Gysin sequence of X − Σ in DeRham cohomology, and for
negative perversities q < 0 it is the Gysin sequence in relative cohomology. In
general, one might naively conjecture that H

∗
(G

q
(B)) = H

∗

q
(B) and that the

connecting morphism of the Gysin sequence is the multiplication by the Euler
class. As we will see, the reality is richer and more complicated. Nevertheless,
the Gysin term can be given by means of basic forms.

Definition 6.2. The characteristic perversity on B is the perversity χ
given by the rule

χ(π(S)) =

{
1, S a fixed stratum,
0, S a mobile stratum.

We also write χ for the perversity induced on X in the obvious way. Then
the fundamental form χ is χ-admissible (see 5.3).



676 G. PADILLA

Lemma 6.3. For each perversity 0 ≤ q ≤ t in X, the Gysin term G∗
q
(B)

is isomorphic to the following complex:θ ∈ Ω
∗

q−χ
(B) | ∃ν ∈ Ω

∗
(B − Σ) :

(1) ν is liftable,
(2) max{‖ν‖S , ‖dν + e ∧ θ‖S} ≤ q(S),

for all perverse strata S.

 .

Under this identification, the connecting homomorphism is

∂ : H
i

(Gq (B))→ H
i+2

q
(B), ∂[θ] = [dν + e ∧ θ].

Proof. The restriction π : X − Σ → B − Σ is a S1-principal fiber bundle.
Consider the morphism of integration along the orbits∮

= (−1)
i−1
π−∗iC : IΩ

i

q
(X)→ Ω

i−1

q−χ
(B)

defined by∮
ω = (−1)

i−1
θ, ω = π∗(ν) + χ ∧ π∗(θ) ∈ IΩ

i

q
(X − Σ).

This morphism commutes with the differential and vanishes on the basic
forms. Passing to the quotient, we get the map∮

: G
∗

q
(B)→ Ω

∗

q−χ
(B), ω 7→

∮
(ω).

The complex given in the statement of the lemma is the image of this map.
The connecting homomorphism arises as usual from the Snake Lemma. �

Proposition 6.4. If X has no perverse strata, then, for each perversity
0 ≤ q ≤ t, the Gysin sequence ( 6.1) becomes

· · · → H
i+1

q
(X)

∫
→ H

i

q−e
(B) ε→ H

i+2

q
(B) π

∗

→ H
i+2

q
(X)→ · · · ,

where the connecting homomorphism ε is the multiplication by the Euler Class.
If additionally X has no fixed strata, then the Euler class belongs to H

2

0
(B)

and the above sequence becomes

· · · → H
i+1

q
(X)

∫
→ H

i

q
(B) ε→ H

i+2

q
(B) π

∗

→ H
i+2

q
(X)→ · · ·

Proof. By 6.3 and the definition of χ, e, the Gysin term is an intermediate
complex

(6.2) Ω
∗

q−e
(B) ⊂ G

∗

q
(B) ⊂ Ω

∗

q−χ
(B).

Now X has no perverse strata iff χ = e and the extremes in the above inequal-
ity are identical. For the connecting homomorphism we take the formula in
6.3 with ν = 0. �
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Corollary 6.5. If the Euler class ε ∈ H2

e
(B) vanishes, then

H
∗

q
(X) = H

∗−1

q
(B)⊕H

∗

q−e
(B)

for each perversity 0 ≤ q ≤ t. If additionally X has no fixed strata, then

H
q
(X) = H

q
(B)⊗H(S1),

i.e., X has the intersection cohomology of the product B × S1.

Proof. If the Euler class vanishes, then X has no perverse strata. �

Definition 6.6. Now let us assume that X has perverse strata. We
will define the residual terms; those terms allow us to measure the difference
between H

∗
(G

q
(B)) and the intersection cohomology of B. The inclusions

(6.2) induce the following short exact sequences

0→ Ω
∗

q−e
(B) ↪→ G∗

q
(B)

pr→ Low
∗

q
(B)→ 0,

0→ G∗
q
(B) ↪→ Ω

∗

q−χ
(B)

pr→ Upp
∗

q
(B)→ 0.

We call Low
∗

q
(B) (resp. Upp

∗

q
(B)) the lower residue (resp. upper residue).

