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ON COMPACTNESS OF MEASURES ON POLISH SPACES

PIOTR BORODULIN–NADZIEJA AND GRZEGORZ PLEBANEK

Abstract. We present some results related to the question whether

every finite measure µ defined on a σ–algebra Σ ⊆ Borel[0, 1] is count-
ably compact. In particular, we show that for every finite measure
space (X,Σ, µ), where X is a Polish space and Σ ⊆ Borel(X), there

is a regularly monocompact measure space (X̂, Σ̂, µ̂) and an inverse–

measure–preserving function f : X̂ → X.

1. Introduction

If (X,Σ, µ) is a finite measure space, then we say that the measure µ is
countably compact if µ is inner regular with respect to some countably com-
pact family K ⊆ Σ (see Section 2 for precise definitions). The class of count-
ably compact measures was introduced by Marczewski [12] under the name
compact measures. In the abstract setting (i.e., without referring to topol-
ogy), such a notion singles out measures which are nice in the sense that they
resemble the Lebesgue measure. Every countably compact measure is perfect;
in fact, a measure µ on a σ–algebra Σ is perfect if and only if µ is countably
compact on every σ–generated Σ0 ⊆ Σ; see Ryll–Nardzewski [16]. Musia l [13]
gave an example of a perfect measure which is not countably compact. Under
some mild set–theoretic assumptions there are even perfect measures which
are not countably compact and which are of countable Maharam type (i.e.,
the underlying L1 space is separable); see Plebanek [15]. Recently David H.
Fremlin investigated several other subclasses of perfect measures; his paper
[5] presents several subtle results on properties of measures related to infinite
games.

In [7], [9] Fremlin posed the following natural question.

Problem FN. Let µ be a measure defined on a σ–algebra Σ ⊆ Borel[0, 1].
Is µ countably compact?
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It is well-known that, for a Polish space X, every finite measure defined on
Borel(X) is inner regular with respect to compact sets, and hence is count-
ably compact and of countable Maharam type. Measures defined on some
Σ ⊆ Borel(X), however, can be more complicated. For instance, Marczewski
[11] showed that there is a measure µ defined on some Σ ⊆ Borel[0, 1], which
contains c many stochastically independent sets of measure 1/2. Such a mea-
sure is of Maharam type c and cannot be extended to Borel[0, 1] (but is still
countably compact).

If µ is a measure on Σ ⊆ Borel[0, 1], then it is perfect, and hence countably
compact whenever Σ is countably generated. In [7] Fremlin, based on his
previous papers [3], [5], proved the following nontrivial generalization of this
remark.

Theorem 1.1 (Fremlin). If a σ–algebra Σ ⊆ Borel(X), where X is a Pol-
ish space, is generated by ω1 sets, then every finite measure on Σ is countably
compact.

It follows that under CH Problem FN has a positive solution; it is not
known if FN can be resolved in ZFC. Let us remark that under CH there is
a σ–algebra Σ built from Borel subsets of [0, 1]2 and a single non-Borel set
∆ ⊆ [0, 1]2, which carries a perfect measure which is not countably compact;
see Plebanek [15].

In this paper we present some results related to Problem FN. In Section
3 we give two technical results that are helpful in constructing countably
compact families. The following sections discuss properties of finite measures
µ defined on Σ ⊆ Borel(X), where X is Polish. In Section 4 we prove that
such a measure µ is countably compact under the additional assumption that
µ is inner regular with respect to closed sets from Σ. In Section 6 we show
that µ is “an image” of some regularly monocompact measure; this result
is based on a theorem from Section 5 on measures defined on uncountable
products of Polish spaces. Regular monocompactness is a slightly weaker
property than countable compactness (and it is not clear if it is preserved
under inverse–measure–preserving functions). Finally we mention the infinite
game introduced by Fremlin [5], which is related to regularity properties of
measures; we give an alternative proof of one of his results.

