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OPERATOR-VALUED MARTINGALE TRANSFORMS AND
R-BOUNDEDNESS

MARIA GIRARDI AND LUTZ WEIS

Abstract. Banach space X-valued martingale transforms by a B(X)-
valued multiplier sequence are bounded on Lp(X), where 1 < p < ∞
and X is a UMD space, if and only if the multiplier sequence is pointwise
R-bounded. This is also true for unconditionally convergent martingales

in arbitrary Banach spaces.

1. Introduction

Let X be a Banach space. The martingale transform of an X-valued
martingale {fn}n∈N by a R-valued, predictable, uniformly bounded sequence
{vn}n∈N is the martingale {gn}n∈N where

(1.1) gn :=
n∑
k=1

vkdk and fn :=
n∑
k=1

dk;

so {dn}n∈N is the martingale difference sequence of {fn}n∈N.
Burkholder [6] introduced UMD (unconditionality property for martingale

differences) Banach spaces: for 1 < p < ∞, the UMD constant of X is the
smallest βp (X) ∈ [1,∞] so that

(1.2) ‖ε1d1 + · · ·+ εmdm‖Lp(Ω,X) ≤ βp (X) ‖d1 + · · ·+ dm‖Lp(Ω,X)

for each X-valued martingale difference sequence {dn}n∈N with respect to
some filtration {Fn}n∈N, choice {εn}n∈N of signs from {±1}, and m ∈ N. A
Banach space X is UMD provided that its UMD constant is finite for some
(or equivalently, by Pisier [29], for each) p ∈ (1,∞).

In this setting, the underlying probability space (unless it is nonatomic)
and filtration must vary. Burkholder [6] showed that (1.2) holds, with the
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same constant βp(X), if one replaces the choices {εn}n∈N of signs by {Fn}-
predictable sequences {vn}n∈N of functions valued in [−1, 1].

Over the years, the interplay between probability and harmonic analysis
has been very fruitful (see, e.g., [10], [11]). Indeed, the study of the martingale
transform uses, for example, Doob’s maximal function (f∗(ω) = supn |fn (ω)|)
and the square function (Sf = (

∑
n∈N |dn|2)1/2). Also [4], [8], X has UMD

if and only if the Hilbert transform is bounded on Lp(R, X) for some (or
equivalently for each) p ∈ (1,∞).

Mart́ınez and Torrea [27] studied operator-valued martingale transforms
where the multiplier sequences {vn}n∈N are valued in B (X,Y ) instead of R.
They derived a theory that parallels the R-valued case. For example, they
obtained a martingale version of the well-known theorem of Fefferman and
Stein [17] for the Hardy-Littlewood maximal operator.

However, they did not give a criteria on a fixed B (X,Y )-valued multiplier
sequence {vn}n∈N to ensure that, for some Cp ∈ R,

(1.3) ‖v1d1 + · · ·+ vmdm‖Lp(Ω,Y ) ≤ Cp ‖d1 + · · ·+ dm‖Lp(Ω,X)

for each admissible X-valued martingale difference sequence {dn}n∈N and m ∈
N and for some (or for each) p ∈ (1,∞). This paper gives such a criteria, in
which R-bounded plays a key role. Indeed, Theorems 3.2, 3.3, and 4.1 led to
the following crystallizing corollary.

Corollary 1.1. Let (Ω,F , µ) be a probability space with filtration
{Fn}n∈N0

and p ∈ (1,∞). Let X and Y be UMD spaces. Let {vn}n∈N be
a B (X,Y )-valued {Fn}-multiplier sequence.

(A) For arbitrary filtrations, the following are equivalent.
(1) There exists Rp ∈ R so that Rp ({vn (ω) : n ∈ N}) ≤ Rp for a.e.

ω ∈ Ω.
(2) There exists Cp ∈ R so that for each (uniformly bounded) X-

valued martingale difference sequence {dn}mn=1 with respect to

some subfiltration
{
F̂n
}m
n=1

of
{
F̂n
}
n∈N

, where
(

Ω̂, F̂ , µ̂
)

is an

extension of (Ω,F , µ),∥∥∥∥∥
m∑
n=1

v̂ndn

∥∥∥∥∥
Lp(Ω̂,Y )

≤ Cp

∥∥∥∥∥
m∑
n=1

dn

∥∥∥∥∥
Lp(Ω̂,X)

.

(B) For atomic filtrations satisfying (4.1), the following are equivalent.
(1) There exists Rp ∈ R so that Rp ({vn (ω) : n ∈ N}) ≤ Rp for each

(or equivalently, for a.e.) ω ∈ Ω.
(2) There exists Cp ∈ R so that for each (uniformly bounded) X-

valued martingale difference sequence {dn}mn=1 with respect to
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some subfiltration {Fn}mn=1 of {Fn}n∈N,∥∥∥∥∥
m∑
n=1

vndn

∥∥∥∥∥
Lp(Ω,Y )

≤ Cp

∥∥∥∥∥
m∑
n=1

dn

∥∥∥∥∥
Lp(Ω,X)

.

If (1 ) holds, then Cp in (2 ) can be taken to be βp(X)βp(Y )Rp. If (2 ) holds,
then Rp in (1 ) can be taken to be Cp. (For the needed definitions and notation
see the following sections.)

R-boundedness was introduced by Berkson and Gillespie in [2]. The notion
grew out of work of J. Bourgain on vector-valued Fourier transforms [5] and
has been central to recent results on operator-valued Fourier multipliers and
singular integrals with operator-valued kernels on Bochner spaces (e.g., [1],
[20], [19], [33]). Through these tools, R-boundedness became important for
maximal regularity of parabolic differential equations (e.g., [13], [14], [25],
[33]) and the holomorphic functional calculus of sectorial operators (e.g., [21],
[22], [25]). Results of the present paper are especially useful for the theory
of stochastic integration on Banach spaces, which recently was developed in
[31] and [32]. For more information on R-boundedness and its properties, see
[12], [18], [25].

This paper is organized as follows. Section 2 collects the needed definitions
and notation. The main results are in Sections 3 and 4. Section 5 gives
further corollaries to these main theorems. Section 6 gives a technical proof
of a lemma needed in Section 4.

2. Definitions and notation

Throughout this paper, the Banach spaces that appear are over the fixed
scalar field of either the real or complex numbers. X, Y , and Z are Banach
spaces. B (X) is the closed unit ball of X while S (X) is the unit sphere of X.
The space B (X,Y ) of bounded linear operators from X into Y is endowed
with the usual operator norm topology. ([0, 1] ,M,m) is the usual Lebesgue
measure space. (Ω,F , µ) is an arbitrary (complete) probability measure space;
corresponding to it is the usual Bochner-Lebesgue space Lp (Ω, X) of measur-
able functions from Ω into X with finite Lp (Ω, X)-norm where 1 ≤ p ≤ ∞.
A sequence {dn}n∈N of functions from Ω into X is uniformly bounded (by
M ∈ R) provided

sup
n∈N

sup
ω∈Ω

‖dn (ω)‖X ≤M.

Following Burkholder [7], a sequence {dn}mn=1 of functions in Lp (Ω, X) is
called τ -unconditional in Lp (Ω, X) provided∥∥∥∥∥

m∑
n=1

εnλndn

∥∥∥∥∥
Lp(Ω,X)

≤ τ

∥∥∥∥∥
m∑
n=1

λndn

∥∥∥∥∥
Lp(Ω,X)
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for each choice {εn}mn=1 of signs from {±1} and choice {λn}mn=1 of scalars.
N is the set of natural numbers while N0 = N ∪ {0}.
Let (Ω,F , µ) be a probability space with a filtration {Fn}n∈N0

(i.e.,
{Fn}n∈N0

is a nondecreasing sequence of sub-σ-fields of F). Let m ∈ N∪{∞}.
A sequence {fn}mn=1 of functions from Ω into X is a martingale with respect
to {Fn}mn=1 provided fn ∈ L1 ((Ω,Fn, µ) , X) and E (fn+1 | Fn) = fn for each
admissible n. A sequence {dn}mn=1 of functions from Ω into X is a martingale
difference sequence with respect to {Fn}mn=1 provided dn ∈ L1 ((Ω,Fn, µ) , X)
and E (dn+1 | Fn) = 0 for each admissible n. There is a one-to-one corre-
spondence between martingales {fn}mn=1 and martingale difference sequence
{dn}mn=1 given by

fn =
n∑
k=1

dk and dn = fn − fn−1

where f0 ≡ 0. Note that for a finite (i.e., m ∈ N) X-valued martingale
difference sequence {dn}mn=1 and p ∈ [1,∞), each dn is in Lp (Ω, X) if and
only if

∑m
n=1 dn is in Lp (Ω, X). A sequence {vn}n∈N of functions from Ω

into Z is predictable with respect to {Fn}n∈N0
(in short, {Fn}-predictable)

provided vn is Fn−1-measurable for each n ∈ N. Note that if {vn}n∈N is
predictable with respect to {Fn}n∈N0

, then it is predictable with respect to
each subfiltration (i.e., subsequence) {Fjn}n∈N0

of {Fn}n∈N0
.