The induced long exact sequences

· · · → H
i

q−e
(B)→ H

i

(Gq (B))
pr→ H

i

(Lowq (B)) ∂′→ H
i+1

q−e
(B)→ · · · ,(6.3)

· · · → H
i

(G
q
(B))→ H

i

q−χ
(B)

pr→ H
i

(Upp
q
(B)) ∂

′′

→ H
i+1

(G
q
(B))→ · · ·(6.4)

are the residual approximations. Next consider the cokernel

0→ Ω
∗

q−e
(B) ↪→ Ω

∗

q−χ
(B)

pr→ Ω
∗

q−χ
q−e

(B)→ 0.

Its cohomology H
∗

q−χ
q−e

(B) is called the step intersection cohomology of B [10].

The residual approximations are related by the long exact sequences

· · · → H
i

q−e
(B)→ H

i

q−χ
(B)→ H

i

q−χ
q−e

(B) d→ H
i+1

q−e
(B)→ · · ·

· · · → H
i

(Low
q
(B))→ H

i

q−χ
q−e

(B)→ H
i

(Upp
q
(B))→ H

i

(Low
q
(B))→ · · ·

These sequences can be arranged in a commutative exact diagram, called the
Gysin braid :

H
i

q−e
(B) H

i

q−χ
(B) H

i
(Upp

q
(B)) H

i+1
(Low

q
(B))

H
i
(G
q

(B)) H
i

q−χ
q−e

(B) H
i+1

(G
q

(B))

H
i−1

(Upp
q

(B)) H
i
(Low

q
(B)) H

i+1

q−e
(B) H

i+1

q−χ
(B)

HHj HHj HHj

HHj HHj HHj��* ��* ��*

��* ��* ��*
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7. The Gysin Theorem

We devote the rest of this paper to the calculation of the residual coho-
mologies. The final goal is to relate H

∗
(G

q
(B)) with basic local cohomological

data by means of the residual approximations, so we start this section with
the local properties of the residues. Some results of this section were taken
from [21].

Lemma 7.1. Let Φ : S1×X → X be a modelled action. Consider on R×X
the (obvious) modelled action trivial in R. Then the projection pr : R×X → X
induces the following isomorphisms:

H
i

q
(R×X) = H

i

q
(X), H

i

(G
q
(R×B)) = H

i

(G
q
(B)),

H
i

(Low
q
(R×B)) = H

i

(Low
q
(B)), H

i

(Upp
q
(R×B)) = H

i

(Upp
q
(B)).

Proof. See [15]. �

Proposition 7.2. Let Ψ : S1×L→ L be a modelled action on a compact
stratified pseudomanifold L. For each perversity 0 ≤ q ≤ t and each ε > 0 the
map ıε : L→ c(L) given by p 7→ [p, ε] induces the following isomorphisms:

(7.1) H
i

q
(c(L/S1)) =

H
i

q
(L/S1), i ≤ q(?),

0, i > q(?).

Also

(7.2) H
i

(G
q
(c(L/S1))) =



H
i

(Gq (L/S1)), i ≤ q(?)− 2,

ker
[
∂ : H

q(?)−1
(Gq (L/S1))

→ H
q(?)+1

q
(L/S1)

]
, i = q(?)− 1,

0, i ≥ q(?),

where ∂ is the connecting homomorphism of the Gysin sequence on L.

Proof. For the first isomorphism see [21]. For the second one, we get a
commutative diagram with exact horizontal rows,

→ H
i+1

q
(c(L/S1))

π∗→ H
i+1

q
(c(L)) → H

i

(Gq (c(L/S1)))
∂→ H

i+2

q
(c(L/S1)) →

↓ ↓ ↓ ↓
→ H

i+1

q
(L/S1)

π∗→ H
i+1

q
(L) → H

i

(Gq (L/S1))
∂→ H

i+2

q
(L/S1) →

where the vertical arrows are induced by ıε : L → c(L) and ıε : L/S1 →
c(L/S1). For i ≤ q(?)− 2 we have enough vertical isomorphisms. By the Five
Lemma,

H
i

(G
q
(c(L/S1))) = H

i

(G
q
(L/S1)).
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For i = q(?) − 1 the two left vertical arrows are isomorphisms. In the upper
right coin we get H

q(?)+1

q
(c(L/S1)) = 0. So

H
q(?)−1

(G
q
(c(L/S1))) = coker(π∗)

= ker
[
H
q(?)−1

(Gq (L/S1)) ∂→ H
q(?)+1

q
(L/S1)

]
.

