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SOME RATIONALITY PROPERTIES OF OBSERVABLE
GROUPS AND RELATED QUESTIONS

NGUYÊÑ QUÔĆ THǍŃG AND DAO PHUONG BǍĆ

Abstract. We investigate in this paper some rationality questions re-

lated to observable, epimorphic, and Grosshans subgroups of linear al-
gebraic groups over non-algebraically closed fields.

1. Introduction

Let G be a linear algebraic group defined over an algebraically closed field
k. Then G acts naturally on its regular function ring k[G] by right translation
(rg · f)(x) = f(x · g), for all x, g ∈ G, f ∈ k[G]. For H a closed k-subgroup of
G, we put

H ′ = k[G]H := {f ∈ k[G] : rh · f = f, for all h ∈ H}.
Then k[G]H is the k-subalgebra of H-invariant functions of k[G]. By conven-
tion, we identify the algebraic groups considered here with their points in a
fixed algebraically closed field. For a k-subalgebra R of k[G], we put

R′ = {g ∈ G : rg · f = f for all f ∈ R}.
Then for any closed subgroup H ⊂ G we have

H ⊆ H ′′ ⊆ G.
Motivated by representation theory, Bialynicki-Birula, Hochschild and

Mostow (see [1, p. 134]) introduced the concept of “observable subgroup”.
A closed subgroup H of G is called an observable subgroup of G if any finite
dimensional rational representation of H can be extended to a finite dimen-
sional rational representation on the whole group G (or, equivalently, if every
finite dimensional rational H-module is an H-submodule of a finite dimen-
sional rational G-module). In [1] equivalent conditions for a subgroup to be
observable were given. Grosshans (see [6], [7] and the references therein) has
added several other conditions. It later turned out that for closed subgroups
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the property of being observable for a subgroup H is equivalent to the equality
H = H ′′. There are now several equivalent conditions known for a subgroup
to be observable, which are more or less easy to verify; these are gathered in
Theorem 1 below.

On the opposite side, a closed subgroup H ⊆ G may satisfy the equality
H ′′ = G. If this holds, H is called an epimorphic subgroup of G. In fact,
under an equivalent condition, this notion was first introduced and studied by
Bien and Borel [2], [3] (see also [7] for a recent treatment), which, in turn, is
based on a similar notion for Lie algebras given by Bergman (unpublished).
Several other equivalent conditions for a closed subgroup to be epimorphic
have been given (see Theorem 11 below).

In connection with the solution of Hilbert’s 14th Problem, the following
well-known problem is of great interest. Assume that X is an affine variety, G
is a reductive group acting upon X morphically, H is a closed subgroup of G,
and consider the G-action on the regular function ring k[X] by left translation:
(lg · f)(x) = f(g−1 ·x). It is natural to ask when k[X]H is a finitely generated
k-algebra.

For a closed subgroup H ⊂ G, we have k[X]H = k[X]H
′′

(see [6], [7]). On
the other hand, it is well-known (see, e.g., [6], [7]) that H ′′ is the smallest
observable subgroup of G containing H. So the problem is reduced to the
case when H is an observable subgroup. To solve this problem, Grosshans [6],
[7] introduced the “codimension 2 condition” for observable subgroups, and
subgroups satisfying this condition are now called Grosshans subgroups of G
(see Section 4).

In this paper, we continue the study initiated in [1]. Namely, we are inter-
ested in some questions of rationality related to observable, epimorphic, and
Grosshans subgroups. The first rationality results regarding observable (resp.
epimorphic) subgroups were obtained in [1], and then in [7], [10] (resp. [2], [3]
and [10]), where also some arithmetical applications to ergodic actions were
given. In this paper we prove some new results on rationality properties of
observable, epimorphic, and Grosshans subgroups (which were stated initially
for algebraically closed fields). In a subsequent paper under preparation some
arithmetic and geometric applications will be considered.