Definition 2.1. To ease the statements of theorems to come, for a prob-
ability space (Ω,F , µ) with filtration {Fn}n∈N0

, let

M ({Fn} , X) :=
{
{fn}n∈N : {fn}n∈N is an X-valued martingale

with respect to {Fn}n∈N
}

and

D ({Fn} , X) :=
{
{dn}mn=1 : {dn}mn=1 is an X-valued martingale

difference sequence with respect to some subfiltration

{Fjn}
m
n=1 of {Fn}n∈N and m ∈ N

}
.

Definition 2.2. Let (Ω,F , µ) be a probability space with filtration
{Fn}n∈N0

.

(1) A B (X,Y )-valued {Fn}-multiplier sequence is a sequence {vn}n∈N of
functions from Ω into B (X,Y ) that is predictable with respect to
{Fn}n∈N0

and is uniformly bounded by one.
(2) For such a multiplier sequence v := {vn}n∈N, the martingale transform

of a martingale f := {fn}n∈N ∈M ({Fn} , X) is the martingale
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{(Tvf)n}n∈N ∈M ({Fn} , Y ) where

fn :=
n∑
k=1

dk and (Tvf)n :=
n∑
k=1

vkdk

for each n ∈ N.

The dyadic sigma-fields {Dn}n∈N0 are given by

Dn = σ (Ink : 1 ≤ k ≤ 2n)

and the Rademacher functions {rn}n∈N are given by

rn =
2n∑
k=1

(−1)k+11Ink

where, for n ∈ N0, In1 =
[

0
2n ,

1
2n

]
and

Ink =
(
k − 1

2n
,
k

2n

]
if k ∈ N and 1 < k ≤ 2n.

A proof of the next fact can be found at [16, Contraction Principle 12.2].
In the special case of when the independent symmetric sequence is the Rade-
macher functions {rn}n∈N, it is known as Kahane’s Contraction Principle.

Fact 2.3 (Contraction Principle). Let {d̃on}n∈N be a sequence of indepen-
dent, symmetric, R-valued random variables on a probability space (Ω,F , µ).
If {zn}mn=1 is a sequence in any Banach space Z and {λn}mn=1 is a sequence
from R, then∥∥∥∥∥

m∑
n=1

λn zn d̃
o
n

∥∥∥∥∥
Lp(Ω,Z)

≤
[

max
1≤n≤m

|λn|
] ∥∥∥∥∥

m∑
n=1

zn d̃
o
n

∥∥∥∥∥
Lp(Ω,Z)

for each p ∈ [1,∞).

R-boundedness is the central notion of this paper.

Definition 2.4. Let τ be a subset of B (X,Y ) and p ∈ [1,∞). Let Rp(τ)
be the smallest constant R ∈ [0,∞] with the property that for each n ∈ N
and subset {Tj}nj=1 of τ and subset {xj}nj=1 of X,∥∥∥∥∥∥

n∑
j=1

rj(·)Tj(xj)

∥∥∥∥∥∥
Lp([0,1],Y )

≤ R

∥∥∥∥∥∥
n∑
j=1

rj(·)xj

∥∥∥∥∥∥
Lp([0,1],X)

.

The set τ is R-bounded provided Rp(τ) is finite for some (and thus, by Ka-
hane’s inequality [16], for each) p ∈ [1,∞).
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Thus a set τ is R-bounded provided Kahane’s Contraction Principle holds
for operator coefficients from τ . Pisier [1] showed that X is isomorphic to
a Hilbert space if and only if each (norm) bounded subset of B (X,X) is R-
bounded. Note that if X and Y are q-concave Banach lattices for some finite q
(e.g., X = Y = Lq (Ω,C) where 1 ≤ q <∞) then R-boundedness is equivalent
to the square function estimate∥∥∥∥∥∥∥

 m∑
j=1

|Tjxj |2
1/2

∥∥∥∥∥∥∥
Y

≤ R

∥∥∥∥∥∥∥
 n∑
j=1

|xj |2
1/2

∥∥∥∥∥∥∥
X

known from harmonic analysis (cf. [26, Thm. II.1.d.6]). For basic properties
of R-bounded sets and further references, see [12], [33].

All notation and terminology, not otherwise explained, are as in [9], [15],
[26].

3. Main results for arbitrary filtrations

Part (A) of Corollary 1.1 follows easily from Theorems 3.2 and 3.3.
For arbitrary filtrations, the notion of an extension (cf., e.g., [23]) of a

probability space is used.

Definition 3.1. Let (Ω,F , µ) and (Ω′,F ′, µ′) be probability spaces with
filtrations {Fn}n∈N0

and {F ′n}n∈N0
, respectively. The extension of (Ω,F , µ)

by (Ω′,F ′, µ′) is their product probability space (Ω̂, F̂ , µ̂), along with the
filtration {F̂n}n∈N0 where F̂n = σ(Fn × F ′n). For h ∈ L0 (Ω, Z), define ĥ ∈
L0

(
Ω̂, Z

)
by

ĥ(ω, ω′) := h(ω).

In the special case that (Ω′,F ′, µ′) = ([0, 1],M,m) and {F ′n}n∈N0
= {Dn}n∈N0

,
one calls (Ω̂, F̂ , µ̂) the dyadic extension of (Ω,F , µ).

Note that if h ∈ Lp (Ω, Z) then ‖h‖Lp(Ω,Z) = ‖ĥ‖Lp(Ω̂,Z) for 1 ≤ p ≤

∞. Also, if {vn}n∈N is a {Fn}-multiplier sequence then {v̂n}n∈N is a
{
F̂n
}

-
multiplier sequence.

Theorem 3.2. Let (Ω,F , µ) be a probability space with
filtration {Fn}n∈N0

and p ∈ [1,∞). Let {vn}n∈N be a B (X,Y )-valued {Fn}-
multiplier sequence that satisfies, for some Cp ∈ R,

Rp ({vn (ω) : n ∈ N}) ≤ Cp

for a.e. ω ∈ Ω.
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(a) If {dn}mn=1 ∈ D ({Fn} , X) is so that {dn}mn=1 is αp-unconditional in
Lp (Ω, X) and {vndn}mn=1 is βp-unconditional in Lp (Ω, Y ), then∥∥∥∥∥

m∑
n=1

vndn

∥∥∥∥∥
Lp(Ω,Y )

≤ αp βp Cp

∥∥∥∥∥
m∑
n=1

dn

∥∥∥∥∥
Lp(Ω,X)

.

(b) If {dn}mn=1 ∈ D
({
F̂n
}
, X
)

, for some extension (Ω̂, F̂ , µ̂) of (Ω,F , µ),

is so that {dn}mn=1 is αp-unconditional in Lp

(
Ω̂, X

)
and {v̂ndn}mn=1

is βp-unconditional in Lp

(
Ω̂, Y

)
, then∥∥∥∥∥

m∑
n=1

v̂ndn

∥∥∥∥∥
Lp(Ω̂,Y )

≤ αp βp Cp

∥∥∥∥∥
m∑
n=1

dn

∥∥∥∥∥
Lp(Ω̂,X)

.

Proof. Part (a) follows easily from (b). Towards (b), note that for each
fixed t ∈ [0, 1]∥∥∥∥∥

m∑
n=1

rn (t) dn

∥∥∥∥∥
p

Lp(Ω̂,X)
≤ αpp

∥∥∥∥∥
m∑
n=1

dn

∥∥∥∥∥
p

Lp(Ω̂,X)
,

∥∥∥∥∥
m∑
n=1

v̂ndn

∥∥∥∥∥
p

Lp(Ω̂,Y )
≤ βpp

∥∥∥∥∥
m∑
n=1

rn (t) v̂ndn

∥∥∥∥∥
p

Lp(Ω̂,Y )
.

Thus∥∥∥∥∥
m∑
n=1

v̂ndn

∥∥∥∥∥
p

Lp(Ω̂,Y )
≤ βpp

∫
[0,1]

∥∥∥∥∥
m∑
n=1

rn (t) v̂ndn

∥∥∥∥∥
p

Lp(Ω̂,Y )
dt

= βpp

∫
Ω

∫
Ω′

∫
[0,1]

∥∥∥∥∥
m∑
n=1

rn (t) vn (ω) dn (ω, ω′)

∥∥∥∥∥
p

Y

dt dµ′(ω′) dµ(ω)

≤ βppCpp
∫

Ω

∫
Ω′

∫
[0,1]

∥∥∥∥∥
m∑
n=1

rn (t) dn (ω, ω′)

∥∥∥∥∥
p

X

dt dµ′(ω′) dµ(ω)

= βppC
p
p

∫
[0,1]

∥∥∥∥∥
m∑
n=1

rn (t) dn

∥∥∥∥∥
p

Lp(Ω̂,X)
dt

≤ βppCppαpp

∥∥∥∥∥
m∑
n=1

dn

∥∥∥∥∥
p

Lp(Ω̂,X)
.

This finishes the proof of (b). �
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Theorem 3.3. Let (Ω,F , µ) be a probability space with filtration
{Fn}n∈N0

and p ∈ [1,∞). Let {vn}n∈N be a B (X,Y )-valued {Fn}-multiplier
sequence that satisfies, for some Cp ∈ R:

for each uniformly bounded {dn}mn=1 ∈ D
({
F̂n
}
, X
)

, where

(Ω̂, F̂ , µ̂) is the dyadic extension of (Ω,F , µ),

(3.1)

∥∥∥∥∥
m∑
n=1

v̂ndn

∥∥∥∥∥
Lp(Ω̂,Y )

≤ Cp

∥∥∥∥∥
m∑
n=1

dn

∥∥∥∥∥
Lp(Ω̂,X)

.