We would like to thank Mirna Džamonja and Boban Veličković for con-
versations about games in Boolean algebras and related topics. In particular,
our Proposition 3.2 below is related to some ideas presented in [17]. We also
thank D.H. Fremlin for several useful comments, and the referee for a very
careful reading of an earlier version of this paper.
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2. Preliminaries

We consider only finite measures; concerning regularity properties of mea-
sures we follow the terminology of Fremlin [5]. (Note that some properties
have different names in other sources!) If K is a family of sets, then we say
that K is

countably compact if every sequence 〈An〉n∈ω from K with the finite
intersection property satisfies

⋂
n∈ω An 6= ∅;

monocompact if
⋂
n∈ω An 6= ∅ whenever 〈An〉n∈ω is a decreasing se-

quence of nonempty elements from K.
If (X,Σ, µ) is a measure space and K ⊆ Σ, then µ is said to be inner regular

with respect to K if

µ(A) = sup{µ(K) : K ⊆ A,K ∈ K},

for every A ∈ Σ. A measure µ is countably compact (respectively regularly
monocompact) if it is inner regular with respect to some family K ⊆ Σ which
is countably compact (respectively monocompact).

It is a nontrivial result due to Pachl [14] that a countably compact measure
µ defined on some Σ remains countably compact when restricted to any sub–
σ–algebra Σ0 ⊆ Σ; see also Fremlin [4]. It is worth recalling that both proofs of
Pachl’s result use some external characterizations of countable compactness—
it is not clear how to explicitly define a suitable countably compact family
inside Σ0. It is not known if regular monocompactness is also preserved under
taking restrictions. As was remarked by the referee, the completion of a regu-
larly monocompact measure has the same property; it is unclear, however, if
monocompactness of the completion implies monocompactness of the original
measure.

If (X,Σ, µ) and (Y,A, ν) are measure spaces and f : X → Y is a mea-
surable function, then we say that f is inverse–measure–preserving if ν(A) =
µ(f−1[A]) for A ∈ A. It can be derived from Pachl’s results (e.g., see the
lemma below) that if there is a such function and µ is countably compact,
then so is ν.

Consider now a measure space (Y,Σ, µ) and a function f : X → Y with
f [X] = Y . The algebra Σ induces a σ–algebra Σ′ = {f−1(E) : E ∈ Σ} on
X, and we can also define on Σ′ a measure µ′ by µ′(f−1[E]) = µ(E), which
will be called the preimage of µ. It will be useful to note the following simple
fact.

Lemma 2.1. Let µ′ be the preimage of µ (as described above).
(a) If µ is inner regular with respect to some K, then µ′ is inner regular

with respect to C = {f−1[K] : K ∈ K}.
(b) If µ′ is inner regular with respect to some C ⊆ Σ′, then µ is inner

regular with respect to K = {E ∈ Σ: f−1(E) ∈ C}.
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(c) The measure µ′ is countably compact (respectively regularly mono-
compact) if and only if µ is countably compact (respectively regularly
monocompact).

Proof. (a) For a given set f−1(E) ∈ Σ′ and ε > 0 we can find K ∈ K such
that K ⊆ E and µ(E \ K) < ε. Since f−1(E) \ f−1(K) ⊆ f−1(E \ K), we
have

ε > µ(E \K) = µ′(f−1[E \K]) ≥ µ′(f−1[E] \ f−1[K]).
(b) Let E ∈ Σ and ε > 0. We can find a set C ∈ C such that C ⊆ f−1(E)

and µ′(C) > µ′(E) − ε. Then the set K ∈ K such that C = f−1(K) is a
subset of E and we have µ(K) = µ′(C) > µ′(f−1(E)) − ε = µ(E) − ε. This
shows that µ is inner regular with respect to K.

(c) It is easy to check that K is countably compact or monocompact if and
only if C has an analogous property. �

If (X,Σ, µ) is a measure space, we denote by µ∗ the corresponding outer
measure. We repeatedly use the fact that µ∗ is upward continuous, i.e.,
µ∗(
⋃
n Zn) = limµ∗(Zn) for an arbitrary sequence Z1 ⊆ Z2 ⊆ . . . ⊆ X.

It will be convenient to single out the following simple observation.

Lemma 2.2. Let (X,Σ, µ) be a measure space and let 〈Zn〉n be an increas-
ing sequence of arbitrary subsets of X with union Z. For every E ∈ Σ and
ε > 0 there is a set F ∈ Σ with µ(E \ F ) < ε, and a number m ∈ ω such that
if A ∈ Σ and A ⊆ F , then µ∗(A ∩ Zm) = µ∗(A ∩ Z).

