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NARROW OPERATORS ON VECTOR-VALUED
SUP-NORMED SPACES

DMITRIY BILIK, VLADIMIR KADETS, ROMAN SHVIDKOY, GLEB SIROTKIN,

AND DIRK WERNER

Abstract. We characterise narrow and strong Daugavet operators on
C(K,E)-spaces; these are in a way the largest sensible classes of opera-

tors for which the norm equation ‖Id+T‖ = 1+‖T‖ is valid. For certain
separable range spaces E, including all finite-dimensional spaces and all
locally uniformly convex spaces, we show that an unconditionally point-
wise convergent sum of narrow operators on C(K,E) is narrow. This
implies, for instance, the known result that these spaces do not have
unconditional FDDs. In a different vein, we construct two narrow op-
erators on C([0, 1], `1) whose sum is not narrow.

1. Introduction and preliminaries

This paper is a follow-up contribution to our paper [6], where we defined
and investigated narrow operators on Banach spaces with the Daugavet prop-
erty. Before describing the contents of the present paper, we review some
definitions and results from [5] and [6].

A Banach space X is said to have the Daugavet property if every rank-1
operator T : X → X satisfies

(1.1) ‖Id + T‖ = 1 + ‖T‖.
For instance, C(K) and L1(µ) have the Daugavet property provided that
K is perfect, i.e., has no isolated points, and µ does not have any atoms.
We shall have occasion to use the following characterisation of the Daugavet
property from [5]; the equivalence of (ii) and (iii) results from the Hahn-
Banach theorem.
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Lemma 1.1. The following assertions are equivalent:

(i) X has the Daugavet property.
(ii) For all x ∈ S(X), x∗ ∈ S(X∗) and ε > 0 there exists some y ∈ S(X)

such that x∗(y) > 1− ε and ‖x+ y‖ > 2− ε.
(iii) For all x ∈ S(X) and ε > 0, B(X) = co{z ∈ B(X): ‖x+ z‖ > 2− ε}.

It was shown in [5] and [9] that (1.1) automatically extends to wider classes
of operators, e.g., weakly compact spaces and, more generally, spaces that do
not fix copies of `1 or strong Radon-Nikodým operators. (A strong Radon-
Nikodým operator maps the unit ball into a set with the Radon-Nikodým
property.) In [6] we gave new proofs of these results based on the notions of a
strong Daugavet operator and a narrow operator. An operator T : X → Z is
said to be a strong Daugavet operator if for any two elements x, y ∈ S(X), the
unit sphere of X, and for every ε > 0 there is an element u ∈ B(X), the unit
ball of X, such that ‖x+ u‖ > 2− ε and ‖T (y− u)‖ < ε. It is almost obvious
that a strong Daugavet operator T : X → X satisfies (1.1). The nontrivial
task now is to find sufficient conditions on T to be strongly Daugavet. In this
vein we could show that, for instance, strong Radon-Nikodým operators and
operators not fixing copies of `1 are indeed strong Daugavet operators.

For some applications the concept of a strong Daugavet operator is some-
what too wide. Therefore we defined an operator T : X → Z to be narrow if
for any two elements x, y ∈ S(X), every x∗ ∈ X∗ and every ε > 0 there is an
element u ∈ B(X) such that ‖x+u‖ > 2−ε and ‖T (y−u)‖+ |x∗(y−u)| < ε.
It follows that X has the Daugavet property if and only if all rank-1 opera-
tors are strong Daugavet operators if and only if there is at least one narrow
operator on X. We denote the set of all strong Daugavet operators on X by
SD(X) and the set of all narrow operators on X by NAR(X). Actually, in
[6] we took a slightly different point of view in that we declared two operators
T1: X → Z1 and T2: X → Z2 to be equivalent if ‖T1x‖ = ‖T2x‖ for all x ∈ X.
We remark that SD(X) and NAR(X) should really denote the sets of the
corresponding equivalence classes; however, in this paper we shall not make
this point explicitly.

In this paper we continue our investigations of this type of operator, mostly
in the setting of vector-valued function spaces C(K,E). One of the drawbacks
of the definition of a strong Daugavet operator is that the sum of two such
operators need not be a strong Daugavet operator, whereas the definition of a
narrow operator has some built-in additivity property. It remained open in [6]
whether the sum of any two narrow operators is always narrow, although we
could prove that this is true on C(K), and in general we showed that the sum
of a narrow operator and an operator not fixing `1 is narrow and that the sum
of a narrow operator and a strong Radon-Nikodým operator is narrow. (Note
that the sum of two strong Radon-Nikodým operators need not be a strong
Radon-Nikodým operator [8].) Our work in Section 3, where we completely
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characterise strong Daugavet and narrow operators on C(K,E), enables us to
give counterexamples to the sum problem.

For this purpose we employ a special feature of `1 explained in Section 2.
This section introduces a class of Banach spaces called USD-nonfriendly spaces
that are sort of remote from spaces with the Daugavet property; USD stands
for uniformly strongly Daugavet. All finite-dimensional spaces and all locally
uniformly convex spaces fall within this category, but we have not been able
to decide whether a reflexive space must be USD-nonfriendly.

The class of USD-nonfriendly spaces is tailored to our applications in Sec-
tion 4, where we study pointwise unconditionally convergent series

∑∞
n=1 Tn

of narrow operators on C(K,E). If E is separable and USD-nonfriendly, we
prove that the sum operator must be narrow again. This is new even in the
case E = R. To achieve this, we take a detour investigating the related class
of C-narrow operators, following ideas from [4]. An obvious corollary is the
result from [4] that the identity on C(K) is not a pointwise unconditional sum
of narrow operators. This implies that C(K) does not admit an unconditional
Schauder decomposition into spaces not containing C[0, 1].

