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A CHARACTERIZATION OF THE DISK ALGEBRA

BRIAN J. COLE, NAZIM SADIK, AND EVGENY A. POLETSKY

Abstract. We prove that a complex unital uniform algebra is isomor-

phic to the disk algebra if and only if every closed subalgebra with one
generator is isomorphic to the whole algebra. Moreover, every such
subalgebra of the disk algebra is isometrically isomorphic to the disk

algebra. On the way we prove: (1) for a function f in the disk algebra

the interior of the polynomial hull of the set f(U), where U is the closed

unit disk, is a Jordan domain; (2) if a uniform algebra A on a compact
Hausdorff set X containing the Cantor set separates points of X, then

there is f ∈ A such that f(X) = U .

1. Introduction

The disk algebra ∆ is the uniform algebra of all continuous complex-valued
functions on the closure U of the unit disk U in the complex plane C that are
holomorphic on U .

This algebra is probably the most popular uniform algebra after the uniform
algebra C(I) of all continuous functions on the interval I = [0, 1]. Therefore
a new property that characterizes it up to an isomorphism seems to be of
interest for a reader.

The property can be stated quite simply:

Theorem 1.1. A complex unital uniform algebra A 6= C is (isometrically)
isomorphic to ∆ if and only if every closed subalgebra Af generated by the
function 1 and f ∈ A that is not constant is (isometrically) isomorphic to
A. Moreover, any closed subalgebra ∆f in ∆ generated by a non-constant
function f ∈ ∆ is isometrically isomorphic to ∆.

This theorem follows from two interesting facts that seem to be unknown.

Theorem 1.2. Let f ∈ ∆ be a non-constant function and K = f(U).
Then every component of the complement of K is a Jordan domain.

Received August 6, 2001; received in final form January 7, 2002.
2000 Mathematics Subject Classification. Primary 46J10. Secondary 30D40.

c©2002 University of Illinois

533



534 BRIAN J. COLE, NAZIM SADIK, AND EVGENY A. POLETSKY

Theorem 1.3. Let A be a complex uniform algebra on a compact Haus-
dorff space X containing the Cantor set. If A separates points of X, then
there is an element f ∈ A such that f(X) = U .

This theorem immediately implies the following corollary.

Corollary 1.4. Let A be a complex uniform algebra on a compact Haus-
dorff space X containing the Cantor set. If A separates points of X, then it
contains a closed subalgebra isometrically isomorphic to the disk algebra.

To prove the corollary we take a mapping f provided by Theorem 1.3 and
consider the mapping Φ of ∆ into A(X) defined as Φ(g) = g ◦ f .

Note that if X is a compact metrizable space and K is the Cantor set, then
there is a continuous mapping F from K onto X. If A is a uniform algebra
on X, then the mapping Ψ : A → C(K) defined as Ψ(g) = g ◦ F embeds A
isometrically into C(K). Thus ∆ and C(K) are extreme points on the scale
of uniform algebras on compact metrizable spaces.

2. Proof of Theorem 1.2

Let us recall the basics of prime ends (see [CL] or [C]). Let D be a simply
connected domain in the plane. A Jordan arc that lies in D except for its two
end-points or a Jordan curve that lies in D except for one point is a cross-cut
of D. A Jordan arc with one end-point in ∂D and all other points in D is
called an end-cut of D. A point z in ∂D is accessible if it is an end-point of
an end-cut in D. A cross-cut γ divides D into two domains whose portions of
the boundary lying in D are γ. A sequence {γn} of cross-cuts of D is called
a chain if it satisfies:

(1) No two of them have any point in common.
(2) γn separates D into two domains: Dγn containing γn+1 and D′γn

containing γn−1.
(3) The diameter of γn tends to zero as n→∞.

Two chains {γn} and {δn} in D are equivalent if for every n there is m such
that Dγn contains all δj and Dδn contains all γj when j > m. A prime end
is an equivalence class of chains.

Let D̃ be the union of D and all prime ends. A subset E of D̃ is open if
E ∩D is open in D and for every p ∈ E \D there is a chain {γn} in p and an
integer n such that Dγn ⊂ E ∩D.