Throughout, we consider only linear algebraic groups (i.e., absolutely re-
duced affine group schemes of finite type) defined over some field k, which, in
short, are called k-groups. For the basic theory of linear algebraic groups over
non-algebraically closed fields we refer to [4]. For a k-group G, the notion of
a rational k-module V for G is as in [6], [7].
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2. Some rationality results for observable groups

First we recall well-known results over algebraically closed fields. For an al-
gebraic group G we denote by G◦ the identity connected component subgroup
of G.

Theorem 1 ([1], [7, Theorems 2.1 and 1.12]). Let G be a linear algebraic
group defined over an algebraically closed field k and let H be a closed k-
subgroup of G. Then the following conditions are equivalent:

(a) H = H ′′.
(b) There exists a finite dimensional rational representation ρ : G →

GL(V ) and a vector v ∈ V , all defined over k, such that

H = Gv = {g ∈ G : ρ(g) · v = v}.

(c) There are finitely many functions f ∈ k[G/H] which separate the
points in G/H.

(d) G/H is a quasi-affine k-variety.
(e) Every finite dimensional rational k-representation ρ : H → GL(V )

can be extended to a finite dimensional rational k-representation ρ′ :
G → GL(V ′), where V ↪→ V ′, i.e., every finite dimensional ratio-
nal H-module is an H-submodule of a finite dimensional rational G-
module.

(f) There is a finite dimensional rational k-representation ρ : G→ GL(V )
and a vector v ∈ V such that H = Gv, the isotropy group of v, and

G/H ∼= G · v = {ρ(g) · v : g ∈ G}

(as algebraic varieties).
(g) The quotient field of the ring of G◦ ∩H-invariants in k[G◦] is equal

to the field of G◦ ∩H-invariants in k(G◦).
(h) If a 1-dimensional rational H-module M is an H-submodule of a finite

dimensional rational G-module, then the H-dual module M∗ of M is
also an H-submodule of a finite dimensional rational G-module.

Now let k be any field. If a closed k-subgroup H of a linear algebraic k-
group G satisfies condition (b) (resp. (e)) in Theorem 1, where v ∈ V (k) and
the corresponding representation ρ is defined over k, then we say that H is
an isotropy k-subgroup of G (resp. has the extension property over k).

We first recall the following rationality results proved in [1].

Theorem 2 ([1, Theorem 5]). Let G be a linear algebraic k-group, H a
closed k-subgroup of G, and k ⊂ K an algebraic extension of k. Then H has
the extension property over k if and only if it has the extension property over
K.
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Theorem 3 ([1, Theorem 8]). If H is a closed k-subgroup of a linear
algebraic k-group G with the extension property over k, then H is an isotropy
k-subgroup of G. Conversely, if k is algebraically closed and H is an isotropy
k-subgroup, then it has the extension property over k.

From Theorem 2 and Theorem 3 we derive the following result.

Proposition 4. Let k be an arbitrary field and H a closed k-subgroup of
a k-group G. The following two conditions are equivalent:

(a) H is an isotropy subgroup of G over k.
(b) H is an isotropy subgroup of G over k, i.e., there exists a finite di-

mensional k-rational representation ρ : G → GL(V ) and a vector
v ∈ V (k) such that H = Gv.

Proof. (b)⇒(a): Trivial.
(a)⇒(b): By Theorem 1, since H is an isotropy subgroup over k, H has

the extension property over k. Therefore, by Theorem 2, H has the extension
property over k. By Theorem 3, H is an isotropy k-subgroup of G. �

Remark 1. In [10], another proof of Proposition 4 was given, which is
based on some ideas of Grosshans [6], under the condition (which is not es-
sential) that k = Q and H is connected.

We put

H ′k = k[G]H(k) = {f ∈ k[G] : rh · f = f,∀h ∈ H(k)},
and

(H ′k)′ = {g ∈ G : rg · f = f,∀f ∈ H ′k}.
Then k[G]H(k) and k[G]H := {f ∈ k[G] : rh·f = f,∀h ∈ H} are k-subalgebras
of k[G]. In general we have the following diagram:

H ′k = k[G]H(k) ⊆ k̄[G]H(k)

⋃
|

⋃
|

k[G]H ⊆ k̄[G]H = H ′.