Proof. Let E ∈ Σ and ε > 0. Since the outer measure is upward continuous
we can find a number m such that µ∗(Zm) > µ∗(Z) − ε. Let F1 ⊆ E be a
measurable hull of the set E∩Zm and F2 a measurable kernel of E∩Zc. Then
for F = F1∪F2 we have µ(E\F ) < ε and µ∗(A∩Zm) = µ(A∩F1) = µ∗(A∩Z)
for every measurable A ⊆ F . �

Given any measure space (X,Σ, µ), we say that a sequence 〈En〉n∈ω of
measurable sets is µ–centred if µ(

⋂
k<nEk) > 0 for every n.

3. Countably compact measures

We present in this section two auxiliary results on countably compact mea-
sures. The first lemma is used directly in the proof of Theorem 4.1 below,
while the second lemma is related to game–theoretic properties of measures
that are mentioned in Section 7.

Lemma 3.1. Let (X,Σ, µ) be a measure space and suppose that C ⊆ Σ is
a family such that the intersection of every µ–centred sequence 〈Fn〉n∈ω from
C is not empty.

If µ is inner regular with respect to C, then µ is countably compact.
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Proof. Let Σ̂ be the completion of Σ with respect to µ, and denote by A the
measure algebra of µ. For A ∈ Σ we write A˙ for the corresponding element
of A. Let ρ : A→ Σ̂ be a lifting; i.e., ρ is a Boolean homomorphism such that
ρ(a)˙ = a for every a ∈ A (see Fremlin’s survey [2] for details).

We shall consider the family C′ defined by

C′ =

{⋂
k∈ω

F k : F k ∈ C, F k+1 ⊆ F k ∩ ρ(F k˙) for every k

}
.

Let us check that µ is inner regular with respect to C′. Take any set F ∈ C
and ε > 0. We define a sequence of sets F k from C in the following way. Put
F 1 = F ; if F k is given, choose F k+1 ∈ C so that

F k+1 ⊆ F k ∩ ρ(F k˙) and µ((F k ∩ ρ(F k˙)) \ F k+1) <
ε

2k
.

Then the set H =
⋂
k∈ω F

k is in C′ and we have µ(F \H) ≤ ε. As µ is inner
regular with respect to C, it is also inner regular with respect to C′.

Now it remains to check that C′ is countably compact. Consider any centred
sequence 〈Cn〉n∈ω of sets from C′. Every set Cn can be written as Cn =⋂∞
k∈ω F

k
n , where the sets F kn ∈ C are as in the definition of C′. Then⋂

n∈ω
Cn =

⋂
n≥1

⋂
k,m<n

F km.

Observe that for every n⋂
k,m<n

ρ(F km˙) ⊇
⋂

k,m<n

F km ∩ ρ(F km˙) ⊇
⋂

k,m<n

F k+1
m ⊇

⋂
m<n

Cm 6= ∅.

Hence

ρ

 ⋂
k,m<n

F km

 ˙

 =
⋂

k,m<n

ρ(F km˙) 6= ∅,

which means that µ(
⋂
k,m<n F

k
m) > 0. As the family of all F km is µ–centred,

by our assumption on C we get
⋂
n∈ω Cn 6= ∅. This completes the proof. �

Corollary 3.2. Let (X,Σ, µ) be any measure space and let Σ+ = {A ∈
Σ : µ(A) > 0}. Suppose that there is a function τ : Σ+ → Σ+ such that

(i) τ(A) ⊆ A for every A ∈ Σ+;
(ii) if An ∈ Σ+ and the sequence 〈τ(An)〉n∈ω is µ–centred, then

⋂
n∈ω An 6=

∅.
Then the measure µ is countably compact.



536 PIOTR BORODULIN–NADZIEJA AND GRZEGORZ PLEBANEK

Proof. For any E ∈ Σ+ we let T (E) be the family of all finite unions of
sets from {τ(A) : A ∈ Σ+, A ⊆ E}. Moreover we put

C =

{⋂
k∈ω

Bk : Bk+1 ∈ T (Bk) for every k

}
.

Claim 1. µ is inner regular with respect to C.

Note first that µ(E) = sup{µ(B) : B ∈ T (E)} for every E ∈ Σ+. Indeed,
by (i) E is a countable union, modulo a null set, of sets of the form τ(A), so
µ(E) is approximated by µ(B) for B ∈ T (E). This implies in a standard way
that µ is inner regular with respect to C.