Then
Rp ({vn (ω) : n ∈ N}) ≤ Cp

for a.e. ω ∈ Ω.

Remark 3.4. Condition (3.1) can be replaced by the (apparently) weaker
Condition (3.1′):

for each R-valued finite martingale difference sequence {dn}mn=1

with respect to {F̂m−1+n}mn=1, where (Ω̂, F̂ , µ̂) is the dyadic
extension of (Ω,F , µ), of the form dn(ω, t) = rm−1+n (t) 1A (ω),
where A ∈ Fm−1, one has that

(3.1′)

∥∥∥∥∥
m∑
n=1

v̂nxndn

∥∥∥∥∥
Lp(Ω̂,Y )

≤ Cp

∥∥∥∥∥
m∑
n=1

xndn

∥∥∥∥∥
Lp(Ω̂,X)

for each choice {xn}mn=1 from B(X).

Thus Condition (3.1′) reduces, from Condition (3.1), the class of martingale
difference sequences that one must test. Note that for such a martingale
difference sequence {dn}mn=1 in Condition (3.1′), if {zn}mn=1 is from any Banach
space Z, then {zndn}mn=1 is 1-unconditional in Lp

(
Ω̂, Z

)
by Fact 2.3.

Proof of Theorem 3.3. Assume condition (3.1′) of Remark 3.4 holds (but
not that condition (3.1) necessarily holds). Let {εj}j∈N be a sequence of real
numbers tending to zero.

For each n ∈ N, since vn ∈ L∞ ((Ω,Fn−1, µ),B (X,Y )), there is a sequence
{vjn}j∈N of countably-valued functions in L∞ ((Ω,Fn−1, µ),B (X,Y )) so that
limj→∞

∥∥vn − vjn∥∥L∞ = 0. Note that for any sub-σ-field Gjn containing σ(vjn)∥∥vn − E(vn | Gjn)
∥∥
L∞
≤
∥∥vn − E(vjn | Gjn)

∥∥
L∞

+
∥∥E (vjn − vn | Gjn)∥∥L∞

≤ 2
∥∥vn − vjn∥∥L∞ .

So, for each j ∈ N, there is a sequence {Gjn}n∈N0 of sub-σ-fields of F so that

(1)
∥∥vn − wjn∥∥L∞(Ω,B(X,Y ))

< εj/2n where wjn := E

(
vn | Gjn−1

)
,
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(2) Gjn−1 ⊂ Fn−1 and Gjn−1 ⊂ Gjn,
(3) Gjn−1 is generated by a partition of Ω into (finitely or countably many)

sets of (strictly) positive measure,

for each n ∈ N. So there exists G ∈ F so that µ(G) = 1 and

∥∥vn (u)− wjn (u)
∥∥
B(X,Y )

<
εj
2n

for each u ∈ G and j, n ∈ N.
Fix u ∈ G. Fix {xn}mn=1 from B(X). Fix j ∈ N. It suffices to show

(3.2)

∥∥∥∥∥
m∑
n=1

rnvn (u)xn

∥∥∥∥∥
Lp([0,1],Y )

≤ Cp

∥∥∥∥∥
m∑
n=1

rnxn

∥∥∥∥∥
Lp([0,1],X)

+ 2εj .

Find the atom A of Gjm−1 so that u ∈ A. Note that

wjn (u) = wjn (ω) for each ω ∈ A,n ∈ {1, . . . ,m}.

So∥∥∥∥∥
m∑
n=1

rnvn (u)xn

∥∥∥∥∥
Lp([0,1],Y )

≤

∥∥∥∥∥
m∑
n=1

wjn (u)xnrm−1+n

∥∥∥∥∥
Lp([0,1],Y )

+ εj

=

[∫
A

∫
[0,1]

∥∥∥∥∥
m∑
n=1

wjn (ω)xnrm−1+n (t)

∥∥∥∥∥
p

Y

dt
dµ (ω)
µ(A)

]1/p

+ εj

≤ 1
µ1/p(A)

[∫
Ω

∫
[0,1]

∥∥∥∥∥
m∑
n=1

vn (ω)xnrm−1+n (t) 1A (ω)

∥∥∥∥∥
p

Y

dt dµ (ω)

]1/p

+ 2εj

≤ Cp
µ1/p(A)

[∫
Ω

∫
[0,1]

∥∥∥∥∥
m∑
n=1

xnrm−1+n (t) 1A (ω)

∥∥∥∥∥
p

X

dt dµ (ω)

]1/p

+ 2εj

=
Cp

µ1/p(A)

[
µ(A)

∫
[0,1]

∥∥∥∥∥
m∑
n=1

xnrm−1+n (t)

∥∥∥∥∥
p

X

dt

]1/p

+ 2εj

= Cp

∥∥∥∥∥
m∑
n=1

rnxn

∥∥∥∥∥
Lp([0,1],X)

+ 2εj .

Thus (3.2) holds. �
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4. Main results for atomic filtrations

Now consider a probability space (Ω,F , µ) with a filtration {Fn}n∈N0
sat-

isfying:

each Fn is generated by (finitely or countably many) atoms of
(strictly) positive measure and limn→∞ sup

{
µ(B) : B is an atom

of Fn
}

= 0.

(4.1)

Part (B) of Corollary 1.1 follows easily from Theorems 4.1 and 3.2.
Theorem 4.1 is the atomic version of the general filtration Theorem 3.3.

Note that Theorem 4.1 reduces the test class of martingale difference se-
quences from the test class needed in Theorem 3.3 in that, for the atomic
case, one need not have to pass to extensions.

Theorem 4.1. Let (Ω,F , µ) be a probability space with a filtration
{Fn}n∈N0

satisfying (4.1) and p ∈ [1,∞). Let {vn}n∈N be a B (X,Y )-valued
{Fn}-multiplier sequence that satisfies, for some Cp ∈ R:

for each uniformly bounded {dn}mn=1 ∈ D ({Fn} , X)(4.2) ∥∥∥∥∥
m∑
n=1

vndn

∥∥∥∥∥
Lp(Ω,Y )

≤ Cp

∥∥∥∥∥
m∑
n=1

dn

∥∥∥∥∥
Lp(Ω,X)

.

Then
Rp ({vn (ω) : n ∈ N}) ≤ Cp

for each ω ∈ Ω.

Remark 4.2. Condition (4.2) can be replaced by the (apparently) weaker
Condition (4.2′):

there exists τ > 1 so that for each uniformly bounded {dn}mn=1 ∈
D ({Fn} ,R) satisfying that

(4.2′)

if {zn}mn=1 is from any Banach space Z then
{zndn}mn=1 is τ -unconditional in Lp (Ω, Z)

(4.3)

one has that

(4.4)

∥∥∥∥∥
m∑
n=1

vnxndn

∥∥∥∥∥
Lp(Ω,Y )

≤ Cp

∥∥∥∥∥
m∑
n=1

xndn

∥∥∥∥∥
Lp(Ω,X)

for each choice {xn}mn=1 from X.

Thus Condition (4.2′) reduces, from Condition (4.2), the class of martingale
difference sequences that one must test.

The proof of Theorem 4.1 uses the following lemma, whose long technical
proof is in Section 6.
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Lemma 4.3. Let (Ω,F , µ) be a probability space with a filtration
{Fn}n∈N0

satisfying (4.1). Let A be an atom of some Fj. Let p ∈ [1,∞)
and τ, τ1 > 1 and ε > 0 and m ∈ N. Then there exists a uniformly bounded
R-valued martingale difference sequence {dn}mn=1 with respect to some subfil-
tration {Fjn}mn=1 such that

(1) j1 > j,
(2) supp dn ⊂ A for each n ∈ {1, . . . ,m},
(3) 1 ≤ |dn (ω)| ≤ τ1 for each n ∈ {1, . . . ,m} and ω ∈ Gm := supp dm,

and furthermore, for any choice {zn}mn=1 from any Banach space Z,

(4) {zndn}mn=1 is τ -unconditional in Lp (Ω, Z),
(5) if zn0 6= 0, then

∫
A

∥∥∥∥∥
m∑
n=1

dn (ω) znrn

∥∥∥∥∥
p

Lp([0,1],Z)

dµ (ω)

≤ [1 + εMp]
∫
Gm

∥∥∥∥∥
m∑
n=1

dn (ω) znrn

∥∥∥∥∥
p

Lp([0,1],Z)

dµ (ω)

where M ‖zn0‖Z = τ1
∑m
n=1 ‖zn‖Z .

Proof of Theorem 4.1. Assume condition (4.2′) of Remark 4.2 holds (thus
giving τ > 1) (but not that condition (4.2) necessarily holds).

Fix u ∈ Ω. Fix m ∈ N and {xn}mn=1 from X. Let τ1, τ2 > 1. It suffices to
show

(4.5)

∥∥∥∥∥
m∑
n=1

rnvn (u)xn

∥∥∥∥∥
Lp([0,1],Y )

≤ τ1 τ2 Cp

∥∥∥∥∥
m∑
n=1

rnxn

∥∥∥∥∥
Lp([0,1],X)

.