We conclude this introduction with a technical reformulation of the defini-
tion of a strong Daugavet operator. Let

D(x, y, ε) = {z ∈ X: ‖x+ y + z‖ > 2− ε, ‖y + z‖ < 1 + ε}

and

D(X) = {D(x, y, ε): x ∈ S(X), y ∈ S(X), ε > 0},
D0(X) = {D(x, y, ε): x ∈ S(X), y ∈ B(X), ε > 0}.

It is easy to see that T : X → Z is a strong Daugavet operator if and only if T
is not bounded from below on any set D ∈ D(X) [6, Prop. 3.4]. In Section 3
it will be more convenient to work with D0(X) instead; the following lemma
says that this does not make any difference.

Lemma 1.2. An operator T : X → Z is a strong Daugavet operator if and
only if T is not bounded from below on any set D ∈ D0(X).

Proof. We have to show that T ∈ SD(X) is not bounded from below on
D(x, y, ε) whenever ‖x‖ = 1, ‖y‖ ≤ 1, ε > 0. By the above remarks, T is not
bounded from below on D(x,−x, 1); hence, given ε′ > 0, for some ζ ∈ S(X)
we have ‖Tζ‖ < ε′. Now pick λ ≥ 0 such that y + λζ ∈ S(X); then there is
some z′ ∈ X such that

‖x+ (y + λζ) + z′‖ > 2− ε, ‖(y + λζ) + z′‖ < 1 + ε, ‖Tz′‖ < ε′;

i.e., z := λζ + z′ ∈ D(x, y, ε) and ‖Tz‖ < 3ε′. �
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2. USD-nonfriendly spaces

In this section we introduce a class of Banach spaces that are geometri-
cally opposite to spaces with the Daugavet property. These spaces will arise
naturally in Section 4.

Proposition 2.1. The following conditions for a Banach space E are
equivalent.

(1) SD(E) = {0}.
(2) No nonzero linear functional on E is a strong Daugavet operator.
(3) For every x∗ ∈ S(E∗) there exist some δ > 0 and D ∈ D(E) such that
|x∗(z)| > δ for all z ∈ D.

(4) Every closed absolutely convex subset A ⊂ E such that for every α > 0
and every D ∈ D(E) the intersection (αA)∩D is nonempty coincides
with the whole space E.

Proof. The implications (1) ⇒ (2) ⇒ (3) are evident.
(3) ⇒ (4): Assume there is a closed absolutely convex subset A ⊂ E with

the property stated in (4) that does not coincide with the whole space E. By
the Hahn-Banach theorem there is a functional x∗ ∈ S(E∗) and a number
r > 0 such that |x∗(a)| ≤ r for every a ∈ A. If δ > 0 and D ∈ D(E) are
arbitrary, pick z ∈ ( δrA)∩D; this intersection is nonempty by the assumption
on A. It follows that |x∗(z)| ≤ δ, and hence (3) fails.

(4) ⇒ (1): Suppose T ∈ SD(E) and put A = {e ∈ E: ‖Te‖ ≤ 1}. By the
definition of a strong Daugavet operator this set A satisfies (4). So A = E,
and hence T = 0. �

This proposition suggests the following definition.

Definition 2.2. A Banach space E is said to be an SD-nonfriendly space
(i.e., strong Daugavet-nonfriendly) if SD(E) = {0}. A space E is said to be a
USD-nonfriendly space (i.e., uniformly strong Daugavet-nonfriendly) if there
exists an α > 0 such that every closed absolutely convex subset A ⊂ E which
intersects all elements of D(E) contains αB(E). The largest admissible α is
called the USD-parameter of E.

Proposition 2.1 shows that a USD-nonfriendly space is indeed SD-non-
friendly, but the converse is false as will be shown shortly. Also, SD-nonfriend-
liness is opposite to the Daugavet property in that the latter is equivalent to
the condition that every functional is a strong Daugavet operator.

To further motivate the uniformity condition in the above definition, we
prove the following lemma.

Lemma 2.3. A Banach space E is USD-nonfriendly if and only if
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(3∗) There exists some δ > 0 such that for every x∗ ∈ S(E∗) there exists
D ∈ D(E) such that |x∗(z)| > δ for all z ∈ D.

Proof. It is enough to prove the implications (a) ⇒ (b) ⇒ (c) for the
following assertions about a fixed number δ > 0:

(a) There exists a closed absolutely convex set A ⊂ E not containing
δB(E) that intersects all D ∈ D(E).

(b) There exists a functional x∗ ∈ S(E∗) such that for all D ∈ D(E)
there exists zD ∈ D satisfying |x∗(zD)| ≤ δ.

(c) There exists a closed absolutely convex set A ⊂ E not containing
δ′B(E) for any δ′ > δ that intersects all D ∈ D(E).

To see that (a) implies (b), pick u /∈ A, ‖u‖ ≤ δ. By the Hahn-Banach
theorem we can separate u from A by means of a functional x∗ ∈ S(E∗), i.e.,
for some number r > 0 we have |x∗(z)| ≤ r for all z ∈ A and x∗(u) > r. On
the other hand, x∗(u) ≤ ‖x∗‖ ‖u‖ ≤ δ, and hence (b) holds for x∗.

If we assume (b), we define A to be the closed absolutely convex hull of
the elements zD, D ∈ D(E), appearing in (b). Obviously A intersects each
D ∈ D(E). If δ′B(E) ⊂ A for some δ′ > 0, then, since |x∗| ≤ δ on A, we
must have |x∗| ≤ δ on δ′B(E), i.e., δ′ ≤ δ. Therefore A statisfies the property
stated in (c). �

In Proposition 2.1 and Lemma 2.3 we may replace D(E) by D0(E).
We now turn to some examples.

Proposition 2.4.

(a) The space c0 is SD-nonfriendly, but not USD-nonfriendly.
(b) The space `1 is not SD-nonfriendly, and hence not USD-nonfriendly

either.

Proof. (a) Theorem 3.5 of [6] implies that Tek = 0 for every unit basis
vector ek if T ∈ SD(c0). (Actually, the theorem quoted is formulated for
operators on C(K) for compact K, but the theorem holds also on C0(L) with
L locally compact.) Hence T = 0 is the only strong Daugavet operator on c0.
(Another way to see this is to apply Corollary 3.6.)