Thus we have
(H ′k)′ = (k[G]H(k))′ ⊇ (k̄[G]H(k))′⋂

|
⋂
|

(k[G]H)′ ⊇ (k̄[G]H)′ = H ′′.

If, moreover, H(k) is Zariski dense in H, then we have

H ′k = k[G]H = k[G]H ∩ k[G] .
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We say that H is relatively observable over k if H = (H ′k)′, and k-observable
if (k[G]H)′ = H. It is clear that if k is algebraically closed, then these notions
coincide with the observability. We have the obvious implication

H is k-observable ⇒ H is observable.

Proposition 5. Let k be a field, and let H be a closed k-subgroup of a
k-group G. Then:

(a) H ′ = k[G]H = k ⊗k k[G]H .
(b) H is observable if and only if H is k-observable.
(c) Assume that H(k) is Zariski dense in H. Then H is observable ⇔ H

is k-observable ⇔ H is relatively observable over k.

Proof. (a) We need the following lemma.

Lemma 6. Let X be an affine scheme of finite type over k upon which
a k-group H acts k-morphically, such that the (good) quotient scheme X/H
exists. Then we have

k[X]H = k ⊗k k[X]H .

(Here, by convention, X = Spec(k̄[X]), and k[X] gives the k-structure of
k̄[X].)

Proof. Since X/H is defined over k, we have k[X/H] = k ⊗k k[X/H].
Moreover, the quotient morphism π : X → X/H is also defined over k, so the
comorphism π0 sends k[X/H] into k[X]. On the other hand, π0 : k[X/H]→
k[X]H is an isomorphism. So π0|k[X/H] : k[X/H] → k[X] ∩ k[X]H = k[X]H

is a monomorphism. Because of the k-linearity of π0, we have

k[X]H = π0(k[X/H])

= π0(k ⊗ k[X/H])

= k ⊗ π0(k[X/H])

⊆ k ⊗ (k[X]H)

⊆ k[X]H .

Thus the above equalities imply that π0(k[X/H]) = k[X]H . Since π0 is an
isomorphism, we have k[X]H = k ⊗k k[X]H . The lemma is proved. �

Now (a) follows by taking X = G in the lemma.
(b) It suffices to show that if H is observable then it is also k-observable.

But this follows directly from (a) .
(c) By part (b) we need only show that

H is relatively observable over k ⇔ H is k-observable.
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“⇒”: Since H(k) is Zariski dense in H, we have

f ∈ k̄[G]H(k) ⇔ f ∈ k̄[G]H .

Therefore
H = (k[G]H(k))′ ⊇ (k̄[G]H(k))′ = (k̄[G]H)′ ⊇ H,

i.e., H is observable, hence also k-observable, by (b).
“⇐”: If H is k-observable, then we have

H = (k[G]H)′ ⊇ (k[G]H(k))′ ⊇ H,

so H is relatively observable over k. �

Proposition 7. Let H be a k-subgroup of a k-group G. The following
are equivalent:

(a) There exist finitely many functions in k[G/H] which separate the
points in G/H.

(b) There exist finitely many functions in k[G/H] which separate the
points in G/H.

Proof. The assertion (b)⇒(a) is obvious. To prove (a)⇒(b), notice that
since G/H defined over k, we have

k[G/H] = k ⊗ k[G/H].

Assume that the functions f1, . . . , fn ∈ k[G/H] separate the points in G/H.
We have

fi =
∑
j

λijϕij ,

with λij ∈ k, ϕij ∈ k[G/H]. If xH 6= yH ∈ G/H, there exists i such that
fi(xH) 6= fi(yH). So there exists j such that ϕij(xH) 6= ϕij(yH). Hence the
functions {ϕij} ⊆ k[G/H] separate the points in G/H. �

Proposition 8. Let G be a k-group, H a closed k-subgroup of G. Assume
that there exists a finite dimensional k-rational representation ρ : G→ GL(V )
and v ∈ V (k) such that H = Gv. Then there is a finite dimensional k-rational
representation ρ′ : G → GL(W ) and w ∈ W (k) such that H = Gw and
G/H ∼=k G · w.