Without loss of generality, there exists n0 ∈ {1, . . .m} so that xn0 6= 0.
Find the atom A of Fm−1 so that u ∈ A. Note that

(4.6) vn (u) = vn (ω) for each ω ∈ A,n ∈ {1, . . .m} .

Find ε > 0 so that

(4.7) 1 + ε

[
τ1
∑m
n=1 ‖xn‖X
‖xn0‖X

]p
< τp2 .

Apply Lemma 4.3 (with Fj := Fm−1 and other notation consistent) to find
the corresponding uniformly bounded {dn}mn=1 ∈ D ({Fn} ,R). Let Gm :=
supp dm. Note that {dn}mn=1 satisfies condition (4.3) and so (4.4) holds for
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the choice {rn (t)xn}mn=1 from X for each fixed t ∈ [0, 1]. By Kahane’s Con-
traction Principle (Fact 2.3), for each fixed w ∈ Gm,∥∥∥∥∥

m∑
n=1

dn (ω)xnrn

∥∥∥∥∥
Lp([0,1],X)

≤ τ1

∥∥∥∥∥
m∑
n=1

xnrn

∥∥∥∥∥
Lp([0,1],X)

,(4.8)

∥∥∥∥∥
m∑
n=1

vn (u)xnrn

∥∥∥∥∥
Lp([0,1],Y )

≤

∥∥∥∥∥
m∑
n=1

dn (ω) vn (u)xnrn

∥∥∥∥∥
Lp([0,1],Y )

,(4.9)

by (3) of Lemma 4.3. Thus∥∥∥∥∥
m∑
n=1

rnvn (u)xn

∥∥∥∥∥
p

Lp([0,1],Y )

≤
∫
Gm

∥∥∥∥∥
m∑
n=1

dn (ω) rnvn (u)xn

∥∥∥∥∥
p

Lp([0,1],Y )

dµ (ω)
µ(Gm)

≤
∫

[0,1]

∫
Ω

∥∥∥∥∥
m∑
n=1

vn (ω) [rn (t)xn] dn (ω)

∥∥∥∥∥
p

Y

dµ (ω)
µ(Gm)

dt

≤ Cpp
∫

[0,1]

∫
Ω

∥∥∥∥∥
m∑
n=1

rn (t)xndn (ω)

∥∥∥∥∥
p

X

dµ (ω)
µ(Gm)

dt

= Cpp

∫
A

∥∥∥∥∥
m∑
n=1

dn (ω) [xnrn]

∥∥∥∥∥
p

Lp([0,1],X)

dµ (ω)
µ(Gm)

≤ Cppτ
p
2

∫
Gm

∥∥∥∥∥
m∑
n=1

dn (ω) [xnrn]

∥∥∥∥∥
p

Lp([0,1],X)

dµ (ω)
µ(Gm)

≤ Cppτ
p
2 τ

p
1

∥∥∥∥∥
m∑
n=1

xnrn

∥∥∥∥∥
p

Lp([0,1],X)

,

where the inequalities (in order) follow from: (4.9), the monotonicity of the
integral for nonnegative functions and (4.6), (4.4), Lemma 4.3 and (4.7), and
(4.8). So (4.5) holds. �

The next example shows that the condition

lim
n→∞

sup {µ(B) : B is an atom of Fn} = 0

of (4.1) in Theorem 4.1 is necessary.

Example 4.4. Consider any filtration {Fn}n∈N0
on ([0, 1] ,M,m) satis-

fying that
(

1
2 , 1
]

is an atom of Fn for each n ∈ N0. Let vn : Ω → B (X,X)
have the form

vn (ω) =

{
Tn if ω ∈

(
1
2 , 1
]
,

0 if ω ∈
[
0, 1

2

]
.
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Any {dn}mn=1 ∈ D ({Fn} , X) satisfies dn (ω) = 0 if ω ∈
(

1
2 , 1
]

for n > 1. So
(4.2) holds. But if X is not Hilbertian, then there is a non-R-bounded set
{Tn}n∈N in B (X,X).

5. Corollaries to the main results

As in the scalar case, boundedness of operator-valued martingale trans-
forms in one sense is equivalent to other notions of boundedness. To be
precise, for a Z-valued martingale f := {fn}n∈N, define

‖f‖Lp(Ω,Z) := sup
n∈N
‖fn‖Lp(Ω,Z) for 1 ≤ p <∞,

f∗n (ω) := sup
1≤k≤n

‖fk (ω)‖Z for n ∈ N,

f∗ (ω) := sup
n∈N
‖fn (ω)‖Z (Doob’s maximal function).

Let us keep with the notation in Definitions 2.1 and 2.2.

Fact 5.1. Let (Ω,F , µ) be a probability space with filtration
{Fn}n∈N0

. Let {vn}n∈N be a B (X,Y )-valued {Fn}-multiplier sequence. Then
conditions (1) through (5) are equivalent.

(1) For each (or equivalently, for some) p ∈ (1,∞) there exists Cp ∈ R
so that

‖(Tvf)m‖Lp(Ω,Y ) ≤ Cp ‖fm‖Lp(Ω,X)

for each f := {fn} ∈ M ({Fn} , X) and m ∈ N.
(2) For each (or equivalently, for some) p ∈ (1,∞) there exists Cp ∈ R

so that ∥∥(Tvf)∗
∥∥
Lp(Ω,R)

≤ Cp ‖f‖Lp(Ω,X)

for each f := {fn} ∈ M ({Fn} , X).
(3) For each p ∈ [1,∞) there exists Cp ∈ R so that∥∥(Tvf)∗

∥∥
Lp(Ω,R)

≤ Cp ‖f∗‖Lp(Ω,R)

for each f := {fn} ∈ M ({Fn} , X).
(4) There exists C ∈ R so that

λµ
[
(Tvf)∗ > λ

]
≤ C ‖f∗‖L1(Ω,R)

for each f := {fn} ∈ M ({Fn} , X) and λ > 0.
(5) There exists C ∈ R so that

λµ
[
(Tvf)∗ > λ

]
≤ C ‖f‖L1(Ω,X)

for each f := {fn} ∈ M ({Fn} , X) and λ > 0.
If, furthermore, Y has the Radon-Nikodym property, then (3) implies (6).

(6) For each f := {fn} ∈ M ({Fn} , X), if ‖f‖L1(Ω,X) is finite then (Tvf)
converges a.e..
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Mart́ınez and Torrea [27] showed the equivalence of (2) through (5) and
the implication to (6) indicated above. Of course, that (1) implies (2) follows
from standard techniques (such as those found in [27, Remark 1]) while that
(2) implies (1) follows easily from the definitions.

Corollary 5.2. Let (Ω,F , µ) be a probability space with filtration
{Fn}n∈N0

. Let X and Y be UMD spaces. Let {vn}n∈N be a B (X,Y )-valued
{Fn}-multiplier sequence that satisfies, for some C ∈ R,

R2 ({vn (ω) : n ∈ N}) ≤ C for a.e. ω ∈ Ω.

Then (1) through (6) of Fact 5.1 hold (with the constants appearing depending
also on the UMD constants of X and Y ).

Proof. Let f := {fn} ∈ M ({Fn} , X) and m ∈ N. It follows from Theorem
3.2 that

‖(Tvf)m‖L2(Ω,Y ) ≤ β2(X)β2(Y )C ‖fm‖L2(Ω,X) .

Now apply Fact 5.1. �

Remark 5.3. Mart́ınez and Torrea [28] showed the equivalence of (1) in
Fact 5.1 to the boundedness of the martingale transform on various Banach
space valued BMO and Hardy spaces. Thus, similar to Corollary 5.2, a point-
wise R-bounded B (X,Y )-valued multiplier sequence {vn}n∈N, where X and
Y are UMD spaces, yields bounded martingale transform operators between
BMO and Hardy spaces.

Burkholder [6] showed that if X is a UMD space then (1.2) holds, with
the same constant βp(X), if one replaces the choices {εn}n∈N of signs by
[−1, 1]-valued {Fn}-multiplier sequences {vn}n∈N. A similar result is true for
operator-valued multiplier sequences.

Corollary 5.4. Let (Ω,F , µ) be a probability space with filtration
{Fn}n∈N0

and p ∈ [1,∞). Assume that there is τp ({Fn} , X) ∈ R so that
for each {dn}mn=1 ∈ D ({Fn} , X)∥∥∥∥∥

m∑
n=1

εndn

∥∥∥∥∥
Lp(Ω,X)

≤ τp ({Fn} , X)

∥∥∥∥∥
m∑
n=1

dn

∥∥∥∥∥
Lp(Ω,X)

for each choice {εn}mn=1 of signs from {±1}.
If a B (X,X)-valued {Fn}-multiplier sequence {vn}n∈N satisfies, for some

Cp ∈ R,
Rp ({vn (ω) : n ∈ N}) ≤ Cp for a.e. ω ∈ Ω

then ∥∥∥∥∥
m∑
n=1

vndn

∥∥∥∥∥
Lp(Ω,X)

≤ [τp ({Fn} , X)]2 Cp

∥∥∥∥∥
m∑
n=1

dn

∥∥∥∥∥
Lp(Ω,X)
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for each {dn}mn=1 ∈ D ({Fn} , X).