For i ≥ q(?) the upper horizontal row has four zeros. Thus H
i

(G
q
(c(L/S1)))

= 0. �

Corollary 7.3. In the situation of 7.2, if the vertex is not perverse, then
the Gysin sequence of c(L) is the Gysin sequence of L truncated in dimension
i = q(?)− 1.

Proposition 7.4. In the situation of 7.2, if the vertex is a perverse stra-
tum, then the map ıε : L→ c(L) induces the following isomorphisms:

(7.3) H
i

(Low
q
(c(L/S1))) =



H
i

(Low
q
(L/S1)), i ≤ q(?)− 3,

ker{∂′ : H
q(S)−2

(Low
q
(L/S1))

→ H
q(S)−1

q−e
(L/S1)}, i = q(?)− 2,

ker{∂ : H
q(S)−1

(Gq (L/S1))
→ H

q(S)+1

q
(L/S1)}, i = q(?)− 1,

0, i ≥ q(?),

and

(7.4) H
i

(Upp
q
(c(L/S1))) =



H
i

(Upp
q
(L/S1)), i ≤ q(?)− 3,

ker[∂′′∂ : H
q(?)−2

(Upp
q
(L/S1))

→ H
q(?)+1

q
(L/S1)], i = q(?)− 2,

H
q(?)−1

q−χ
(L/S1)

j∗(ker
q(?)−1

(∂))
, i = q(?)− 1,

0, i ≥ q(?).

Proof. We get the following commutative diagrams:
(7.5)

→H
i

q−e(c(L/S1))
j∗→H

i

(Gq (c(L/S1)))→H
i

(Lowq (c(L/S1)))
∂′→H

i+1

q−e(c(L/S1))→
↓ ↓ ↓ ↓

→ H
i

q−e(L/S1)
j∗→ H

i

(Gq (L/S1)) → H
i

(Lowq (L/S1))
∂′→ H

i+1

q−e(L/S1) →
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and
(7.6)

→H
i

(Gq (c(L/S1)))
j∗→H

i

q−χ(c(L/S1))→H
i

(Upp
q
(c(L/S1)))

∂′′→H
i+1

(Gq (c(L/S1)))→
↓ ↓ ↓ ↓

→ H
i

(Gq (L/S1))
j∗→ H

i

q−χ(L/S1) → H
i

(Upp
q
(L/S1))

∂′′→ H
i+1

(Gq (L/S1)) →

where the horizontal rows are residual approximations and the vertical arrows
are induced by the maps ıε : L→ c(L) and ıε : L/→ c(L/S1).

Since the vertex is a perverse stratum, χ(?) = 1 and e(?) = 2. In the above
diagrams the case i ≤ q(?) − 3 follows immediately from the Five Lemma,
and the case i ≥ q(?) is straightforward. To verify the cases i = q(?)− 2 and
i = q(?)− 1, we proceed in two steps.

• Lower residue: For i = q(?)−2, by 7.2 the two left vertical arrows in dia-
gram (7.5) are isomorphisms. In the upper right corner we getH

q(?)−1

q−e
(c(L/S1))

= 0. So

H
q(?)−2

(Lowq (c(L/S
1)))

= ker
q(?)−2

[∂′ : H
q(?)−2

(Lowq (L/S
1))→ H

q(?)−1

q−e
(L/S1)].

For i = q(?)− 1 the upper corners are zeros. By 7.2 and the exactness of the
upper horizontal row,

H
q(?)−1

(Low
q
(c(L/S1))) = H

q(?)−1
(G

q
(c(L/S1))) = ker

q(?)
(∂).