Claim 2. If Bn ∈ T (En) and the sequence 〈Bn〉n∈ω is µ–centred, then⋂
n∈ω En 6= ∅.

This is so since if we write Bn = τ(An,1)∪τ(An,2)∪· · ·∪τ(An,kn) for every
n then there is a function ϕ satisfying ϕ(n) ≤ kn such that the sequence of
sets τ(An,ϕ(n)) is µ–centred, and the claim follows from (ii).

Now take a µ–centred sequence 〈Bn〉n∈ω from C. Write Bn =
⋂
k∈ω B

k
n as

in the definition of C. Then all sets Bkn, where n ∈ ω, k ≥ 1, are µ–centred,
and by Claim 2

⋂
n∈ω Bn 6= ∅. By Claim 1 and Lemma 3.1 µ is a countably

compact measure. �

4. Closed-regular measures

We denote by N the Baire space ωω. Recall that for every Polish space X
and every B ∈ Borel(X), B is analytic, i.e., is a continuous image of N (or is
empty); see, e.g., Kechris [10].

Theorem 4.1. If Σ is any σ–algebra of subsets of N and a measure µ
defined on Σ is inner regular with respect to closed subsets from Σ, then µ is
countably compact.

Proof. For any n ∈ ω and ψ ∈ ωn define

V (ψ) = {x ∈ N : x(k) ≤ ψ(k) for all k < n}.

Consider the family C of those closed sets F belonging to Σ for which there
is a function φ : ω → ω such that for every n

µ∗(V (φ�n) ∩ F ) = µ(F ).

We shall prove that C µ–approximates Σ and that every µ–centred sequence
from C has a nonempty intersection; in view of Lemma 3.1 this will imply
that µ is countably compact.
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Take any E ∈ Σ and ε > 0. We construct inductively a function φ ∈ N
such that for every n

µ∗(V (φ�n) ∩ E) > µ(E)− ε

2
.

If φ is defined on n, then from the fact that the outer measure is upward
continuous and that the sequence V (φ̂ m) ∩ E converges to V (φ) ∩ E as m
goes to infinity we deduce that there exists an integer m such that

µ∗(V (φ̂ m) ∩ E) > µ(E)− ε

2
,

and so we can set φ(n) = m.
For every n we can choose a measurable hull Mn ∈ Σ of V (φ�n)∩E, so that

E ⊇ M1 ⊇ . . . It follows that for M =
⋂
n∈ωMn we have µ(E \M) ≤ ε/2.

Now take any closed set F ∈ Σ such that F ⊆M and µ(M \ F ) < ε/2. Then
µ(E \ F ) < ε; for any n we have F ⊆ Mn, so µ(F ) = µ∗(F ∩ V (φ�n)), which
means that F is in our class C.

Now consider any µ–centered sequence (Fn)n∈ω from C. Denote by φ a
function ω → ω witnessing that F0 ∈ C. For every n, µ(

⋂
k≤n Fk) > 0, so

µ∗

⋂
k≤n

Fk ∩ V (φ�n)

 > 0.

Thus we can choose xn ∈
⋂
k≤n Fk such that xn(k) ≤ φ(k) for every k < n.

It follows that the sequence xn contains a subsequence converging to some
x ∈ N . Every Fk is closed and contains almost all xn’s, so x ∈ Fk and
therefore

⋂
k∈ω Fk 6= ∅. �

Corollary 4.2. If Σ is any σ–algebra of subsets of a Polish space X and
the measure µ defined on Σ is inner regular with respect to closed subsets from
Σ, then µ is countably compact.

Proof. Take a continuous surjection g : N → X, and consider the σ–algebra
Σ′ = {g−1(E) : E ∈ Σ}. It follows from Lemma 2.1 that the measure µ′ on Σ′

given by µ′(g−1[E]) = µ(E) is inner regular with respect to closed sets from
Σ′. By the above theorem µ′ is countably compact, and hence µ is countably
compact by 2.1. �

D.H. Fremlin remarked that the above result in fact follows from the ex-
tension theorem due to Aldaz and Render [1]; see also Fremlin [8, 432D].
Namely, if µ is a measure as in Corollary 4.2, then µ admits an extension to a
Borel measure µ̂ (which is countably compact), so in particular µ is countably
compact as the restriction of µ̂. Our proof of 4.2 has the advantage that it
also gives a description of a countably compact family which approximates
the measure in question. We shall see in the following sections that using
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the same idea one can obtain a common generalization of Corollary 4.2 and
Theorem 1.1.