To show that c0 is not USD-nonfriendly we exhibit a closed absolutely
convex set A intersecting each D ∈ D(c0), yet containing no ball. Let A =
2B(`1) ⊂ c0, i.e.,

A =
{

(x(n)) ∈ c0:
∞∑
n=1

|x(n)| ≤ 2
}
,

which is closed in c0. Fix x ∈ S(c0) and y ∈ S(c0). If |x(k)| = 1, say x(k) = 1,
pick |β| ≤ 2 such that y(k)+β = 1. Then βek ∈ D(x, y, ε)∩A for every ε > 0.
Obviously, A does not contain a multiple of B(c0).
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(b) We claim that x∗σ(x) =
∑∞
n=1 σnx(n) defines a strong Daugavet func-

tional on `1 whenever σ is a sequence of signs, i.e., if |σn| = 1 for all n. Indeed,
let x ∈ S(`1), y ∈ S(`1) and ε > 0. Pick N such that

∑N
n=1 |x(n)| > 1−ε and

define u ∈ S(`1) by u(n) = 0 for n ≤ N and u(n) = σn−Ny(n − N)/σn for
n > N . Then x∗(u) = x∗(y) and ‖x+u‖ > 2−ε; hence z := u−y ∈ D(x, y, ε)
and x∗(z) = 0. �

Next we give some examples of USD-nonfriendly spaces. Recall that a
point of local uniform rotundity of the unit sphere of a Banach space E (an
LUR-point) is a point x0 ∈ S(E) such that xn → x0 whenever ‖xn‖ ≤ 1 and
‖xn + x0‖ → 2.

Proposition 2.5. If the unit sphere of E contains an LUR-point, then E
is a USD-nonfriendly space with USD-parameter ≥ 1.

Proof. Let x0 ∈ S(E) be an LUR-point and let A ⊂ E be a closed abso-
lutely convex subset which intersects all elements of D(E). In particular, for
every fixed y ∈ S(E) the set A intersects all sets D(x0, y, ε) ⊂ E, ε > 0. By
the definition of an LUR-point this means that all points of the form x0 − y,
y ∈ S(E), belong to A, i.e., B(E) + x0 ⊂ A. But −x0 is also an LUR-point,
so B(E)− x0 ⊂ A, and by the convexity of A, B(E) ⊂ A. �

Corollary 2.6. Every locally uniformly convex space is USD-nonfriendly
with USD-parameter 2. In particular, the spaces Lp(µ) are USD-nonfriendly
for 1 < p <∞.

Proof. This follows from the previous proposition; that the USD-parameter
is 2 is a consequence of the fact that B(E) + x0 ⊂ A for all x0 ∈ S(E); see
the above proof. �

It is clear that no finite-dimensional space enjoys the Daugavet property,
but more is true.

Proposition 2.7. Every finite-dimensional Banach space E is a USD-
nonfriendly space.

Proof. Assume to the contrary that there is a finite-dimensional space E
that is not USD-nonfriendly. By Lemma 2.3 we can find a sequence of func-
tionals (x∗n) ⊂ S(E∗) such that infz∈D |x∗n(z)| ≤ 1/n for each D ∈ D(E). By
the compactness of the ball we can pass to the limit and obtain a functional
x∗ ∈ S(E∗) with the property that infz∈D |x∗(z)| = 0 for each D ∈ D(E).

Set K = {e ∈ B(E): x∗(e) = 1}; this is a norm-compact convex set. Let
x0 ∈ K be an arbitrary point. If we apply the above property to D(x0,−x0, ε)
for all ε > 0, we obtain, again by compactness, some z0 such that ‖z0−x0‖ = 1,
‖z0‖ = 2 and x∗(z0) = 0. We have
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x∗(x0 − z0) = 1, so x0 − z0 ∈ K. Therefore

2 ≥ diamK ≥ sup
y∈K
‖x0 − y‖ ≥ ‖x0 − (x0 − z0)‖ = ‖z0‖ = 2;

hence diamK = 2 and x0 is a diametral point of K, i.e.,

sup
y∈K
‖x0 − y‖ = diamK.

But any compact convex set of positive diameter contains a nondiametral
point [3, p. 38]; thus we have reached a contradiction. �

We shall later estimate the worst possible USD-parameter of an n-dimen-
sional normed space.

We have not been able to decide whether every reflexive space is USD-non-
friendly. Proposition 2.10 below presents a necessary condition a hypothetical
reflexive USD-friendly (= not USD-nonfriendly) space must fulfill.

We first give an easy geometrical lemma.

Lemma 2.8. Let x, h ∈ E, ‖x‖ ≤ 1 + ε, ‖h‖ ≤ 1 + ε, ‖x+ h‖ ≥ 2− ε. Let
f ∈ S(E∗) be a supporting functional of (x+ h)/‖x+ h‖. Then f(x) as well
as f(h) are bounded from below by 1− 2ε.

Proof. Set a = f(x), b = f(h). Then max(a, b) ≤ 1 + ε but a+ b ≥ 2− ε.
So min(a, b) = a+ b−max(a, b) ≥ 1− 2ε. �

Let E be a reflexive space, and let x∗0 be a strongly exposed point of S(E∗)
with strongly exposing evaluation functional x0; i.e., the diameter of the slice
{x∗ ∈ S(E∗): x∗(x0) > 1− ε} tends to 0 when ε tends to 0. Set

Sx∗0 = {x ∈ S(E): x∗0(x) = 1}.

Proposition 2.9. Let E, x∗0, x0 be as above, and let A be a closed convex
set which intersects all sets D(x0, 0, ε), ε > 0. Then A intersects Sx∗0 .