Note that if {vn}n∈N is a [−1, 1]-valued {Fn}-multiplier sequence then
{vn1X}n∈N is a B (X,X)-valued {Fn}-multiplier sequence and

Rp ({vn (ω) 1X : n ∈ N}) = sup {|vn (ω)| : n ∈ N} .

Proof. The result follows directly from Theorem 3.2. �

This section closes with a special case of Theorem 4.1: note that here
one must only test condition (4.2) for translated filtration rather than for all
subfiltration.

Proposition 5.5. Consider the Lebesgue measure space ([0, 1],M,m)
along with its dyadic filtration {Dn}n∈N0

. Let p ∈ [1,∞). Let {vn}n∈N be
a B (X,Y )-valued {Dn}-multiplier sequence that satisfies, for some Cp ∈ R:

for each X-valued finite martingale difference sequence {dn}mn=1

with respect to {Dm−1+n}mn=1 of the form dn = xnrm−1+n1Im−1
k

for some {xn}mn=1 ⊂ B(X) and k ∈
{

1, . . . , 2m−1
}

,

(5.1)

∥∥∥∥∥
m∑
n=1

vndn

∥∥∥∥∥
Lp([0,1],Y )

≤ Cp

∥∥∥∥∥
m∑
n=1

dn

∥∥∥∥∥
Lp([0,1],X)

.

Then
Rp ({vn (u) : n ∈ N}) ≤ Cp

for each u ∈ [0, 1].

Note that any martingale difference sequence of the above form is 1-uncon-
ditional in Lp ([0, 1], X).

Proof. Fix u ∈ [0, 1].
Fix m ∈ N and {xn}mn=1 from B(X). Find k ∈

{
1, . . . , 2m−1

}
so that

u ∈ Im−1
k . Note that, for n ∈ {1, . . . ,m}, each vn is constant on Im−1

k . Thus,
by changes of variables and (5.1),∫

[0,1]

∥∥∥∥∥
m∑
n=1

rn (t) vn (u)xn

∥∥∥∥∥
p

Y

dt

= 2m−1

∫
Im−1
k

∥∥∥∥∥
m∑
n=1

vn (u)
[
xnrn

(
2m−1t− k + 1

)]∥∥∥∥∥
p

Y

dt

= 2m−1

∫
[0,1]

∥∥∥∥∥
m∑
n=1

vn (t)
[
xnrm−1+n (t) 1Im−1

k
(t)
]∥∥∥∥∥
p

Y

dt

≤ 2m−1 Cpp

∫
[0,1]

∥∥∥∥∥
m∑
n=1

xnrm−1+n (t) 1Im−1
k

(t)

∥∥∥∥∥
p

X

dt
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= 2m−1 Cpp

∫
Im−1
k

∥∥∥∥∥
m∑
n=1

xnrn
(
2m−1t− k + 1

)∥∥∥∥∥
p

X

dt

= Cpp

∫
[0,1]

∥∥∥∥∥
m∑
n=1

xnrn (t)

∥∥∥∥∥
p

X

dt.

Thus Rp ({vn (u) : n ∈ N}) ≤ Cp. �

6. Proof of Lemma 4.3

A tree-structured sequence {Γ∗n}n∈N0
of indexing sets is needed. Let Γ∗0 :=

{∅} and, for n ∈ N,
Γ∗n = ((0,±1)× N0)n .

There is a natural identification of Γ∗n with Γ∗n−1 × ((0,±1)× N0) and so one
can express Γ∗n as

Γ∗n = {((δ1, k1) , . . . (δn, kn)) : δj ∈ {0± 1}
and kj ∈ N0 for each j ∈ {1, . . . , n}}

=
{

(γ, (δ, k)) : γ ∈ Γ∗n−1, δ ∈ {0,±1} , k ∈ N0

}
for n ∈ N. The notation

A ]B = C

indicates that C is the disjoint union of A and B.

Lemma 6.1. Let (Ω,F , µ) be a probability space with a filtration
{Fn}n∈N0

satisfying (4.1). Let A be an atom of some Fj and 0 < δ < 1
2 .

Let n ∈ N satisfy

(6.1) sup {µ (B) : B ⊂ A,B is an atom of Fn} < δµ (A) .

(Note n > j.) Then there exists A1 and A−1 in Fn so that, for ε = ±1,
(1) A1 ]A−1 ⊂ A,
(2) Aε is a finite union of atoms of Fn,
(3) 1

2 − δ <
µ(Aε)
µ(A) < 1

2 ,

and so
(4) (1− 2δ)µ (A) < µ (A1 ∪A−1),
(5) 1 < µ(A)

2µ(Aε)
< 1

1−2δ ,

(6)
∣∣∣ εµ(A)

2µ(Aε)
− ε
∣∣∣ < 2δ

1−2δ .

Proof. One can express A as

A =
m⊎
k=1

A(0,k)
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where the A(0,k)’s are (disjoint) atoms of Fn and m ∈ N ∪ {∞}. Note that

µ
(
A(0,k)

)
µ (A)

< δ <
1
2

and so m ≥ 3.
So there exists l1 ∈ N (with 1 + l1 < m) so that

l1∑
k=1

µ
(
A(0,k)

)
µ (A)

<
1
2
≤

1+l1∑
k=1

µ
(
A(0,k)

)
µ (A)

.

Let

A1 :=
l1⋃
k=1

A(0,k).

Note

1
2
− δ < 1

2
−

[
1+l1∑
k=1

µ
(
A(0,k)

)
µ (A)

−
l1∑
k=1

µ
(
A(0,k)

)
µ (A)

]

≤
l1∑
k=1

µ
(
A(0,k)

)
µ (A)

=
µ (A1)
µ (A)

<
1
2

and
1
2
<

m∑
k=1+l1

µ
(
A(0,k)

)
µ (A)

= 1−
l1∑
k=1

µ
(
A(0,k)

)
µ (A)

<
1
2

+ δ.

So there exists l−1 ∈ N (with 1 + l−1 + l1 ≤ m) so that

l−1+l1∑
k=1+l1

µ
(
A(0,k)

)
µ (A)

<
1
2
≤

1+l−1+l1∑
k=1+l1

µ
(
A(0,k)

)
µ (A)

.

Let

A−1 :=
l−1⋃
k=1

A(0,k+l1).

Note

1
2
− δ < 1

2
−

1+l−1+l1∑
k=1+l1

µ
(
A(0,k)

)
µ (A)

−
l−1+l1∑
k=1+l1

µ
(
A(0,k)

)
µ (A)


≤

l−1+l1∑
k=1+l1

µ
(
A(0,k)

)
µ (A)

=
µ (A−1)
µ (A)

<
1
2
.

Thus (1), (2), and (3) hold, from which (4), (5), and (6) follow easily. �
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The ultimate goal of (the long) Lemma 6.2 is to find the functions men-
tioned in Remark 6.3 along with some sets {Gn}n∈N, all of which satisfy
conditions (F7) through (F11) of Lemma 6.2.

Lemma 6.2. Let (Ω,F , µ) be a probability space with a filtration
{Fn}n∈N0

satisfying (4.1). Let A be an atom of Fj and Ao ∈ M be so that
µ(A) = m(Ao). Let {δn}n∈N be a sequence from

(
0, 1

2

)
.

Then there exists, for n ∈ N0,
(E1) good sets ΓGn ⊂ Γ∗n
(E2) bad sets ΓBn ⊂ Γ∗n
(E3) subsets {lγ}γ∈ΓGn

of N

(E4) expansions of the good sets ~Γn ⊂ Γ∗n+1

(E5) jn ∈ N
(E6) subsets {Aγ}γ∈ΓGn

of Fjn
(E7) atoms {Aγ}γ∈~Γn of Fjn
(E8) subsets

{
Aoγ
}
γ∈ΓGn∪~Γn

and
{
Boγ
}
γ∈ΓGn∪ΓBn

of M

where the items in (E1) through (E8) corresponding to n = 0 are
(Z1) ΓG0 = {∅}
(Z2) ΓB0 = ∅
(Z3) lγ = 1 for γ ∈ ΓG0
(Z4) ~Γ0 = {(∅, (0, 1))} ⊂ Γ∗1
(Z5) j0 = j
(Z6) if γ ∈ ΓG0 , then Aγ = ∅ and Aoγ = ∅ = Boγ
(Z7) if γ ∈ ~Γ0, then Aγ = A and Aoγ = Ao

and the indexing sets take the form, for n ∈ N,
(I1) ΓGn =

{
(γ, (ε, k)) ∈ Γ∗n : γ ∈ ΓGn−1, ε = ±1, 1 ≤ k ≤ lγ

}
(I2) ΓBn =

{
(γ, (ε, 0)) ∈ Γ∗n : γ ∈ ΓGn−1 ∪ ΓBn−1, ε = ±1

}
(the zero is a no-

tationally convenient way to ensure ΓGn ∩ ΓBn = ∅)
(I3) ~Γn =

{
(γ, (0, l)) ∈ Γ∗n+1 : γ ∈ ΓGn , 1 ≤ l ≤ lγ

}
(which also holds for

n = 0)
and so one can write

(I3′) ~Γn =
{

(γ, (ε, k) , (0, l)) ∈ Γ∗n+1 : γ ∈ ΓGn−1, ε = ±1, 1 ≤ k ≤ lγ ,

1 ≤ l ≤ l(γ,(ε,k))