5. Measures on N κ

Let κ be any cardinal number. In the product space N κ the family of
all closed sets depending on countably many coordinates will be denoted by
Zero(N κ); such sets are often called zero sets. Recall that a set A ⊆ N κ

depends on coordinates in I ⊆ κ if, for every x ∈ A and y ∈ N κ, x(α) = y(α)
for all α ∈ I implies y ∈ A. We shall write A ∼ I to indicate that A
depends on coordinates in I. Recall that the σ–algebra Baire(N κ) generated
by Zero(N κ), which is called the σ–algebra of Baire sets, is equal to the
product of Borel σ–algebras on N . Similar remarks apply to uncountable
products of arbitrary Polish spaces; see Wheeler [18] for general background
on measures on topological spaces, and Fremlin [6] for applications of sets
depending on few coordinates to measure theory.

If µ is a measure on Baire(N κ), then, using the fact that every measure on
a Polish space is inner regular with respect to compact sets, one can check that
µ is countably compact. The following theorem gives a partial generalization
of this result.

Theorem 5.1. Let κ be any cardinal number and Σ any σ–algebra of
subsets of N κ. If a measure µ defined on Σ is inner regular with respect to
zero subsets from Σ, then µ is regularly monocompact.

Proof. We shall identify the space N κ with ωκ and consider below partial
functions from κ into ω. By saying that φ is a partial function on κ we mean
that the domain of φ is a finite subset of κ and the values of φ are natural
numbers. For every partial function φ on κ define

V (φ) = {x ∈ ωκ : λ ∈ Dom(φ) =⇒ x(λ) ≤ φ(λ)}.
Moreover, for any α < κ and m ∈ ω put

Cα(m) = V (〈α,m〉) = {x ∈ ωκ : x(α) ≤ m}.
For an arbitrary set Y ⊆ ωκ and any E ∈ Σ, we introduce the following
definitions.

(a) We call a partial function φ Y –thick if µ∗(Y ∩ V (φ)) = µ∗(Y ).
(b) We call a countable set I ⊆ κ good for E if for every partial function

φ on I and α ∈ I there is an extension of φ to an E ∩ V (φ)–thick
partial function on dom(φ) ∪ {α}.

We shall consider the family K of sets F with the following properties:
(i) F ∈ Zero(ωκ) ∩ Σ;
(ii) µ(F ) > 0;
(iii) there is a countable set I ⊆ κ such that F ∼ I and I is good for F .
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We first show that µ is inner regular with respect to K using the following
claim:

Claim 1. Let E ∈ Σ depend on coordinates in a countable set I ⊆ κ. For
every ε > 0 there is a set F ∈ Σ ∩ Zero(ωκ) with F ⊆ E, µ(E \ F ) < ε such
that for every function φ defined on a finite set J ⊆ I and every α ∈ I,

(∗) there is an m such that µ∗(F ∩ V (φ) ∩ Cα(m)) = µ∗(F ∩ V (φ)).

To prove this claim note that, for a fixed partial function φ on I and any
α ∈ I,

V (φ) ∩ Cα(m)↗ V (φ) as m→∞,
so by Lemma 2.2 there is F ⊆ E with µ(E \ F ) < ε (which can be taken to
be a zero set), such that (∗) is satisfied. We have countably many pairs (φ, α)
to consider, so repeating this argument we see that there is F such that (∗)
holds for every partial function on I and every α ∈ I. This proves the claim.

Let A ∈ Σ and ε > 0 be given. We first find a measurable zero set F0 and
a countable set I0 ⊆ κ such that F0 ∼ I0, F0 ⊆ A, and µ(A \ F0) < ε/2. We
next apply the Claim to E = F0, I = I0 (and ε/4 in place of ε) to obtain a
measurable zero set F1 ⊆ F0 and a countable set I1 ⊇ I0 such that F1 ∼ I1,
µ(F0 \ F1) < ε/4, and (∗) holds for F = F1 and any partial function φ on I0
and α ∈ I0.