Proof. For every n ∈ N select hn ∈ A ∩ D(x0, 0, 1/n). Then ‖hn‖ ≤
1 + 1/n, ‖x0 + hn‖ ≥ 2 − 1/n. Denote by fn a supporting functional of
(x0 + hn)/‖x0 + hn‖. By the previous lemma fn(x0) tends to 1 when n tends
to infinity. So by the definition of an exposing functional, fn tends to x∗0. By
the same lemma fn(hn) tends to 1, so x∗0(hn) also tends to 1. Hence every
weak limit point of the sequence (hn) belongs to the intersection of A and
Sx∗0 . Therefore this intersection is nonempty. �

Proposition 2.10. Let E be a reflexive space.
(a) If E is USD-nonfriendly with USD-parameter < α, then there exists

a functional x∗ ∈ S(E∗) such that for every strongly exposed point
x∗0 of B(E∗) the numerical set x∗(Sx∗0 ) contains the interval [−1 +α,
1− α].
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(b) If E is not USD-nonfriendly, then for every strongly exposed point x∗0
of B(E∗) the set Sx∗0 has diameter 2. Moreover, for every δ > 0 there
exists a functional x∗ ∈ S(E∗) such that for every strongly exposed
point x∗0 of B(E∗) the numerical set x∗(Sx∗0 ) contains the interval
[−1 + δ, 1− δ].

Proof. (a) Let A be a closed absolutely convex set which intersects all sets
D ∈ D(E), but does not contain αB(E). By the Hahn-Banach theorem there
exists a functional x∗ ∈ S(E∗) such that |x∗(a)| < α for every a ∈ A. We fix
y ∈ S(E) with x∗(y) = −1.

Let x∗0 ∈ S(E∗) be a strongly exposed point of B(E∗). As before, we denote
an exposing evaluation functional by x0. Now A∩D(x0, y, ε) 6= ∅ for all ε > 0.
By Proposition 2.9 and the evident equality D(x0, 0, ε)− y = D(x0, y, ε) this
implies that the set A+y intersects Sx∗0 . If z1 is an element of this intersection,
we see that x∗(z1) < α− 1.

Likewise, since D(−x0, 0, ε) = −D(x0, 0, ε), we find some z2 ∈ (−A− y) ∩
Sx∗0 ; hence x∗(z2) > −α+ 1. Therefore, [−1 + α, 1− α] ⊂ x∗(Sx∗0 ).

(b) The argument is the same as in (a). �

This proposition allows us to estimate the USD-parameter of finite-dimen-
sional spaces.

Proposition 2.11. If E is n-dimensional, then its USD-parameter is
≥ 2/n.

Proof. Assume that dim(E) = n and that its USD-parameter is < 2/n;
then this parameter is strictly smaller than some α < 2/n. Choose x∗ as in
Proposition 2.10 so that

(2.1) [−1 + α, 1− α] ⊂ x∗(Sx∗0 )

for every strongly exposed functional x∗0 ∈ S(E∗).
We now claim that in any ε-neighbourhood of x∗ there is some y∗ ∈ B(E∗)

which can be represented as a convex combination of ≤ n strongly exposed
functionals. First we observe that the convex hull of the set stexpB(E∗) of
strongly exposed functionals is norm-dense in B(E∗); in fact, this is true of
any bounded closed convex set in a separable dual space [1, p. 110]. Hence,
for some ‖y∗1 − x∗‖ < ε, λ′1, . . . , λ

′
r ≥ 0 with

∑r
k=1 λ

′
k = 1 and x∗1, . . . , x

∗
r ∈

stexpB(E∗),

y∗1 =
r∑

k=1

λ′kx
∗
k.

Let C = co{x∗1, . . . , x∗r} and let y∗ be the point of intersection of the segment
[y∗1 , x

∗] with the relative boundary of C, i.e., y∗ = τx∗ + (1 − τ)y∗1 with τ =
sup{t ∈ [0, 1]: tx∗+(1−t)y∗1 ∈ C}. Let F be the face of C generated by y∗; then
F is a convex set of dimension < n. Therefore an appeal to Carathéodory’s
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theorem shows that y∗ can be represented as a convex combination of no more
than n extreme points of F . But exF ⊂ exC ⊂ {x∗1, . . . , x∗r} ⊂ stexpB(E∗),
and our claim is established.

We apply the claim with some ε < 2/n−α to obtain a convex combination
y∗ =

∑n
k=1 λkx

∗
k of n strongly exposed functionals such that ‖y∗ − x∗‖ < ε.

One of the coefficients must be ≥ 1/n, say λn ≥ 1/n. Now if x ∈ Sx∗n , then

x∗(x) ≥ x∗(y)− ε =
n−1∑
k=1

λkx
∗
k(x) + λn − ε

≥ −
n−1∑
k=1

λk + λn = −1 + 2λn − ε ≥ −1 + 2/n− ε.

By (2.1) we have −1+α ≥ −1+2/n−ε which contradicts our choice of ε. �

For `n∞ we can say more, namely that its USD-parameter is the worst
possible.

Proposition 2.12. The USD-parameter of `n∞ is 2/n.

Proof. In the setting of `n∞ instead of c0, the argument of Proposition 2.4(a)
implies that the USD-parameter of `n∞ is ≤ 2/n. The reverse inequality follows
from Proposition 2.11. �

3. Strong Daugavet and narrow operators in spaces of
vector-valued functions

Let E be a Banach space and let X be a subspace of the space of all
bounded E-valued functions defined on a set K, equipped with the sup-norm.
It will be convenient to use the following notation: A disjoint pair (U, V ) of
subsets of K is said to be interpolating for X if for all f, g ∈ X with ‖f‖ < 1
and ‖gχV ‖ < 1 there exists h ∈ B(X) such that h = f on U and h = g on V .

For arbitrary V ⊂ K denote by XV the subspace of all functions from X
vanishing on V .

Proposition 3.1. Let X be as above and let (U, V ) be an interpolating
pair for X. Then for every f ∈ X

dist(f,XV ) ≤ sup
t∈V
‖f(t)‖.