}
and it easily follows that

(I1′) ΓGn =
{

(γ, (ε, k)) ∈ Γ∗n : ε = ±1, (γ, (0, k)) ∈ ~Γn−1

}
so that, for n ∈ N,

(C0) ΓGn , ΓBn , and ~Γn each have finitely many elements
(C1) jn > jn−1

(C2) if γ1, γ2 ∈ ~Γn and γ1 6= γ2, then Aγ1 ∩Aγ2 = ∅ and Aoγ1
∩Aoγ2

= ∅
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(C3) if γ ∈ ΓGn then

Aγ =
⋃

(γ,(0,l))∈~Γn

A(γ,(0,l)) and Aoγ =
⋃

(γ,(0,l))∈~Γn

Ao(γ,(0,l))

(C4) if (γ, (±1, k)) ∈ ΓGn then for ε = ±1

A(γ,(1,k)) ]A(γ,(−1,k)) ⊂ A(γ,(0,k)) and
1
2
− δn <

µ
(
A(γ,(ε,k))

)
µ
(
A(γ,(0,k))

) < 1
2

(C5) if γ ∈ ~Γn then m(Aoγ) = µ(Aγ)
(C6) if (γ, (±1, k)) ∈ ΓGn then for ε = ±1[

Ao(γ,(1,k)) ]A
o
(γ,(−1,k))

]
]
[
Bo(γ,(1,k)) ]B

o
(γ,(−1,k))

]
= Ao(γ,(0,k))

m
(
Ao(γ,(ε,k)) ∪B

o
(γ,(ε,k))

)
=

1
2
m
(
Ao(γ,(0,k))

)
(C7) if (γ, (±1, 0)) ∈ ΓBn then

Bo(γ,(1,0)) ]B
o
(γ,(−1,0)) = Boγ and m

(
Bo(γ,(1,0))

)
= m

(
Bo(γ,(−1,0))

)
(C8) the family Mn :=

{
Aoγ
}
γ∈ΓGn

∪
{
Boγ
}
γ∈ΓGn∪ΓBn

is pairwise disjoint

(C9)
[⋃

γ∈ΓGn
Aoγ

]
∪
[⋃

γ∈ΓGn∪ΓBn
Boγ

]
= Ao .

Furthermore, if for n ∈ N one defines

(D1) dn :=
∑

(γ,(ε,k))∈ΓGn

ε µ(A(γ,(0,k)))
2 µ(A(γ,(ε,k)))

1A(γ,(ε,k)) : Ω→ R

(D2) don :=
∑

(γ,(ε,k))∈ΓGn

ε m(Ao(γ,(0,k)))
2 m

(
Ao(γ,(ε,k))

) 1Ao(γ,(ε,k))
: [0, 1]→ R

(D3) d̃on :=
∑

(γ,(ε,k))∈ΓGn
ε 1Ao(γ,(ε,k))∪B

o
(γ,(ε,k))

+
∑

(γ,(ε,0))∈ΓBn
ε 1Bo(γ,(ε,0))

: [0, 1]→ R

(D4) Fojn := σ
({
Aoγ : γ ∈ ~Γn

})
and Foj0 := σ

({
Aoγ : γ ∈ ~Γ0

})
(D5) Gn :=

⋃
γ∈ΓGn

Aγ

then for each n ∈ N

(F1) dn is Fjn-measurable
(F2) if B is an atom of Fjn−1 , then

∫
B
dn dµ = 0

(F3) don is Fojn-measurable
(F4) if Bo is an atom of Fojn−1

, then
∫
Bo
don dm = 0

(F5) m
[
d̃on = 1

]
= m(Ao)

2 = m
[
d̃on = −1

]
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(F6) for each choice {εl}nl=1 of signs there exists Γ̃Gn ⊂ ΓGn and Γ̃Bn ⊂ ΓBn
such that

•
n⋂
l=1

[
d̃ol = εl

]
=

 ⋃
γ∈Γ̃Gn

Aoγ

 ∪
 ⋃
γ∈Γ̃Gn∪Γ̃Bn

Boγ

 ,
• m

(
n⋂
l=1

[
d̃ol = εl

])
=
(

1
2

)n
m (Ao)

(F7) Gn ⊂ Gn−1 where G0 := A
(F8) 1 < |dn (ω)| < 1

1−2δn
if ω ∈ Gn and dn (ω) = 0 if ω ∈ Ω \Gn

(F9) µ (Gn) > [
∏n
k=1 (1− 2δk)] µ (A)

(F10) if 1 ≤ p <∞ and {zn}nk=1 are from any Banach space Z then∥∥∥∥∥
n∑
k=1

zkdk

∥∥∥∥∥
Lp(Ω,Z)

=

∥∥∥∥∥
n∑
k=1

zkd
o
k

∥∥∥∥∥
Lp([0,1],Z)

(F11) if 1 ≤ p <∞ then∥∥∥don − d̃on∥∥∥p
Lp([0,1],R)

<

[(
2δn

1− 2δn

)p
+

(
1−

n∏
k=1

(1− 2δk)

)]
µ (A) .

Remark 6.3. Note that, in Lemma 6.2,
(1) {dn}n∈N is a martingale difference sequence with respect to the filtra-

tion {Fjn}n∈N,
(2) {don}n∈N is a martingale difference sequence with respect to the filtra-

tion
{
Fojn

}
n∈N,

(3)
{
d̃on 1Ao

}
n∈N

is an independent sequence of {±1}-valued symmetric

random variables on the probability space(
Ao, {B ∈M : B ⊂ Ao} , m (·)

m (Ao)

)
.

Proof of Lemma 6.2. Let the desired items in (E1) through (E8) corre-
sponding to n = 0 be as in (Z1) through (Z7). The proof now continues by
induction on n.

Let n = 1. Let

ΓG1 := {(∅, (ε, 1)) ∈ Γ∗1 : ε = ±1} ≡ {(ε, 1) ∈ Γ∗1 : ε = ±1} ,
ΓB1 := {(∅, (ε, 0)) ∈ Γ∗1 : ε = ±1} ≡ {(ε, 0) ∈ Γ∗1 : ε = ±1} .

Recall ~Γ0 = {(∅, (0, 1))} ⊂ Γ∗1.
Since A = A(∅,(0,1)) is an atom of Fj0 , there exists j1 > j0 so that

sup
{
µ (B) : B ⊂ A(∅,(0,1)), B is an atom of Fj1

}
< δ1 µ

(
A(∅,(0,1))

)
.



OPERATOR-VALUED MARTINGALE TRANSFORMS AND R-BOUNDEDNESS 507

By Lemma 6.1, there are sets A(∅,(±1,1)) ∈ Fj1 so that

(6.2) A(∅,(1,1)) ]A(∅,(−1,1)) ⊂ A(∅,(0,1))

and, for ε = ±1, each A(∅,(ε,1)) is a finite union of atoms of Fj1 , say

(6.3) A(∅,(ε,1)) =
l(∅,(ε,1))⊎
l=1

A(∅,(ε,1),(0,l)),

and

(6.4)
1
2
− δ1 <

µ
(
A(∅,(ε,1))

)
µ
(
A(∅,(0,1))

) < 1
2
.

Let

~Γ1 :=
{

(∅, (ε, 1) , (0, l)) ∈ Γ∗2 : ε = ±1, 1 ≤ l ≤ l(∅,(ε,1))

}
.

This completes the construction of the desired items in (E1) through (E7)
that satisfy their conditions in (C0) through (C4).

Since A(∅,(0,1)) = A and Ao(∅,(0,1)) = Ao and µ (A) = m (Ao), by (6.2), for
ε = ±1, there exists Ao(∅,(ε,1)) ∈M so that

Ao(∅,(1,1)) ]A
o
(∅,(−1,1)) ⊂ A

o
(∅,(0,1)),

m
(
Ao(∅,(ε,1))

)
= µ

(
A(∅,(ε,1))

)
.(6.5)

So by (6.4), for ε = ±1,

1
2
− δ1 <

m
(
Ao(∅,(ε,1))

)
m
(
Ao(∅,(0,1))

) < 1
2
.

So, for ε = ±1, there exists Bo(∅,(ε,1)) ∈M so that (C6) holds. It follows from
(6.3) and (6.5) that, for ε = ±1, there exists Ao(∅,(ε,1),(0,l)) ∈M so that

Ao(∅,(ε,1)) =
l(∅,(ε,1))⊎
l=1

Ao(∅,(ε,1),(0,l)),

m
(
Ao(∅,(ε,1),(0,l))

)
= µ

(
A(∅,(ε,1),(0,l))

)
.

If γ ∈ ΓB1 , let Boγ = ∅. This completes the construction of the desired items
in (E8) that satisfy their conditions in (C2), (C3), and (C5) through (C9).
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Note that

d1 =
µ
(
A(∅,(0,1))

)
2µ
(
A(∅,(1,1))

)1A(∅,(1,1)) −
µ
(
A(∅,(0,1))

)
2µ
(
A(∅,(−1,1))

)1A(∅,(−1,1)) ,

do1 =
m
(
Ao(∅,(0,1))

)
2m

(
Ao(∅,(1,1))

)1Ao(∅,(1,1))
−

m
(
Ao(∅,(0,1))

)
2m

(
Ao(∅,(−1,1))

)1Ao(∅,(−1,1))
,

d̃o1 = 1Ao(∅,(1,1))∪B
o
(∅,(1,1))

− 1Ao(∅,(−1,1))∪B
o
(∅,(−1,1))

.