The classical Carathéodory’s correspondence theorem states:

Theorem 2.1. If D is a bounded simply connected domain in the plane
and f : U → D is a conformal equivalence, then f extends to a homeomor-
phism of U onto D̃.
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In particular, the set D̃ \D is homeomorphic to the unit circle S, and the
prime end topology on D̃ is Hausdorff.

Proof of Theorem 1.2. The complement to the set K = f(U) in C∞ =
C ∪ {∞} is the union of connected open sets D0, D1, . . . , where D0 contains
∞ and all other sets Dj are bounded. The polynomial hull K̂ of K is C∞ \D0

and by [C, Prop. 13.1.1] the set ∂K̂ is connected.
We will prove that the interior D of K̂ is a Jordan domain. This immedi-

ately implies that D0 is also a Jordan domain. To prove that Dj , j ≥ 1, is
Jordan, take a point w0 in Dj and replace f by 1/(f − w0).

Let us show that ∂K̂ belongs to f(S). If z ∈ ∂K̂ but z is not in f(S),
then z is not in f(U) either and, therefore, z belongs to one of the sets Dj ,
j ≥ 1. But Dj ⊂ K̂ is open. Hence z belongs to the interior D of K̂, and by
contradiction it follows that z ∈ f(S).

Let V be the connected open component of the interiorD of K̂ that contains
f(U). Then f(S) ⊂ V and, therefore, ∂V = ∂K̂. Since ∂K̂ is connected, by
[C, Prop. 13.1.1] V is simply connected. Thus V is connected and simply
connected.

Let us study the topology of the space of prime ends of V . Suppose that a
point w0 ∈ ∂V is accessible in V by two end-cuts γ1 and γ2. As was proved
in [CL, p. 177], every end-cut γ with γ(1) = w0 converges to a prime end Pγ .
Let us show that Pγ1 = Pγ2 .

Let {αn} be a chain in Pγ1 . If we prove that for every n there is 0 < tn < 1
such that γ2(t) ∈ Vαn when tn < t < 1, then it will follow that γ2(t) converges
to Pγ1 and, since the topology on Ṽ is Hausdorff, Pγ1 = Pγ2 .

Suppose that the latter statement does not hold for some integer n. Let us
take a chain {βj} in Pγ2 . Since the prime end topology is Hausdorff there is a
natural number m such that Vβm does not intersect Vαn . We may assume that
neither αn nor βm contain w0. Let t1 and t2 denote the maximal numbers
t such that γ1(t) ∈ αn and γ2(t) ∈ βm, respectively. Since both αn and βm
lie at some positive distance from w0 and γ1(1) = γ2(1) = w0, these numbers
are strictly less than 1. The intersection of V ′αn and V ′βm is connected and
therefore there is a Jordan arc γ3 : [0, 1]→ V that connects the points γ1(t1)
and γ2(t2) and lies in the intersection except for the points γ3(0) = γ1(t1) and
γ3(1) = γ2(t2). Therefore the curve γ consisting of γ1 restricted to [1, t1], γ3,
and γ2 restricted to [t2, 1], is Jordan.

Since γ lies in K̂ the interior component E of γ also lies in K̂. But γ ∈ V
and hence E ⊂ V . Thus ∂E ∩ ∂V = {w0}. But the cross-cuts αn and βm
intersect ∂E only at the points γ1(t1) and γ2(t2), respectively, and must end
at ∂V . Hence they do not intersect E. The open sets V ′αn = Vαn ∩ E and
V ′βm = Vβm ∩ E are non-empty and have no boundaries in E. So V ′αn = V ′βm ,
and this contradicts the assumption that Vαn∩Vβm = ∅. Therefore Pγ1 = Pγ2 .
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Let F be the set of all prime ends P = {γn} in V whose impressions

I(P ) =
∞⋂
n=1

Dγn

contain a point wP that is accessible relative to P , i.e., there is an end-cut γ
of V ending at wP and converging to P in the prime end topology. Since by
[CL, Theorem 9.7] for any prime end P its impression I(P ) has at most one
point that is accessible relative to P , the mapping τ : P → wP is well defined
on F .

Let us show that τ is onto. If w ∈ ∂V , then there is z ∈ S such that
f(z) = w. The curve γ(t) = f(tz), 0 ≤ t ≤ 1, need not to be a Jordan arc.
But it is an analytic curve and it is easy to see that by cutting out loops we
can modify it into a Jordan arc γ′ in V that becomes an end-cut of V . So w
is accessible relative to Pγ′ and w = τ(Pγ′).