Proof. By the definition of an interpolating pair, for an arbitrary ε > 0
there exists an element h ∈ X, ‖h‖ < supt∈V ‖f(t)‖ + ε, such that h = 0 on
U and h = f on V . Then the element f − h belongs to XV , so

dist(f,XV ) ≤ ‖f − (f − h)‖ = ‖h‖ < sup
t∈V
‖f(t)‖+ ε,

which completes the proof. �
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Lemma 3.2. Let X ⊂ `∞(K,E), U, V ⊂ K, f ∈ S(XV ) and ε > 0.
Assume that U ⊃ {t ∈ K: ‖f(t)‖ > 1− ε} and that (U, V ) is an interpolating
pair for X. If T is a strong Daugavet operator on X and g ∈ B(X), there is
a function h ∈ XV , ‖h‖ ≤ 2 + ε, satisfying

‖Th‖ < ε, ‖(g + h)χU‖ < 1 + ε and ‖(f + g + h)χU‖ > 2− ε.

Proof. Before we begin the proof proper, we formulate a number of tech-
nical assertions that are easy to verify and will be needed later.

Sublemma 3.3. If T is a strong Daugavet operator on a Banach space X,
and if 1− η < ‖x‖ < 1 + η and ‖y‖ < 1 + η, then there is an element z ∈ X
such that

‖x+ y + z‖ > 2− 3η, ‖y + z‖ < 1 + 2η, ‖Tz‖ < η.

Proof. Choose x0 ∈ S(X) and y0 ∈ B(X) such that ‖x0−x‖ < η, ‖y0−y‖ <
η and pick by Lemma 1.2 z ∈ D(x0, y0, η) such that ‖Tz‖ < η; this element z
clearly has the required property. �

Sublemma 3.4. If ‖x‖ < 1 + η, ‖y‖ < 1 + η and ‖(x+ y)/2‖ > 1− η in
a normed space, then ‖λx+ (1− λ)y‖ > 1− 3η whenever 0 ≤ λ ≤ 1.

Proof. If ‖λx + (1 − λ)y‖ ≤ 1 − 3η for some 0 ≤ λ ≤ 1/2, then, since
λ1x+(1−λ1)(λx+(1−λ)y) = (x+y)/2 for λ1 = (1/2−λ)/(1−λ) ∈ [0, 1/2],
we would have∥∥∥x+ y

2

∥∥∥ ≤ λ1(1 + η) + (1− λ1)(1− 3η) = 1− (3− 4λ1)η ≤ 1− η,

contradicting the hypothesis of the Sublemma. The case λ > 1/2 is analogous.
�

Sublemma 3.5. If ‖y‖ < 1 + η and ‖x + Ny‖/(N + 1) > 1 − 3η in a
normed space, then ‖(x+ y)/2‖ > 1− (2N + 1)η.

Proof. If ‖(x+ y)/2‖ ≤ 1− (2N + 1)η, then we would have∥∥∥x+Ny

1 +N

∥∥∥ ≤ 2
1 +N

∥∥∥x+ y

2

∥∥∥+
(

1− 2
1 +N

)
‖y‖

≤ 2
1 +N

(
1− (2N + 1)η

)
+
(

1− 2
1 +N

)
(1 + η)

= 1− 3η,

which is a contradiction. �

We now begin the proof of Lemma 3.2. We may assume that ‖T‖ = 1. Fix
N > 6/ε and δ > 0 such that 2(2N + 1)9Nδ < ε, and let δn = 9nδ, so that
(2N + 1)δN < ε/2. Put f1 = f , g1 = g, and pick h1 ∈ X such that

‖f1 + g1 + h1‖ > 2− δ1, ‖g1 + h1‖ < 1 + 2δ0, ‖Th1‖ < δ0.
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We will construct inductively functions fn, gn, hn ∈ X satisfying
(a) fn+1 = 1

n+1 (f1 +
∑n
k=1(gk +hk)) = n

n+1fn+ 1
n+1 (gn+hn), 1−3δn <

‖fn+1‖ < 1 + δn;
(b) gn+1 = g1 on U and gn+1 = gn + hn (= g1 + h1 + · · · + hn) on V ,

‖gn+1‖ < 1 + δn;
(c) ‖fn+1+gn+1+hn+1‖ > 2−δn+1, 1−2δn < ‖gn+1+hn+1‖ < 1+6δn <

1 + δn+1, ‖Thn+1‖ < 3δn.
Suppose that these functions have already been constructed for the indices

1, . . . , n, and define fn+1 as in (a). Since, by the induction hypothesis, ‖fn‖ <
1 + δn−1 and ‖gn + hn‖ < 1 + δn we clearly have ‖fn+1‖ < 1 + δn. From
‖fn+gn+hn‖ > 2−δn, we conclude, using Sublemma 3.4 (with η = δn), that
‖fn+1‖ > 1−3δn. Thus (a) holds. To obtain (b) it is enough to use that (U, V )
is interpolating along with the induction hypothesis that ‖gn + hn‖ < 1 + δn.
Finally, (c) follows from Sublemma 3.3 with η = 3δn.

Next we claim that∥∥∥∥f1 +
1
N

N∑
k=1

(gk + hk)
∥∥∥∥ > 2− ε/2.

This follows from Sublemma 3.5, (c) and (a), and our choice of δ. But for
t /∈ U we can estimate∥∥∥∥f1(t) +

1
N

N∑
k=1

(gk(t) + hk(t))
∥∥∥∥ ≤ 1− ε+ 1− δN ≤ 2− 2ε,

and therefore, letting w = 1
N

∑N
k=1 hk,

‖(f + g + w)χU‖ =
∥∥∥∥(f1 +

1
N

N∑
k=1

(gk + hk)χU

)∥∥∥∥ > 2− ε/2.