• Upper residue: For i = q(?)−2, by 7.2 the left vertical arrows in diagram
(7.6) are isomorphisms. Hence

ıε : H
q(?)−2

(Upp
q
(c(L/S1)))→ H

q(?)−2
(Upp

q
(L/S1))

is injective. We get a commutative exact diagram

0 0 0
↓ ↓ ↓

0→coker
q(?)−2

(j∗, c(L/S1))→H
q(?)−2

(Upp
q
(c(L/S1)))→ker

q(?)−1
(j?, c(L/S1))→ 0

↓ ↓ıε ↓
0→ coker

q(?)−2
(j∗, L/S1) → H

q(?)−2
(Upp

q
(L/S1)) → ker

q(?)−1
(j?, L/S1) → 0

↓ ↓ ↓

0 → coker
q(?)−2

(ıε) → ker
q(?)−1

(j?,L/S1)

ker
q(?)−1

(j?,c(L/S1))
→ 0

↓ ↓
0 0
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So H
q(?)−2

(Upp
q
(c(L/S1))) is the kernel of the map

ıε : H
q(?)−2

(Upp
q
(c(L/S1)))→ ker

q(?)−1
(j?, L/S1)

ker
q(?)−1

(j?, c(L/S1))

=
Im

q(?)−1
(∂′, L/S1)

Im
q(?)−1

(∂′, L/S1) ∩ ker
q(?)−1

(∂)
.

In the last equality we used 7.2, the exactness of the upper approximation and
the fact that the third vertical arrow in diagram (7.6) is injective. So we can
identify the image of the third vertical arrow with ker

q(?)−1
(∂), the kernel of

the connecting homomorphism of the Gysin sequence on L. We deduce that
ker(ıε) is the kernel of the composition

H
q(?)−2

(Upp
q
(L/S1)) ∂′′−→ H

q(?)−1
(G

q
(L/S1)) ∂−→ H

q(?)+1

q
(L/S1).

For i = q(?) − 1 the first left vertical arrow in diagram (7.6) is injec-
tive, and the second is an isomorphism. In the upper right corner we get
H
q(?)

(Upp
q
(c(L/S1))) = 0. We obtain the exact commutative diagram

0→ coker
q(?)−1

(j, c(L/S1))
∼=→ H

q(?)−1
(Upp

q
(c(L/S1))) → 0

↓ıε ↓ıε ↓
0→ coker

q(?)−1
(j, L/S1) → H

q(?)−1
(Upp

q
(L/S1)) → ker

q(?)
(j, L/S1) → 0

Notice that

ker
q(?)−1

(ıε) ∼= ker(ıε) =
Im

q(?)−1
(j∗, L/S1)

ıε(Im
q(?)−1

(j∗, c(L/S1)))

=
Im

q(?)−1
(j∗, L/S1)

j∗(Im
q(?)−1

(ıε))
=

Im
q(?)−1

(j∗, L/S1)

j∗(ker
q(?)−1

(∂))
.

Also

Im
q(?)−1

(ıε) = coker
q(?)−1

(j∗, L/S1) =
H
q(?)−1

q−χ
(L/S1)

Im
q(?)−1

(j∗, L/S1)
.

So we get a short exact sequence

0→ Im
q(?)−1

(j∗, L/S1)

j∗(ker
q(?)−1

(∂))
→ H

q(?)−1
(Upp

q
(c(L/S1)))

→
H
q(?)−1

q−χ
(L/S1)

Im
q(?)−1

(j∗, L/S1)
→ 0 .

We deduce that

H
q(?)−1

(Upp
q
(c(L/S1))) =

H
q(?)−1

q−χ
(L/S1)

j∗(ker
q(?)−1

(∂))
.
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This finishes the proof. �

An introduction to presheaves, sheaves and Cech cohomology can be found
in [3], [5]. Notice that for each perversity q, the complex of q-forms Ω

∗

q
(−) is

a presheaf on X (and also on B). The complex IΩ
∗

q
(−) of invariant q-forms

is a presheaf on X, but it is defined only in the topology of invariant open
sets; we can also regard it as a presheaf on B up to a composition with the
orbit map. The complexes G∗

q
(−), Low

∗

q
(−), and Upp

∗

q
(−) are presheaves on

B. Because of the existence of controlled invariant partitions of the unity, all
these examples are sheaves.

Remarks 7.5. Statements 7.2, 7.3 and 7.4 imply the following:

(1) For each fixed stratum S in X and each unfoldable chart β : U ×
c(L/S1) → B, we can calculate the cohomology of the Gysin term
and the residues on the open set Im(β).

(2) According to [1], G∗
q
(−) is a complex of sheaves with constructible

cohomology sheaves defined on B. Also Low
∗

q
(−) and Upp

∗

q
(−) are

complexes of sheaves with constructible cohomology, whose supports
live on the set of perverse points Xperv.