This mapping is also one-to-one because, as we proved above, if w is acces-
sible relative to P1 and P2, then P1 = P2.

Thus the inverse mapping ρ of τ is defined. Let us show that ρ is continuous.
Let {wj} be a sequence of points in ∂V converging to w and let Pj = ρ(wj).
For every point wn we choose a point zn ∈ S such that wn = f(zn). We
assume that there is a neighborhood W of P = ρ(w) in Ṽ such that all prime
ends ρ(wj) are not in W , but the sequence of zn converges to a point z ∈ S
such that f(z) = w. Let {αn} be a chain in P . For all sufficiently large n the
point f(0) lies outside Vαn . Among such numbers n we select one so that the
cross-cut αn and Vαn are in W . Then the closure of Vαn in the space of prime
ends also lies in W . Let tn be the last instant when the curve γ(t) = f(tz)
meets αn. We take a number sn strictly between tn and 1 and find an integer
j0 such that f(snzj) ∈ Vαn and the curves f(tzj) never meet αn when j ≥ j0
and sn ≤ t < 1. Hence f(tzj) ∈ Vαn whenever j ≥ j0 and sn ≤ t < 1. But as t
goes to 1 the limit of f(tzj) in the prime ends topology is Pj and therefore Pj
belongs to the closure Ṽαn of Vαn in the prime ends topology. Thus Pj ∈ W
and this contradiction shows that the mapping ρ is continuous.

Therefore the set F is closed in Ṽ as the image of a compact set under a
continuous mapping. But F is dense in the set of all prime ends and therefore
F = Ṽ \ V .

Thus ρ is a continuous one-to-one mapping of a compact space ∂V onto
a Hausdorff space Ṽ \ V . Hence ρ is a homeomorphism. Since Ṽ \ V is
homeomorphic to a circle, ∂V is a Jordan curve and V is a Jordan domain.
Consequently, ∂K̂ = ∂V is a Jordan curve and therefore it divides C∞ into
two domains D0 and V . Thus the interior of K̂ is the Jordan domain V . �
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3. Proof of Theorem 1.3

We will need some auxiliary results. Given a uniform algebra A defined on
a compact Hausdorff space X, a set E ⊆ X is a peak interpolation set (PI set)
if it satisfies:

(1) There exists f ∈ A with f = 1 on E and |f | < 1 off E.
(2) For each g ∈ C(E), there exists f ∈ A with f |E = g and ‖f‖ = ‖g‖.

The next result (due to Glicksberg) can be found in [G]

Proposition 3.1. Let A be a uniform algebra defined on a compact Haus-
dorff space X. Then E is a PI set for A if and only if E is a closed Gδ-set
so that |ν|(E) = 0 for all measures ν on X with ν ⊥ A.

The main step in the proof of Theorem 1.3 is the next result. For a compact
subset L of C, we let P (L) denote the closure of all polynomials in C(L).

Proposition 3.2. Let L be a compact subset of C so that P (L) 6= C(L).
Then there exists a PI set E ⊂ L for P (L) with E homeomorphic to the
Cantor set.

Proof. We make use of several standard results concerning uniform alge-
bras; see [G].

Without loss of generality we can assume that L is the Shilov boundary of
P (L). By a theorem of Walsh, P (L) is a Dirichlet algebra on L. This implies
that every point z in the space MP (L) = L̂ of maximal ideals of P (L) has
a unique representing measure supported by L. In particular, this measure
for a point z ∈ L is the Dirac measure δz. Since P (L) 6= C(L), Lavrentiev’s
Theorem implies the existence of non-trivial Gleason parts. It follows from
[G, Theorem 6.2.2] that every representing measure for a point in a non-
trivial Gleason part has no atoms. By Wermer’s embedding theorem every
Gleason part of L̂ is either a unit disk or a point. Thus the set of non-trivial
Gleason parts is at most countable. Select a sequence {zn} containing one
point from each such part. Let µn be a representing measure for zn. Set
m =

∑
(1/2n)µn. Since m has no atoms, there exists a compact set E ⊆ L

which is homeomorphic to the Cantor set and satisfies m(E) = 0. If ν is a
measure on L with ν ⊥ P (L), then by [G, Theorem 6.2.3] ν is absolutely
continuous with respect to m. Thus ν(E) = 0 and by Proposition 3.1 E is a
PI set for P (L). �

Proof of Theorem 1.3. If A 6= C(X), there exists g ∈ A so that ḡ /∈ A. Let
L = g(X). The choice of g guarantees that z̄ /∈ P (L). Hence P (L) 6= C(L).