Furthermore we have the estimates

‖(g + w)χU‖ =
∥∥∥∥ 1
N

N∑
k=1

(gk + hk)χU

∥∥∥∥ ≤ 1 + δN < 1 + ε/2,

‖Tw‖ ≤ 1
N

N∑
k=1

‖Thk‖ < 3δN−1 =
1
3
δN < ε/2,

‖hk‖ ≤ ‖gk + hk‖+ ‖gk‖ ≤ 2 + 2δk ≤ 2 + 2δN ≤ 2 + ε/2,

‖w‖ ≤ 1
N

N∑
k=1

‖hk‖ ≤ 2 + ε/2,

and for t ∈ V

‖w(t)‖ =
1
N
‖gN+1(t)− g1(t)‖ ≤ 2 + δN

N
<

3
N

< ε/2.
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By Proposition 3.1 and the above remarks we see that dist(w,XV ) < ε/2.
Hence, to complete the proof, it remains to replace w by an element h ∈ XV ,
‖h− w‖ ≤ ε/2. �

Let us remark that the conditions of Lemma 3.2 are fulfilled for an arbitrary
compact Hausdorff space K, any closed subset V ⊂ K, and for X = C(K,E)
as well as for X = Cw(K,E). The following corollary gives another example:

Corollary 3.6. If X = X1⊕∞X2 and T ∈ SD(X), then T |X1
∈ SD(X1).

To see this, let K = exB(X∗), K1 = exB(X∗1 ), K2 = exB(X∗2 ), so that
K = K1 ∪K2 and X ⊂ `∞(K) canonically. It remains to apply Lemma 3.2
with the interpolating pair (K1,K2). A direct proof of Corollary 3.6 was given
in [2].

In the sequel, given an element y ∈ E we also use the symbol y to denote
the constant function in C(K,E) taking that value.

Theorem 3.7. Let K be a compact Hausdorff space, E a Banach space
and T an operator on X = C(K,E). Then the following conditions are equiv-
alent:

(1) T ∈ SD(X).
(2) For every closed subset V ⊂ K, every x ∈ S(E), every y ∈ B(E) and

every ε > 0 there exists an open subset W ⊂ K \V , an element e ∈ E
with ‖e + y‖ < 1 + ε, ‖e + y + x‖ > 2 − ε, and a function h ∈ XV ,
‖h‖ ≤ 2 + ε, such that ‖Th‖ < ε and ‖e− h(t)‖ < ε for t ∈W .

(3) For every closed subset V ⊂ K, every x ∈ S(E), every y ∈ B(E)
and every ε > 0 there exists a function f ∈ XV such that ‖Tf‖ < ε,
‖f + y‖ < 1 + ε, ‖f + y + x‖ > 2− ε.

If K has no isolated points, then these conditions are equivalent to
(4) T ∈ NAR(X).

Proof. The implication (1) ⇒ (2) follows from Lemma 3.2 as follows. Let
us apply Lemma 3.2 with ε/4 > 0, g = χK⊗y, f = f1⊗x ∈ S(X), where f1 is
a positive scalar function vanishing on V , and U = {t ∈ K: ‖f(t)‖ > 1−ε/4},
and let h ∈ XV be obtained from this lemma. Choose a point t0 ∈ U such that
‖(f +g+h)(t0)‖ = ‖(f +h)(t0)+y‖ > 2−ε/4. Because ‖h(t0)+y‖ < 1+ε/4
we have ‖f(t0)‖ > 1 − ε/2, i.e., ‖f(t0) − x‖ < ε/2. Now select an open
neighbourhood W ⊂ U of t0 such that ‖f(τ) − x‖ < ε/2 for all τ ∈ W , and
put e = h(t0).

To prove the implication (2) ⇒ (3) let us fix positive numbers ε < 1/10,
δ < ε/4 and N > 6 + 2/ε. Now apply inductively condition (2) to obtain
elements xk, yk, ek, x1 = x, yk = y, k = 1, . . . , N , open subsets W1 ⊃ W2 ⊃
· · · , closed subsets Vk+1 = K \Wk, V1 = V , and functions hk ∈ XVk , with the
following properties:
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(a) xn+1 =
x+

∑n
k=1(yk + ek)

‖x+
∑n
k=1(yk + ek)‖

∈ S(E);

(b) ‖ek + yk‖ < 1 + δ, ‖ek + yk + xk‖ > 2− δ;
(c) hk ∈ XVk , ‖hk(t) − ek‖ < ε/4 for all t ∈ Wk, ‖hk‖ ≤ 2 + ε, and
‖Thk‖ < ε.

By an argument similar to that used in the proof of Lemma 3.2, we have
with a suitable choice of δ∥∥∥∥x+ y +

1
N

N∑
k=1

ek

∥∥∥∥ =
∥∥∥∥x+

1
N

N∑
k=1

(yk + ek)
∥∥∥∥ > 2− ε

2
.

Let us put f = 1
N

∑N
k=1 hk. Then the last inequality and (c) of our construc-

tion yield that f ∈ XV , ‖f + y + x‖ > 2 − ε, and ‖Tf‖ < ε. It remains
to estimate ‖f + y‖ from above. If t ∈ V , then ‖f(t) + y‖ = ‖y‖ ≤ 1. If
t ∈Wn \Wn+1 for some n, then

‖f(t) + y‖ =
∥∥∥∥ 1
N

n∑
k=1

hk(t) + y

∥∥∥∥ =
∥∥∥∥ 1
N

n∑
k=1

(hk(t) + y)
∥∥∥∥.

In this sum all summands except for the last one satisfy the inequality ‖hk(t)+
y‖ ≤ 1 + ε/2, and the last summand hn(t) + y is bounded by 3 + ε. So

‖f(t) + y‖ ≤ 1
N

n−1∑
k=1

(
1 +

ε

2

)
+

1
N

(3 + ε) ≤ 1 +
ε

2
+

1
N

(3 + ε) ≤ 1 + ε.