Proof. (Our original proof of this result was lengthy; the following proof is
based on communications with F. Grosshans.) By Theorem 1.12 of [7], there
exists a vector space V ′, a representation ρ′ : G → GL(V ′), and a vector
v ∈ V ′ such that H = Gv and there is an isomorphism

G/H ' G · v.
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Let X = G · v which is a closed subvariety of V ′, V ′∗ the dual vector space
of V ′, and {λ1, . . . , λn} a basis of V ′∗. Thus, considered as an affine space,
we have k̄[V ′] = k̄[λ1, . . . , λn]. The morphisms

ϕ : G π→ G/H
p
↪→ X ↪→ V ′, g 7→ g · v

correspond to the comorphisms

ϕ∗ : k̄[V ′] r→ k̄[X]
p∗→ k̄[G/H]

π∗

↪→ k̄[G], ϕ∗(λi)(g) = λi(g · v),

where r is the restriction. We may identify k̄[G/H] with k̄[G]H , and thus
consider it as a subalgebra of k̄[G]. It is clear that ϕ∗ is G-equivariant with
respect to left translation, and (by the construction) we have

ϕ∗(k̄(X)) = k̄(G)H

and
li := ϕ∗(λi) = p∗(r(λi)) ∈ k̄(G)H ∩ k̄[G] = k̄[G]H .

By Proposition 5 we may write

li =
∑
j

cij ⊗ µij , cij ∈ k̄, µij ∈ k[G]H ,∀i, j.

Since G is defined over k, the G-orbit of µij spans a finite dimensional
vector subspace of k̄[G], which is defined over k. By adding a finite number
of functions (see, e.g., [4, Proposition, p. 54]) we may therefore assume that
the functions {µij} are k-linearly independent and that the k̄-vector space W ′

with k-basis {µij} is defined over k and is G-stable. If we let W be the dual
k-vector space of W ′, this gives to a representation ρ : G→ GL(W ), which is
defined over k.

Denote by Y the affine k-variety with k̄[µij ] as k̄-algebra of functions.
By considering the algebra of regular functions k̄[W ] on the vector space W
defined over k, we have the k-homomorphisms of k-algebras

k[W ]→ k[µij ]→ k[G/H]→ k[G],

which corresponds to G-equivariant k-morphisms of k-varieties with G-action

G→ G/H
q→ Y

r→W.

One checks that the k-morphism q : G/H → Y is dominant.
Set y = q(eH) ∈ Y. Then Y is the closure of the G-orbit G · y, which is

isomorphic to G/H (since it is so over k̄). Hence it is a k-isomorphism, and
the representation ρ : G→ GL(W ) is the one required. Therefore Proposition
8 is proved. �

From results proved above, we have the following theorem, which is an
analog of Theorem 1 for arbitrary fields.



438 NGUYÊÑ QUÔĆ THǍŃG AND DAO PHUONG BǍĆ

Theorem 9. Let G be a linear algebraic group defined over a field k and let
H be a closed k-subgroup of G. Then the following conditions are equivalent:

(a) H = H ′′, i.e., H is observable.
(a’) H = (k[G]H)′, i.e., H is k-observable.
(b’) There exists a k-rational representation ρ : G −→ GL(V ) and a vector

v ∈ V (k) such that

H = Gv = {g ∈ G : g · v = v}.

(c’) There are finitely many functions f ∈ k[G/H] which separate the
points in G/H.

(d’) G/H is a quasiaffine variety defined over k.
(e’) Every k-rational representation ρ : H −→ GL(V ) can be extended to

a k-rational representation ρ′ : G −→ GL(V ′).
(f’) There is a k-rational representation ρ : G −→ GL(V ) and a vector

v ∈ V (k) such that H = Gv and

G/H ∼=k G · v = {ρ(g)v : g ∈ G}.

(g’) The quotient field of the ring of G◦ ∩H-invariants in k[G◦] is equal
to the field of G◦ ∩H-invariants in k(G◦).