Continuing in the same manner, we get a decreasing sequence of zero sets
Fn ∈ Σ and an increasing sequence In of countable sets such that µ(Fn−1 \
Fn) < ε/2n+1, Fn ∼ In, and (∗) holds whenever φ is a partial function on
In−1 and α ∈ In−1.

Finally, we put F =
⋂
n∈ω Fn and I =

⋃
n∈ω In. Then µ(A \ F ) ≤ ε and

F ∼ I. Moreover, I is good for F : If J ⊆ I is finite, φ : J → ω, α ∈ I, then
J ∪ {α} ⊆ In for some n, so there is an m such that

µ∗(Fn+1 ∩ V (φ) ∩ Cα(m)) = µ∗(Fn+1 ∩ V (φ)),

and hence
µ∗(F ∩ V (φ) ∩ Cα(m)) = µ∗(F ∩ V (φ)).

In particular, we can extend any partial function φ to an F ∩ V (φ)–thick
function by letting φ(α) = m. This shows that µ is regular with respect to K.

Now it remains to verify that K is a monocompact class. Let (Fn)n∈ω be
a decreasing sequence of sets from K. Then for every n there is a countable
set In ⊆ κ such that Fn ∼ In and In is good for Fn. Enumerate the elements
of I =

⋃
n∈ω In as I = {αk : k ∈ ω} and write Tk = {αj : j < k} for every k.

Claim 2. There is a function τ : I → ω such that for every n and every
k its restriction τ |(Tk ∩ In) is Fn–thick.
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We define values of τ by induction. Suppose that τ is defined on Tk so that
τ |(Tk ∩ In) is Fn–thick for every n. There is a natural number p such that for
every n > p there is j ≤ p such that Tk+1 ∩ In ⊆ Tk+1 ∩ Ij .

For a given j ≤ p such that αk ∈ Ij there is an mj such that the Fj–thick
function τ |(Tk ∩ Ij) can be extended to an Fj–thick function assuming the
value mj at αk. We let τ(αk) be the maximum of these numbers mj (where
j ≤ p).

In this way we have extended τ to Tk+1 so that τ |(Tk+1 ∩ Ij) is Fj–thick
for every j ≤ p. For any n > p we have Tk+1∩ In ⊆ Tk+1∩ Ij , where j ≤ p. It
follows that τ |(Tk+1 ∩ In) is Fj–thick (as the restriction of a thick function is
thick). Therefore τ |(Tk+1 ∩ In) is also Fn–thick (since Fn ⊆ Fj). This verifies
the claim.

Using Claim 2 we can check that
⋂
n∈ω Fn 6= ∅. For every n the function

τ |(Tn ∩ In) is Fn–thick. Since µ(Fn) > 0 there is xn ∈ Fn such that xn(α) ≤
τ(α) for α ∈ Tn ∩ In. We can moreover assume that

xn(α) = 0 for α ∈ (Tn \ In) ∪ (κ \ I),

since Fn is determined by In ⊆ I. Now the sequence of xn (which is dominated
by τ) has a subsequence converging to some x ∈ ωκ. We have xn ∈ Fk for all
n ≥ k, so x ∈ Fk (as Fk is closed). Finally, x ∈

⋂
n∈ω Fn, and the proof is

complete. �

Let us remark that if we could refine this argument to prove that the
measure in question is countably compact, then we would get the following
result: If a countable set Ij is good for Fj, j = 1, 2, then I1 ∪ I2 is good for
F1 ∩ F2. This can, in fact, be done in the case κ = ω1.

Theorem 5.2. If Σ is any σ–algebra of subsets of Nω1 , then every mea-
sure µ defined on Σ which is inner regular with respect to zero subsets from
Σ is countably compact.

Proof. We modify the argument from the previous proof as follows. Con-
sider the family K of sets F with the following properties:

(i) F ∈ Zero(ωκ) ∩ Σ;
(ii) µ(F ) > 0;
(iii) there is an initial segment I of ω1 such that F ∼ I and I is good for

F .

Since every initial segment of ω1 is countable, we can in a similar way
verify that µ is again inner regular with respect to K. The main difference is
contained in the following claim.

Claim. If F,H ∈ K and µ(F ∩H) > 0, then F ∩H ∈ K.
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Indeed, let I and J be good for F and H, respectively. We can assume
that I ⊆ J , but in this case J is good for F ∩H, so F ∩H ∈ K.