The same estimate holds for t ∈WN .
To prove the implication (3) ⇒ (1) fix f, g ∈ S(X) and 0 < ε < 1/10. Pick

a point t ∈ K with ‖f(t)‖ > 1− ε/4 and a neighbourhood U of t such that

‖f(t)− f(τ)‖+ ‖g(t)− g(τ)‖ < ε

4
for all τ ∈ U.

Set x = f(t)/‖f(t)‖ and y = g(t) and apply condition (3) to obtain a function
h ∈ XV such that ‖Th‖ < ε, ‖h + y‖ < 1 + ε/4, and ‖h + y + x‖ > 2 − ε/4.
For this function h we have ‖h + g‖ < 1 + ε and ‖h + g + f‖ > 2 − ε, so
T ∈ SD(X).

Let us now consider the case of a perfect compact space K. The impli-
cation (4) ⇒ (1) is evident. The proof of the remaining implication (3) ⇒
(4) is similar to that of the implication (3) ⇒ (1). Namely, let f, g ∈ S(X),
x∗ ∈ X∗, and let ε > 0 be small. We have to show that there is an element
h ∈ X such that

(3.1) ‖f + g + h‖ > 2− ε, ‖g + h‖ < 1 + ε

and

(3.2) ‖Th‖+ |x∗h| < ε.
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To this end, let us pick a closed subset V ⊂ K, whose complement K \ V we
denote by U , and a point t ∈ U such that ‖f(t)‖ > 1− ε/4,

(3.3) |x∗|XV <
ε

4
,

and for every τ ∈ U

(3.4) ‖f(t)− f(τ)‖+ ‖g(t)− g(τ)‖ < ε

4
.

Set x = f(t)/‖f(t)‖, y = g(t) and apply condition (3) to obtain a function
h ∈ XV such that ‖Th‖ < ε/4, ‖h+ y‖ < 1 + ε/4 and ‖h+ y + x‖ > 2− ε/4.
For this function h, (3.1) follows from (3.4), and (3.2) follows from (3.3). �

In [6] we defined the tilde-sum of two operators T1: X → Y1, T2: X → Y2

by
T1 +̃ T2: X → Y1 ⊕1 Y2, x 7→ (T1x, T2x).

We proved that the +̃-sum, and therefore also the ordinary sum, of two narrow
operators on C(K) is narrow (another proof will be given in the next section),
and we asked whether this is so on any space with the Daugavet property.
We are now in a position to provide a counterexample.

Let T : E → F be an operator on a Banach space. Let us denote by TK

the corresponding “multiplication” or “diagonal” operator TK : C(K,E) →
C(K,F ) defined by

(TKf)(t) = T (f(t)).

Proposition 3.8. TK ∈ SD(C(K,E)) if and only if T ∈ SD(E).

Proof. Condition (3) of Theorem 3.7 immediately yields the result. �

Here is the promised counterexample:

Theorem 3.9. There exists a Banach space X for which NAR(X) does
not form a semigroup under the operation +̃; in fact, C([0, 1], `1) is such a
space.

Proof. The key feature of `1 is that SD(`1) is not a +̃-semigroup, for we
have shown in Proposition 2.4(b) that x∗1(x) =

∑∞
n=1 x(n) and x∗2(x) = x(1)−∑∞

n=2 x(n) define strong Daugavet functionals on `1, but x∗1 + x∗2: x 7→ 2x(1)
is not in SD(`1), and hence x∗1 +̃ x∗2 is also not in SD(`1).

Now if SD(E) is not a +̃-semigroup, pick T1, T2 ∈ SD(E) with T1 +̃ T2 /∈
SD(E). Put X = C(K,E) for a perfect compact Hausdorff space K; then
by Proposition 3.8 and Theorem 3.7, TK1 , TK2 ∈ NAR(X), but TK1 +̃ TK2 /∈
NAR(X). �

Another example of a space for which SD(E) is not a +̃-semigroup is E =
L1[0, 1]. This is much more subtle than the case of `1 and is proved in [6,
Th. 6.3]. This example has the additional feature of involving a space with
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the Daugavet property; by Theorem 3.9, however, E = C([0, 1], `1) is another
example of this kind.

4. Narrow and C-narrow operators on C(K,E)

The following definition extends the notion of a C-narrow operator studied
in [4] and [6] to the vector-valued setting.

Definition 4.1. An operator T ∈ L(C(K,E),W ) is called C-narrow if
there is a constant λ such that given any ε > 0, x ∈ S(E), and an open set
U ⊂ K there is a function f ∈ C(K,E), ‖f‖ ≤ λ, satisfying the following
conditions:

(a) supp(f) ⊂ U ;
(b) f−1(B(x, ε)) 6= ∅, where B(x, ε) = {z ∈ E: ‖z − x‖ < ε};
(c) ‖Tf‖ < ε.

As the following proposition shows, condition (b) of this definition can
be substantially strengthened. In particular, the size of the constant λ is
immaterial, but introducing this constant in the definition allows for more
flexibility in applications. Also, Proposition 4.2 shows that for E = R the
new notion of C-narrowness coincides with that given in [6].

Proposition 4.2. If T is a C-narrow operator, then for every ε > 0,
every x ∈ S(E), and any open set U ⊂ K there is a function f of the form
g ⊗ x, where g ∈ C(K), supp(g) ⊂ U , ‖g‖ = 1, and g is nonnegative, such
that ‖Tf‖ < ε.

Proof. Let us fix ε > 0, an open set U in K, and x ∈ S(E). By Defi-
nition 4.1 there exists a function f1 ∈ C(K,E) as described in this defini-
tion corresponding to ε, U , and x. Put U1 = U and U2 = f−1

1 (B(x, 1/2)).
As above, there is a function f2 corresponding to ε, U2 and x. We set
U3 = f−1

2 (B(x, 1/4)) and continue the process. In the rth step we get the
set Ur = f−1

r−1(B(x, 1/2r−1)) and apply Definition 4.1 to obtain a function fr
corresponding to Ur.