For h ∈ P (L) define φ(h) = h ◦ g. It is easily seen that φ : P (L)→ A is an
isometric isomorphic embedding.

By Proposition 3.2, we can select a set E that is a PI set for P (L) and
homeomorphic to the Cantor set. Let h be a continuous map h from E onto
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U . Since E is a PI set, there exists f ∈ P (L) with ‖f‖ = 1 and f |E = h. Set
F = φ(f). Then F ∈ A, ‖F‖ = 1, and F (X) = f(L) ⊇ h(E) = U , and hence
F (X) = U .

If A = C(X), then we take the Cantor set K ⊂ X and a continuous function
F that maps K onto U . A continuous extension of F to X preserving the
sup-norm gives us the desirable mapping. �

4. Proof of Theorem 1.1

Let us show that an algebra ∆f , where f is not a constant, is isometrically
isomorphic to ∆. Let K̂ be the polynomial hull of K = f(U). Let us show that
the algebra ∆f is isometric to the algebra B of functions that are continuous
on K̂ and holomorphic in the interior D of K̂. Let Φ : B → ∆ be a mapping
defined as Φ(g) = g ◦ f . The mapping Φ is an isometry because by the
maximum principle the function g1 − g2 attains the maximum of its absolute
value on ∂K̂ ⊂ f(S) and therefore ||g1 − g2|| = ||Φ(g1) − Φ(g2)||. If h ∈ ∆f ,
then h is the uniform limit on U of a sequence of functions Pn(f), where Pn
are polynomials. Since K̂ is the polynomial hull of f(U), it follows that the
polynomials Pn converge uniformly on K̂ to a function g. Clearly Φ(g) = h.
Hence ∆f ⊂ Φ(B).

Since K̂ is polynomially convex, every function g ∈ B is the uniform limit
on K̂ of a sequence of polynomials Pn. The functions Pn(f) converge uni-
formly on U to a function h ∈ ∆f , and Φ(g) = h. Thus Φ(B) = ∆f .

But the interior D of K̂ is a Jordan domain. Therefore a conformal equiv-
alence e of D and U produces the isometry Ψ of B and ∆ as Ψ(g) = g ◦ e.
Hence ∆ and ∆f are isometric.

Thus if an algebra A is (isometrically) isomorphic to ∆, then any subalgebra
Af is (isometrically) isomorphic to A.

Suppose now that any subalgebra Af , where f is not a constant, is (isomet-
rically) isomorphic to A 6= C. It is easy to see that A is infinitely dimensional.
If the algebra A contains an idempotent f , then the algebra generated by f
is finite-dimensional. Thus A does not contain idempotents and therefore the
space MA of its maximal ideals is connected (see [B, 1.4.10]).

Since A is a unital uniform algebra, the space MA is compact and the
Gelfand transform G is an isometry. Hence MA contains more than one point
because A is not isomorphic to C. If f is a generator of A, then f̂ = G(f)
continuously maps a compact space MA onto a Hausdorff space Kf = f̂(MA).
Since f is a generator, f̂ is one-to-one and, therefore, a homeomorphism. As
a connected closed set in the plane with more than one point the set Kf and
consequently also MA, contain the Cantor set.

The Gelfand transform maps A onto a closed subalgebra Â of C(MA) that
separates points of MA. By Theorem 1.3 there is an element f̂ ∈ Â such that
f̂(MA) = U .



A CHARACTERIZATION OF THE DISK ALGEBRA 539

Let f̂ = G(f), f ∈ A, and let Af be the subalgebra of A generated by f .
If p(z) is a polynomial of the complex variable z and g = p(f), then

‖g‖ = ‖ĝ‖MA
= ‖p(f̂)‖MA

= ‖p‖U .
So the mapping p(f) → p(z) is an isometry and, therefore, it extends to an
isometrical isomorphism of Af and ∆. But A is (isometrically) isomorphic to
Af and, consequently, to ∆. �
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