Now for any µ–centred sequence (Fn)n∈ω of sets from K we have a de-
creasing sequence Hn = F1 ∩ F2 ∩ · · · ∩ Fn ∈ K, so by the previous argument⋂
n∈ωHn 6= ∅, and we are done. �

Corollary 5.3. Let X =
∏
α<κXα, where every Xα is a Polish space.

If Σ is a σ–algebra of subsets of X and µ is inner regular with respect to zero
sets from Σ, then µ is regularly monocompact. If, moreover, κ = ω1, then µ
is countably compact.

Proof. For every α choose a continuous surjection gα : N → Xα, and let

g =
∏
α<κ

gα : N κ → X.

Then for every Z ∈ Zero(X) we have g−1[Z] ∈ Zero(N κ), so we can argue as
in Corollary 4.2. �

6. Application to measures on Polish spaces

Our motivation for considering measures on uncountable products of Polish
spaces came from the following result.

Lemma 6.1. Let µ be a measure on a σ–algebra Σ ⊆ Borel(X), where X
is a Polish space. Suppose that {Bα : 1 ≤ α < κ} is a family of analytic
subsets of X, and let F be a family of those sets E ∈ Σ for which there is
α < κ such that E ⊆ Bα is closed in Bα.

If µ is inner regular with respect to F , then there is a measure µ̂ defined
on some σ–algebra Σ̂ of subsets of N κ which is inner regular with respect
to Zero(N κ) ∩ Σ̂ and an inverse–measure–preserving function (N κ, Σ̂, µ̂) −→
(X,Σ, µ).

Proof. We can assume thatX = N . Every Bα is an analytic subset ofN , so
there is a closed set Fα ⊆ N×N such that p[Fα] = Bα, where p : N×N → N
is the projection onto the first coordinate.

Let πα : N κ → N be the projection onto the α’s axis; we consider ∆ ⊆ N κ,
where

∆ = {x ∈ N κ : for every α ≥ 1, if π0(x) ∈ Bα, then (π0(x), πα(x)) ∈ Fα} .
Let g : ∆ → N be π0 restricted to ∆. We endow ∆ with the σ–algebra
Σ′ = {g−1(E) : E ∈ Σ} and the measure µ′ on Σ′ given by µ′g−1(E) = µ(E).

With every E ∈ F we can associate Z(E) ∈ Zero(N κ) as follows. Choose
α < κ such that E ⊆ Bα is closed; then p−1[E] ∩ Fα is a closed subset of
N ×N . Now let

Z(E) = {x ∈ N κ : (π0(x), πα(x)) ∈ p−1[E] ∩ Fα}.
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Note that

(i) g−1[E] = Z(E) ∩∆ for E ∈ F ;
(ii) if E1, E2 ∈ F are disjoint, then Z(E1) ∩ Z(E2) = ∅.

Let Σ′′ be the σ–algebra of subsets of N κ generated by the family

Z(F) = {Z(E) : E ∈ F},

and let µ′′(C) = µ′(C ∩∆) for C ∈ Σ′′. Then for E ∈ F we have π−1
0 [E] ⊇

Z(E) and

(iii) µ′′(Z(E)) = µ′(Z(E) ∩∆) = µ′(g−1[E]) = µ(E).

Observe that, by (ii), (iii), and the F–regularity of µ, for E ∈ F we have

µ′′(N κ \ Z(E)) = sup{µ′′(Z(F )) : F ∈ F , Z(F ) ∩ Z(E) = ∅}.

This implies that µ′′ is inner regular with respect to the closure of the family
Z(F) with respect to finite unions and countable intersections. In particular,
µ′′ is regular with respect to zero sets lying inside Σ′′.

We finally let (N κ, Σ̂, µ̂) be the completion of (N κ,Σ′′, µ′′). Since µ′′ is
regularly monocompact by Theorem 5.1, so is the measure µ̂.

By (iii) and the F–regularity of µ, π0 : N κ → N is a measure–preserving
function, and the proof is complete. �

The above lemma together with the result from Section 5 (and the fact
that countable compactness is preserved under images) gives the following
corollary.

Corollary 6.2. Let µ be a measure on a σ–algebra Σ ⊆ Borel(X), where
X is a Polish space.