Theorem 7.6 (The Gysin Theorem). Let X be a stratified pseudomani-
fold, q a perversity in X, 0 ≤ q ≤ t. For each modelled action S1 ×X → X
there are two long exact sequences relating the intersection cohomology of X
and B: the Gysin sequence

· · · → H
i+1

q
(X)→ H

i

(G
q
(B)) ∂→ H

i+2

q
(B) π

∗

→ H
i+2

q
(X)→ · · ·

induced by the orbit map π : X → B, and the lower approximation

· · · → H
i

(G
q
(B))→ H

i

(Low
q
(B)) ∂′→ H

i+1

q−e
(B)→ H

i+1
(G

q
(B))→ · · ·

induced by the inclusion Ω
∗

q−e
(B) ı→ G∗

q
(B). These sequences satisfy:

(1) If X has no perverse strata, then G∗
q
(B) = Ω

∗

q−χ
(B) = Ω

∗

q−e
(B),

Low
∗

q
(B) = 0 and the connecting homomorphism of the Gysin se-

quence is the multiplication by the Euler Class ε ∈ H2

χ
(B).

(2) If X has perverse strata, then H
∗
(Low

q
(B)) is calculated through a

spectral sequence in B, whose second term

E
ij

2
= H

j

(Xperv,P
i

)

is the cohomology of the set of perverse points Xperv with values on a
locally constant graded constructible presheaf P∗ . For each fixed point
x ∈ X the stalks
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P
i

x
=



H
i

(Low
q
(L/S1)), i ≤ q(S)− 3,

ker{∂′ : H
q(S)−2

(Low
q
(L/S1))→ H

q(S)−1

q−e
(L/S1)}, i = q(S)− 2,

ker{Hq(S)−1
(G

q
(L/S1)) ∂→ H

q(S)+1

q
(L/S1)}, i = q(S)− 1,

0, i ≥ q(S).

depend on the Gysin sequence and the residual approximation induced
by the action of S1 on of the link L of the stratum containing x.

Proof. Statement (1) has already been proved in the preceding sections.
Statement (2) arises from the usual spectral sequence induced by a double
complex; see, for instance, [3], [5]. The double complex we take is the residual
Cech double complex

(C
j

(U ,Low
i

q
(−)), δ, d)

induced by an invariant open cover U = {Bα}α of B, where δ is the Chech
differential induced by the restrictions, and d is the usual differential operator.
We define U as follows: First we take the complement of the set of fixed points
X0 = X − XS1 ; we require B0 = π(X0) to be in U . Second, for each fixed
point x ∈ X we take a modelled chart

α : Uα × c(L)→ X

in the stratum S containing x, such that x ∈ Uα. We require the Uα’s inter-
secting S to be a good cover of S. We define

Bα = π(Im(α)) ∼= Uα × c(L/S1).

Since the sheaf Low
∗

q
(−) vanishes identically on B0, the second term of the

spectral sequence is

E
ij

2
= H

j

δ
H
i

d
(U ,Low

q
(−)) = H

j

(U ,HLow
i

q
(−)) = H

j

(Xperv,HLow
i

q
(−)).

So P∗ = HLow
∗

q
(−) is the desired presheaf. The remarks on the stalks are

immediate from 7.1 and 7.2. �

Definition 7.7. A modelled action Φ : S1 × X → X is exceptional if
the links of X have no perverse strata, i.e., if any perverse stratum of X is a
closed (minimal) stratum.

Corollary 7.8. For any exceptional action Φ : S1 ×X → X we have

(7.7) H
∗
(Low

q
(B)) =

∏
S

H
∗
(S, Im

q
(εL)),

where S runs over the perverse strata and H
∗
(S, Im

q
(εL)) is the cohomology

of S with values on a locally constant presheaf with stalk

ker{εL : H
q(S)−1

q−χ
(L/S1)→ H

q(S)+1

q
(L/S1)},
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the kernel of the multiplication by the Euler class εL ∈ H
2

χ
(L/S1) of the link

L of S.

Proof. If the link L of a perverse stratum S has no perverse strata, then
the stalk Hi

Low
q
(−) vanishes for i 6= q(S)−1 (so it is a single presheaf). The

equality (7.7) is straightforward, since the perverse strata are disjoint closed
subsets. �
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