So, clearly, (F1) through (F7) along with (F10) hold. A quick look at Lemma
6.1 gives (F8) and (F9) and also that∥∥∥do1 − d̃o1∥∥∥p

Lp([0,1],R)
<
∑
γ∈ΓGn

(
2δ1

1− 2δ1

)p
m
(
Aoγ
)

+
∑
γ∈ΓGn

m
(
Boγ
)

=
(

2δ1
1− 2δ1

)p
µ (G1) + µ (A \G1) .

So (F11) now follows from (F9).
This completes the n = 1 base step.
Fix n ∈ N with n ≥ 2 and assume that the desired items in (E1) through

(E8) have been found for k ∈ {0, 1, . . . , n− 1}. Let

ΓGn :=
{

(γ, (ε, k)) ∈ Γ∗n : γ ∈ ΓGn−1, ε = ±1, 1 ≤ k ≤ lγ
}
,

ΓBn :=
{

(γ, (ε, 0)) ∈ Γ∗n : γ ∈ ΓGn−1 ∪ ΓBn−1, ε = ±1
}
.

If (γ, (0, k)) ∈ ~Γn−1, then A(γ,(0,k)) is an atom of Fjn−1 ; find jn > jn−1 so
that

sup
{
µ (B) : B ⊂ A(γ,(0,k)), B is an atom of Fjn

}
< δn µ

(
A(γ,(0,k))

)
for each (γ, (0, k)) ∈ ~Γn−1.

Fix (γ, (0, k)) ∈ ~Γn−1 (and so γ ∈ ΓGn−1 and 1 ≤ k ≤ lγ). By Lemma 6.1,
there are sets A(γ,(±1,k)) ∈ Fjn so that

(6.6) A(γ,(1,k)) ]A(γ,(−1,k)) ⊂ A(γ,(0,k))

and, for ε = ±1, each A(γ,(ε,k)) is a finite union of atoms of Fjn , say

(6.7) A(γ,(ε,k)) =
l(γ,(ε,k))⊎
l=1

A(γ,(ε,k),(0,l)),

and

(6.8)
1
2
− δn <

µ
(
A(γ,(ε,k))

)
µ
(
A(γ,(0,k))

) < 1
2
.
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Let

~Γn :=
{

(γ, (ε, k) , (0, l)) ∈ Γ∗n+1 : γ ∈ ΓGn−1, ε = ±1,

1 ≤ k ≤ lγ , 1 ≤ l ≤ l(γ,(ε,k))

}
.

Towards (C2), note that for distinct elements (γ1, (ε1, k1) , (0, l1)) and
(γ2, (ε2, k2) , (0, l2)) from ~Γn

(6.9) A(γ1,(ε1,k1),(0,l1)) ∩A(γ2,(ε2,k2),(0,l2)) = ∅;

indeed, it follows from (6.6) and (6.7) that, for i ∈ {1, 2},

A(γi,(εi,ki),(0,li)) ⊂ A(γi,(εi,ki)) ⊂ A(γi,(0,ki))

and so if γ1 6= γ2 or k1 6= k2 then (6.9) follows from the inductive hypothesis
(specifically (C2)) while if γ1 = γ2 and k1 = k2 then (6.9) follows from (6.6)
if ε1 6= ε2 and from (6.7) if ε1 = ε2. This completes the construction of
the desired items in (E1) through (E7) that satisfy their conditions in (C0)
through (C4).

Towards (E8), fix (γ, (0, k)) ∈ ~Γn−1. Thus m
(
Ao(γ,(0,k))

)
= µ

(
A(γ,(0,k))

)
.

By (6.6), for ε = ±1, there exists Ao(γ,(ε,k)) ∈M so that

Ao(γ,(1,k)) ]A
o
(γ,(−1,k)) ⊂ A

o
(γ,(0,k))(6.6′)

m
(
Ao(γ,(ε,k))

)
= µ

(
A(γ,(ε,k))

)
.(6.10)

So by (6.8), for ε = ±1,

(6.8′)
1
2
− δn <

m
(
Ao(γ,(ε,k))

)
m
(
Ao(γ,(0,k))

) < 1
2
.

So, for ε = ±1, there exists Bo(γ,(ε,k)) ∈M so that (C6) holds. It follows from
(6.7) and (6.10) that, for ε = ±1, there exists Ao(γ,(ε,k),(0,l)) ∈M so that

Ao(γ,(ε,k)) =
l(γ,(ε,k))⊎
l=1

Ao(γ,(ε,k),(0,l))(6.7′)

m
(
Ao(γ,(ε,k),(0,l))

)
= µ

(
A(γ,(ε,k),(0,l))

)
.

Fix (γ, (±1, 0)) ∈ ΓBn . Thus γ ∈ ΓGn−1 ∪ ΓBn−1. Find Bo(γ,(±1,0)) ∈ M so that
(C7) holds. This completes the construction of the items in (E8). Clearly,
their conditions in (C3), (C5), (C6) and (C7) hold. As (C2) holds for the
Aγ ’s follows from the inductive hypothesis, (6.6), and (6.7), that (C2) holds
for the Aoγ ’s follows from the inductive hypothesis, (6.6′), and (6.7′).
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Towards (C9), note that by (C6) and (C3)⋃
γ∈ΓGn

(
Aoγ ∪Boγ

)
=

⋃
(γ,(0,k))∈~Γn−1

⋃
ε=±1

[
Ao(γ,(ε,k)) ∪B

o
(γ,(ε,k))

]
=

⋃
(γ,(0,k))∈~Γn−1

Ao(γ,(0,k))

=
⋃

γ∈ΓGn−1

⋃
(γ,(0,k))∈~Γn−1

Ao(γ,(0,k)) =
⋃

γ∈ΓGn−1

Aoγ

and by (C7)⋃
γ∈ΓBn

Boγ =
⋃

(γ,(1,0))∈ΓBn

[
Bo(γ,(1,0)) ∪B

o
(γ,(−1,0))

]

=
⋃

(γ,(1,0))∈ΓBn

Boγ =

 ⋃
γ∈ΓGn−1

Boγ

 ∪
 ⋃
γ∈ΓBn−1

Boγ

 .
So (C9) holds by the inductive hypothesis.

Now we show (C8). Note that the family

(6.11) M1
n :=

{
Aoγ
}
γ∈ΓGn

∪
{
Boγ
}
γ∈ΓGn

is pairwise disjoint.

Indeed, if γ ∈ ΓGn then Aoγ ∩ Boγ = ∅. So fix γ̃i = (γi, (εi, ki)) ∈ ΓGn with
γ̃1 6= γ̃2 and consider Cγi ∈ M1

n. If γ1 = γ2 and k1 = k2, then (6.11) follows
from (C6). If γ1 6= γ2 or k1 6= k2, then (6.11) follows from (C2) since

C(γi,(εi,ki)) ⊂ A
o
(γi,(0,ki))

.

and (γi, (0, ki)) ∈ ~Γn−1. Next note that the family

(6.12) M2
n :=

{
Boγ
}
γ∈ΓBn

is pairwise disjoint.

Indeed, if γ̃i = (γi, (εi, 0)) ∈ ΓBn then

Bo(γi,(εi,0)) ⊂ B
o
γi .

If γ1 = γ2, then (6.12) follows from (C7). If γ1 6= γ2, then (6.12) follows by
the inductive hypothesis (specifically, (C8)) since γi ∈ ΓGn−1 ∪ ΓBn−1. Now if

C(γ1,(ε1,k1)) ∈M1
n and Bo(γ2,(ε2,0)) ∈M

2
n

then C(γ1,(ε1,k1)) ⊂ Aoγ1
with γ1 ∈ ΓGn−1 and Bo(γ2,(ε2,0)) ⊂ Boγ2

with γ2 ∈
ΓGn−1∪ΓBn−1. So by the inductive hypothesis on (C8), C(γ1,(ε1,k1))∩Bo(γ2,(ε2,0)) =
∅. So (C8) holds.
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Now we show that (F1) through (F11) hold. (F1) follows from (E6). To-
wards (F2), rewrite dn as

dn =
∑

(γ,(0,k))∈~Γn−1

[
µ
(
A(γ,(0,k))

)
2µ
(
A(γ,(1,k))

)1A(γ,(1,k)) −
µ
(
A(γ,(0,k))

)
2µ
(
A(γ,(−1,k))

)1A(γ,(−1,k))

]

and note that, by (C4) and (E7)

A(γ,(1,k)) ]A(γ,(−1,k)) ⊂ A(γ,(0,k)) ∈
{
B : B is an atom of Fjn−1

}
.