If, moreover, H(k) is Zariski dense in H, then the above conditions are equiv-
alent to the relative observability of H over k.

Proof. First, by Proposition 4, with the conditions labelled as in Theorem 1
we have (b)⇔(b’), by Proposition 5 we have (a)⇔(a’), and by Proposition 7
we have (c)⇔(c’). The fact that (d)⇔(d’) is trivial, and we have (e)⇔(e’) by
Theorem 2, and the same proof as that of [7, Theorem 1.12] shows that we
have (f)⇔(f’).

To prove the equivalence of (g’) with the other conditions, we use the other
equivalent conditions. We need the following lemma.

Lemma 10. With the above assumptions, H is k-observable in G if and
only if H ∩G◦ is k-observable in G◦.

Proof. First observe that since H and G0 are defined over k, so is H ∩G0.
We have (a)⇔(a’), so H is observable in G if and only if H is k-observable
in G, and H ∩ G◦ is observable in G◦ if and only if H ∩ G◦ is k-observable
in G◦. By [7, Corollary 1.3], H is observable in G if and only if H ∩ G◦ is
observable in G◦. It follows that H is k-observable in G if and only H ∩ G◦
is k-observable in G◦. The lemma is proved. �

Now, by [1, Theorem 3], H ∩ G◦ is k-observable in G◦ if and only if (g’)
holds. �
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3. Rationality properties for epimorphic subgroups

Recall that by a result of Grosshans [7] epimorphic subgroups H ⊆ G are
those closed subgroups of G that satisfy the condition H ′′ = G. We have
the following characterizations of epimorphic subgroups over an algebraically
closed fields.

Theorem 11 ([1, Théorème 1], [7, Lemma 23.7]). Let H be a closed sub-
group of G, all defined over an algebraically closed field k. Then the following
conditions are equivalent:

(a) H is epimorphic, i.e., H ′′ = G.
(b) k[G/H] = k.
(c) k[G/H] is finite dimensional over k.
(d) If V is any rational G-module, then the spaces of fixed points of G

and H in V coincide.
(e) If V is a rational G-module such that V = X ⊕ Y , where X, Y are

H-invariant, then X, Y are also G-invariant.
(f) Morphisms of algebraic groups from G to another one L are defined

by their values on H.

Remark 2. The initial definition of epimorphic subgroups given in [2]
only required that condition (f) above hold.

Let the notation be as in Section 2, and let k be an arbitrary field. Then
for a k-subgroup H of a k-group G we say that H is relatively epimorphic
over k if (H ′k)′ = G, and k-epimorphic if (k[G]H)′ = G. Recall that we have
the following inclusions:

(H ′k)′ = (k[G]H(k))′ ⊇ (k̄[G]H(k))′⋂
|

⋂
|

(k[G]H)′ ⊇ (k̄[G]H)′ = H ′′.

Therefore the following implications hold:

H is epimorphic ⇒ H is k-epimorphic,
H is k-epimorphic ⇐ H is relatively epimorphic over k.

In fact, we have the following result:

Proposition 12. With above notation, if H is either (a) relatively epi-
morphic over k or (b) k-epimorphic, then it is also epimorphic.

Proof. We need only check that H ′′ ⊇ G. Assume that (a) holds. Let
g ∈ G be an arbitrary element, and let f ∈ H ′. Then rh(f) = f for all h ∈ H.
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By Proposition 5, we have

H ′ = k[G]H = k ⊗k k[G]H .

Therefore we may write f =
∑
i cifi, ci ∈ k̄, fi ∈ k[G]H . Since fi ∈ k[G]H ⊂

k[G]H(k) = H ′k and, by assumption, g ∈ G = (H ′k)′, we have rg(fi) = fi for
all i. Therefore rg(f) = f , i.e., g ∈ H ′′. Thus G = H ′′.

Now assume (b) holds. Then by Proposition 5 again, we have

k̄[G]H = k[G]H ⊗ k̄,

so

(k̄[G]H)′ = (k[G]H ⊗ k̄)′

= (k[G]H)′ = G.