(a) There is a regularly monocompact measure space (X̂, Σ̂, µ̂) and an
inverse–measure–preserving function (X̂, Σ̂, µ̂) −→ (X,Σ, µ).

(b) The measure µ is countably compact provided there is a family {Bα :
1 ≤ α < ω1} of analytic subsets of X such that µ is regular with
respect to the family F of those E ∈ Σ for which there is an α < ω1

such that E ⊆ Bα is closed in Bα.

Unfortunately, it is not known if regular monocompactness is preserved
under inverse–measure–preserving mappings (see Fremlin [5]), so one cannot
write in 6.2(a) that µ is simply regularly monocompact. Note that Theorem
1.1 follows from 6.2(b).

7. Measures and games

Let (X,Σ, µ) be any measure space and write Σ+ = {E ∈ Σ : µ(E) > 0}.
In [5] Fremlin introduced the following Banach–Mazur game associated to µ.
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The game Γ(µ) has two players, I and II, who choose sets An, Bn ∈ Σ+,
respectively, so that A1 ⊇ B1 ⊇ A2 ⊇ B2 ⊇ . . . . Player II wins if

⋂
n∈ω An 6=

∅.
Fremlin [5] calls the measure µ weakly α–favourable if Player II has a win-

ning strategy in Γ(µ), and α–favourable if II has a winning tactic in this
game, where a tactic is a function τ : Σ+ → Σ+ such that II wins by playing
Bn = τ(An) at each step. For such classes of measure spaces we have the
following implications:

regularly monocompact =⇒ α–favourable
=⇒ weakly α–favourable =⇒ perfect .

For instance, if µ is inner regular with respect to a monocompact class K,
then II wins simply by choosing elements from K ∩ Σ+. Fremlin [5] showed
that the class of weakly α–favourable measures is properly contained in the
class of perfect measures, and he posed the question whether any of the first
two implications can be reversed.

Note that we could consider a less restrictive game Γ′(µ), in which the
players form a sequence of sets which is µ–centred rather than decreasing.
Then our Proposition 3.2 says that Player II has a winning tactic in Γ′(µ) if
and only if µ is countably compact.

Fremlin showed in [5] that every weakly α–favourable measure defined on a
σ–algebra Σ generated by ω1 sets is countably compact, and in [7] he proved
that µ is weakly α–favourable whenever µ is defined on some Σ ⊆ Borel(X),
where X is a Polish space. We show below how one can apply some of the
above ideas to prove the latter result; in fact, in the case of X = [0, 1] we are
able to explicitly construct a winning strategy for the second player.

Theorem 7.1 (Fremlin). If Σ ⊆ Borel[0, 1], then every measure on Σ is
weakly α–favourable.

Proof. As in the proof of Theorem 5.1 we write

V (ψ) = {x ∈ N : x(k) ≤ ψ(k) for all k < n},
for any n ∈ ω and ψ ∈ ωn. We shall work in the space [0, 1]×N . Given V (ψ)
as above, we let G(ψ) = [0, 1] × V (ψ). We denote by π : [0, 1] × N → [0, 1]
the projection onto the first coordinate.

Every move An of the first player is a Borel set, so we can find a closed set
Fn ⊆ [0, 1]×N such that π[Fn] = An. The second player defines inductively
functions ϕn : ω → ω such that for every n the set

Yn =
⋂
i≤n

π[Fi ∩G(ϕi|n)]

satisfies µ∗(Yn) > 0, and for the n–th move chooses a set Bn which is
a measurable hull of Yn. Player I is obliged to choose An+1 ⊆ Bn, so
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µ∗(π[Fn+1] ∩ Yn) = µ(An+1) > 0, and it is easily seen that one can de-
fine ϕn+1|(n+ 1) and ϕi(n) for i ≤ n in such a way that Yn+1 will be a set of
positive outer measure.

By following this strategy Player II wins: For every n choose tn ∈ Yn.
Then the sequence tn ∈ [0, 1] has a subsequence converging to some t. Fix k.
For every n > k there is yn such that yn ∈ V (ϕk|n) and (tn, yn) ∈ Fk. The
sequence of yn in turn has a subsequence that converges to some y. It follows
that (t, y) ∈ Fk since Fk is closed and t = π(t, y) ∈ π[Fk] = Ak. Finally,
t ∈
⋂
k∈ω Ak. This finishes the proof. �
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