So (F2) holds. (F3) follows from (C3). Note that

don =
∑

(γ,(0,k))∈~Γn−1

 m
(
Ao(γ,(0,k))

)
2m

(
Ao(γ,(1,k))

)1Ao(γ,(1,k))
−

m
(
Ao(γ,(0,k))

)
2m

(
Ao(γ,(−1,k))

)1Ao(γ,(−1,k))


and by (C6) and the definition of Fojn−1

Ao(γ,(1,k)) ]A
o
(γ,(−1,k)) ⊂ A

o
(γ,(0,k)) ∈

{
B : B is an atom of Fojn−1

}
.

So (F4) holds. Towards (F5), note that by (C8), (C9), (C6), and (C7)

m
[
d̃on = 1

]
=

∑
(γ,(1,k))∈ΓGn

m
(
Ao(γ,(1,k)) ∪B

o
(γ,(1,k))

)
+

∑
(γ,(1,0))∈ΓBn

m
(
Bo(γ,(1,0))

)
=

∑
(γ,(−1,k))∈ΓGn

m
(
Ao(γ,(−1,k)) ∪B

o
(γ,(−1,k))

)
+

∑
(γ,(−1,0))∈ΓBn

m
(
Bo(γ,(−1,0))

)
= m

[
d̃on = −1

]
.

So (F5) holds (again by using (C8) and (C9)).
Towards (F6), fix a choice {εl}nl=1 of signs. Find Γ̃Gn−1 ⊂ ΓGn−1 and Γ̃Bn−1 ⊂

ΓBn−1 such that

n−1⋂
l=1

[
d̃ol = εl

]
=

 ⋃
γ∈Γ̃Gn−1

Aoγ

 ∪
 ⋃
γ∈Γ̃Gn−1∪Γ̃Bn−1

Boγ

 .
Let

Γ̃Gn =
{

(γ, (εn, k)) ∈ ΓGn : γ ∈ Γ̃Gn−1

}
,

Γ̃Bn =
{

(γ, (εn, 0)) ∈ ΓBn : γ ∈ Γ̃Gn−1 ∪ Γ̃Bn−1

}
.
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It follows from (C3), (C6), and (C7) that

[
d̃on = εn

]
∩

 ⋃
γ∈Γ̃Gn−1

Aoγ

 =
⋃
γ∈Γ̃Gn

(
Aoγ ∪Boγ

)
,

[
d̃on = εn

]
∩

 ⋃
γ∈Γ̃Gn−1∪Γ̃Bn−1

Boγ

 =
⋃
γ∈Γ̃Bn

Boγ .

Thus

n⋂
l=1

[
d̃ol = εl

]
=


⋃

(γ,(εn,k))∈ΓGn
γ∈Γ̃Gn−1

(
Ao(γ,(εn,k)) ∪B

o
(γ,(εn,k))

)
(6.13)

∪


⋃

(γ,(εn,0))∈ΓBn
γ∈Γ̃Gn−1∪Γ̃Bn−1

Bo(γ,(εn,0))

 .

By (C6) and (C7), for the set on the right-hand side of (6.13), replacing εn
by −εn does not change its measure. So (F6) holds.

(F7) follows from (C3) and (C4) while (F8) follows from (C4).
Fix γ ∈ ΓGn−1 and 1 ≤ k ≤ lγ . So (γ, (0, k)) ∈ ~Γn−1 and (γ, (±1, k)) ∈ ΓGn .

It follows from (C4) that

(1− 2δn) µ
(
A(γ,(0,k))

)
< µ

(
A(γ,(1,k)) ]A(γ,(−1,k))

)
.

Taking the double sum
∑
γ∈ΓGn−1

∑
1≤k≤lγ of both sides gives (via (C3))

(1− 2δn) µ (Gn−1) < µ (Gn) .

So (F9) holds. (F10) is clear. Since∥∥∥don − d̃on∥∥∥p
Lp([0,1],R)

<
∑
γ∈ΓGn

(
2δn

1− 2δn

)p
m
(
Aoγ
)

+
∑

γ∈ΓGn∪ΓBn

m
(
Boγ
)

=
(

2δn
1− 2δn

)p
µ (Gn) + µ (A \Gn) .

(F11) now follows from (F9). �

The next lemma follows easily from the Contraction Principle (Fact 2.3)
and a standard perturbation argument [3], [24]. A proof is included for com-
pleteness sake.
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Lemma 6.4. Let p ∈ [1,∞) and 0 < δ < 1. Let {d̃on}mn=1 be a sequence of
independent, symmetric, {±1}-valued random variables on a probability space
(Ω,F , µ) and {don}mn=1 be a sequence in Lp (Ω,R). If

m∑
n=1

∥∥∥d̃on − don∥∥∥
Lp(Ω,R)

≤ δ

2

then for any choice {xn}mn=1 from a Banach space X, {xndon}mn=1 is a
(

1+δ
1−δ

)
-

unconditional sequence in Lp (Ω, X).

Proof. Fix {xn}mn=1 from some Banach space X, a choice {εn}mn=1 of signs
from {±1}, and scalars {λn}mn=1. It needs to be shown that

(6.14)

∥∥∥∥∥
m∑
n=1

εn λn xn d
o
n

∥∥∥∥∥
Lp(Ω,X)

≤
(

1 + δ

1− δ

)∥∥∥∥∥
m∑
n=1

λn xn d
o
n

∥∥∥∥∥
Lp(Ω,X)

.

Find {x̃n}mn=1 from S(X) and {λ̃n}mn=1 from R so that λn xn = λ̃nx̃n for each
n ∈ {1, . . . ,m}.

It follows from Fact 2.3 that {x̃nd̃on}mn=1 is a (normalized) 1-unconditional
basic sequence in Lp (Ω, X). Since

∑m
n=1

∥∥∥x̃nd̃on − x̃ndon∥∥∥
Lp(Ω,X)

≤ δ
2 , for any

choice {αn}mn=1 of scalars

(1− δ)

∥∥∥∥∥
m∑
n=1

αnx̃nd̃
o
n

∥∥∥∥∥
Lp(Ω,X)

≤

∥∥∥∥∥
m∑
n=1

αnx̃nd
o
n

∥∥∥∥∥
Lp(Ω,X)

≤ (1 + δ)

∥∥∥∥∥
m∑
n=1

αnx̃nd̃
o
n

∥∥∥∥∥
Lp(Ω,X)

(cf., e.g., [26, Prop. I.1.a.9]). Thus {x̃ndon}mn=1 is a ( 1+δ
1−δ )-unconditional basic

sequence. So (6.14) holds. �

Proof of Lemma 4.3. Let us keep with the notation in Lemma 6.2.
Pick {δn}mn=1 so that

(a) 0 < δn <
1
2 for each n ∈ {1, . . . ,m},

(b) 1
1−2δn

≤ τ1 for each n ∈ {1, . . . ,m},

(c)
∑m
n=1

[(
2δn

1−2δn

)p
+ (1−

∏m
k=1 (1− 2δk))

]1/p
≤ 1

2
τ−1
τ+1 ,

(d)
∏m
n=1 (1− 2δn)−1 ≤ 1 + ε .

Apply Lemma 6.2 to find {dn}mn=1 ∈ Lp (Ω,R), along with everything else.
Thus (1) of Lemma 4.3 holds.
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Condition (b) above along with (F7) and (F8) of Lemma 6.2 imply (2) and
(3) of Lemma 4.3. By (c) above and (F11) of Lemma 6.2,

m∑
n=1

[∫
Ao

∣∣∣don − d̃on∣∣∣p dm

m(Ao)

]1/p

=
m∑
n=1

∥∥∥don − d̃on∥∥∥
Lp([0,1],R)

[µ (A)]−1/p

≤ 1
2

(
τ − 1
τ + 1

)
.

So (4) of Lemma 4.3 holds by Lemma 6.4, Remark 6.3, and (F10) of Lemma
6.2.

Towards (5) of Lemma 4.3, let zn0 6= 0. Then for each ω ∈ Gm, by Kahane’s
Contraction Principle (Fact 2.3) and (3) of Lemma 4.3∥∥∥∥∥

m∑
n=1

dn (ω) znrn

∥∥∥∥∥
Lp([0,1],Z)

≥ ‖dn0 (ω) zn0rn0‖Lp([0,1],Z) ≥ ‖zn0‖Z .

Thus, by (b) and (F8), along with (d) and (F9)∫
A\Gm

∥∥∥∥∥
m∑
n=1

dn (ω) znrn

∥∥∥∥∥
p

Lp([0,1],Z)

dµ (ω)

≤
∫
A\Gm

[
m∑
n=1

‖dn (ω) znrn‖L∞([0,1],Z)

]p
dµ (ω)

≤
∫
A\Gm

[
m∑
n=1

τ1 ‖zn‖Z

]p
dµ (ω)

=
µ (A \Gm)
µ (Gm)

[
τ1
∑m
n=1 ‖zn‖Z
‖zn0‖Z

]p
µ (Gm) ‖zn0‖

p
Z

≤
[
µ (A)
µ (Gm)

− 1
]
Mp

∫
Gm

∥∥∥∥∥
m∑
n=1

dn (ω) znrn

∥∥∥∥∥
p

Lp([0,1],Z)

dµ (ω)

≤ ε Mp

∫
Gm

∥∥∥∥∥
m∑
n=1

dn (ω) znrn

∥∥∥∥∥
p

Lp([0,1],Z)

dµ (ω) .

So (5) of Lemma 4.3 holds. �
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