Thus H is also epimorphic. �

We have the following analog of Theorem 11 over an arbitrary field.

Theorem 13. Let k be any field and let H be a closed k-subgroup of a
k-group G. Then the following conditions are equivalent:

(a’) H is k-epimorphic, i.e., (k[G]H)′ = G.
(b’) k[G/H] = k.
(c’) k[G/H] is finite dimensional over k.
(d’) For any rational G-module V defined over k the spaces of fixed points

of G and H in V coincide.
(e’) For any rational G-module V defined over k, if V = X ⊕ Y , where

X, Y are H-invariant, then X, Y are also G-invariant.
(f’) Morphisms defined over k of algebraic k-groups from G to another

one are defined by their values on H.

Proof. In what follows we refer to Theorem 11 for the properties (a)–(f).
By Proposition 12 and the implications before it, we have (a)⇔(a’). Since
G/H is defined over k, we have (b)⇔(b’) and (c)⇔(c’).

The proof of the implication (i)⇒(ii) of [2, Théorème 1] (i.e., (f)⇒(b)
above) gives also a proof of the implication (f’)⇒(b’). The implication
(b’)⇒(c’) is trivial. We have (c’)⇔(c)⇔(d)⇒(d’) and the same proof as that
of [2, Théorème 1] shows that (d’)⇒(e’)⇒(f’). Thus we have the equivalence
of statements (b’), (c’), (d’), (e’), (f’). Since the statements (a), (b), (c), (d),
(e), (f) are equivalent and (a)⇔(a’), the theorem follows. �

Remark 3. It was mentioned in [10, p. 195] that Bien and Borel (unpub-
lished) have also proved that if G is connected, then (d)⇔(d’).
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4. Some rationality properties for Grosshans subgroups

One of the main results on the finite generation problem mentioned in the
Introduction (and hence also on Hilbert’s 14th Problem) is the following result
of Grosshans (Theorem 15). Before stating this result, we recall another very
useful result which reduces the problem to the case of connected groups.

Theorem 14 ([7, Theorem 4.1]). Let k be an algebraically closed field.
For any closed subgroup H of G, if one of the k-algebras k[G]H , k[G]H

◦
,

k[G◦]H∩G
◦
, k[G◦]H

◦
is a finitely generated k-algebra, then the same holds for

the other k-algebras.

Theorem 15 ([7, Theorem 4.3]). For an observable subgroup H of a linear
algebraic group G, all defined over an algebraically closed field k, the following
are equivalent:

(a) There is a finite dimensional rational representation ϕ : G→ GL(V )
and an element v ∈ V such that H = Gv and each irreducible compo-
nent of G · v −G · v has codimension ≥ 2 in G · v.

(b) The k-algebra k[G]H is a finitely generated k-algebra.

If (b) holds, let X be an affine variety with k[X] = k[G]H , and with G-action
via left translations of G on G/H. There is a point x ∈ X such that G · x is
open in X, G · x ' G/H via gH 7→ g · x, and each irreducible component of
X \G · x has codimension ≥ 2 in X.

The observable subgroups which satisfy one of the equivalent conditions
in Theorem 15 are called Grosshans subgroups (see [7]). There exist nice
geometrical characterizations and examples of Grosshans subgroups; see [7]
and the references therein.

For a field k, a k-group G and an observable k-subgroup H ⊂ G, we say
that H satisfies the codimension 2 condition over k if H satisfies condition
(a) above, where V, ϕ are all defined over k and v ∈ V (k).

We call H a Grosshans subgroup relatively over k (resp. k-Grosshans sub-
group) of G if k[G]H(k) (resp. k[G]H) is a finitely generated k-algebra.

We have a result similar to Theorem 15 for k-Grosshans subgroups.

Theorem 16. Let k be any perfect field with infinitely many elements
and G a connected k-group. Assume that H is an observable k-subgroup of
G. Consider the following conditions:

(a’) H satisfies the codimension 2 condition over k.
(b’) One of the k-algebras k[G]H , k[G]H

◦
, k[G◦]H∩G

◦
, k[G◦]H

◦
is a finitely

generated k-algebra.
(c’) H is a Grosshans subgroup of G relative to k (i.e., k[G]H(k) is a

finitely generated k-algebra).
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Then, together with conditions in Theorem 15, we have the following implica-
tions:

(a)⇔ (a′)⇔ (b)⇔ (b′)⇒ (c′).

If, moreover, H(k) is Zariski dense in H, then all these conditions are equiv-
alent.

Proof. (a)⇔(a’): We have trivially (a’)⇒(a). The proof of Proposition 8
and that of Theorem 4.3 of [7] (the computation of the dimension) show that
we also have (a)⇒(a’). Thus (a)⇔(a’).

(b)⇔(b’): Recall that we have (a)⇔(b) (see Theorem 15 above). By
Lemma 6 we have

k̄[G]H ' k̄ ⊗k k[G]H .

Therefore it is clear that k̄[G]H is a finitely generated k̄-algebra if and only if
so is k[G]H . Similarly, k̄[G]H

◦ ' k[G]H
◦⊗k k̄ is finitely generated as k̄-algebra

if and only if k[G]H
◦

is a finitely generated k-algebra. This is also true if H◦

is replaced by H ∩G◦, etc. Thus (b)⇔(b’).
(b’)⇒(c’): If H is connected, then H(k) is Zariski dense in H (see, e.g., [4,

18.3], or [5]), and we have

(∗) k[G]H = k[G]H(k),

and the assertion is trivial. Otherwise, assume that H 6= H◦. Then we can
use Theorem 14 above. In fact, H◦(k) is a normal subgroup of finite index in
H(k), and we see that

k[G]H(k) = (k[G]H
◦(k))H(k)/H◦(k)

is a finitely generated k-algebra, since from the equivalence (a)⇔(a’)⇔(b)
⇔(b’) and from Theorem 14 it follows that k[G]H

◦(k) is a finitely generated
k-algebra, and that H(k)/H◦(k) is a finite group.

Assume further that H(k) is Zariski dense in H. Then (∗) holds, so the
theorem is proved. �

Remark 4. It is of interest to find examples for which condition (c’)
holds, but the other conditions do not. This will, perhaps, ultimately lead
to counter-examples to the (generalized) Hilbert’s 14th Problem in the case
when char k > 0. (Various extensions of classical results in (geometric) in-
variant theory to the case of characteristic p > 0 were discussed at length in
[9, Appendices].) It would be more interesting to have examples with G,H
connected groups.

A connection to the subalgebra of invariants of a Grosshans subgroup of
a reductive group acting rationally upon a finitely generated commutative
algebra is established in the following result:
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Theorem 17 ([7, Theorem 9.3]). Let k be an algebraically closed field.
For any closed subgroup H of a reductive group G, all defined over k, the
following conditions are equivalent:

(a) k[G]H is a finitely generated k-algebra.
(b) For any finitely generated commutative k-algebra A on which G acts

rationally, the algebra of invariants AH is a finitely generated k-
algebra.

We consider the following relative version of this theorem.

Theorem 18. Let k be a perfect field with infinitely many elements, and H
a closed k-subgroup of a connected reductive k-group G. Consider the following
conditions.

(a’) k[G]H is a finitely generated k-algebra.
(b’) For any finitely generated commutative k-algebra Ak on which G acts

k-rationally, the algebra of invariants AHk is a finitely generated k-
algebra.

(c’) For any finitely generated commutative k-algebra Ak on which G acts
k-rationally, the algebra of invariants A

H(k)
k is a finitely generated

k-algebra.
Then, with the notations as in Theorem 17, we have

(a)⇔ (a′)⇔ (b)⇔ (b′)⇒ (c′).

If, moreover, H(k) is Zariski dense in H, then all of the above conditions are
equivalent.

Proof. The proof follows the same lines as that of Theorem 16 by using
Theorem 17. �
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[4] A. Borel, Linear algebraic groups, Graduate Texts in Mathematics, vol. 126, Springer-
Verlag, New York, 1991. MR 1102012 (92d:20001)
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