Choose n ∈ N so that (λ+2)/n < ε and put f = 1
n (f1+f2+· · ·+fn). By the

Urysohn Lemma we can find a continuous function g satisfying k−1
n ≤ g(t) ≤ k

n
for all t ∈ Uk, k = 1, . . . , n, ‖g‖ = 1, and vanishing outside U1. We claim
that ‖f − g ⊗ x‖ < ε. Indeed, by our construction, if t ∈ K \ U1, then
‖(f − g⊗ x)(t)‖ = 0, and if t ∈ Uk \Uk+1 (with the understanding that Un+1

stands for ∅), then
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‖(f − g ⊗ x)(t)‖ =
∥∥∥ 1
n

(f1 + · · ·+ fk)(t)− g(t) · x
∥∥∥

≤
∥∥∥ 1
n

(
(f1(t)− x) + · · ·+ (fk−1(t)− x) + fk(t)

)∥∥∥+
1
n

≤ 1
n

(1
2

+ · · ·+ 1
2k−1

+ λ
)

+
1
n
<
λ+ 2
n

< ε.

Moreover,

‖Tf‖ ≤ 1
n

(‖Tf1‖+ ‖Tf2‖+ · · ·+ ‖Tfn‖) < ε.

Thus ‖T (g ⊗ x)‖ < ε + ε‖T‖, and since ε was chosen arbitrarily, we are
done. �

Another way to express this proposition is to say that T : C(K,E) → W
is C-narrow if and only if, for each x ∈ E, the restriction Tx: C(K) → W ,
Tx(g) = T (g ⊗ x), is C-narrow.

Proposition 4.3.

(a) Every C-narrow operator on C(K,E) is a strong Daugavet operator.
Hence, in the case of a perfect compact space K every C-narrow op-
erator on C(K,E) is narrow.

(b) If E is a separable USD-nonfriendly space, then every strong Daugavet
operator on C(K,E) is C-narrow.

(c) If every strong Daugavet operator on C(K,E) is C-narrow, then E
is SD-nonfriendly.

Proof. (a) Let T be C-narrow. We will use condition (3) of Theorem 3.7.
Let F ⊂ K be a closed subset, x ∈ S(E), y ∈ B(E), and ε > 0. According
to Proposition 4.2 there exists a function f vanishing on F of the form g ⊗
(x − y), where g ∈ C(K), ‖g‖ = 1, and g is nonnegative, such that ‖Tf‖ <
ε. Evidently this function f satisfies all requirements of condition (3) in
Theorem 3.7.

(b) Let T be a strong Daugavet operator, and suppose E is separable. Let
U ⊂ K be a non-empty open subset. Given x, y ∈ S(E) and ε′ > 0, we define

O(x, y, ε′) = {t ∈ U : ∃f ∈ C(K,E): supp f ⊂ U, ‖f + y‖ < 1 + ε′,

‖f(t) + y + x‖ > 2− ε′, ‖Tf‖ < ε′}.
This is an open subset of K, and by Theorem 3.7(3) it is dense in U . Now
pick a countable dense subset {(xn, yn): n ∈ N} of S(E) × S(E) and a null
sequence (εn). Then, by Baire’s theorem, G :=

⋂
nO(xn, yn, εn) is nonempty.

Let ε > 0, and fix t0 ∈ G. We denote by A(U, ε) the closure of

{f(t0): f ∈ C(K,E), ‖f‖ < 2 + ε, ‖Tf‖ < ε, supp f ⊂ U};
this is an absolutely convex set. We claim that A(U, ε) intersects each set
D(x, y, ε′) ∈ D(E). Indeed, if ‖xn − x‖ < ε′/4, ‖yn − y‖ < ε′/4, εn < ε′/2
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and εn < ε, then for a function fn as given in the definition of O(xn, yn, εn)
we have fn(t0) ∈ A(U, ε) ∩D(xn, yn, εn) ⊂ A(U, ε) ∩D(x, y, ε′).

Since E is USD-nonfriendly, say with parameter α, the set A(U, ε) contains
αB(E). This implies that T satisfies the definition of a C-narrow operator
with constant λ = 3/α.

(c) Let T ∈ SD(E); then by Proposition 3.8 TK is a strong Daugavet
operator on C(K,E). But(

TK(g ⊗ e)
)
(t) = T

(
(g ⊗ e)(t)

)
= g(t)Te.

Hence TK is not C-narrow unless T = 0. �

The example E = c0 shows that the converse of (b) is false. We have
already pointed out in Proposition 2.4(a) that c0 fails to be USD-nonfriendly;
yet every strong Daugavet operator on C(K, c0) is C-narrow. To see this
we first remark that it is enough to verify the condition of Proposition 4.2
for x belonging to a dense subset of S(E). In our context we may therefore
assume that the sequence x vanishes eventually, say x(n) = 0 for n > N . If
we write c0 = `N∞ ⊕∞ Z, where Z is the space of null sequences supported
on {N + 1, N + 2, . . . }, we also have C(K, c0) = C(K, `N∞) ⊕∞ C(K,Z). By
Corollary 3.6 the restriction of any strong Daugavet operator T on C(K, c0) to
C(K, `N∞) is again a strong Daugavet operator, and hence it is C-narrow, since
`N∞ is USD-nonfriendly (Proposition 2.7). This implies that T is C-narrow.

We do not know whether (c) is actually an equivalence.
One of the fundamental properties of C-narrow operators is stated in our

next theorem.

Theorem 4.4. Suppose that the operators T , Tn ∈ L(C(K,E),W ) are
such that the series

∑∞
n=1 w

∗(Tnf) converges absolutely to w∗(Tf), for every
w∗ ∈ W ∗ and f ∈ C(K,E). If all Tn are C-narrow, then so is T . In
particular, the sum of two C-narrow operators is a C-narrow operator.

Corollary 4.5. A pointwise unconditionally convergent sum of narrow
operators on C(K,E) is a narrow operator itself if E is separable and USD-
nonfriendly.

Indeed, this follows from Theorem 4.4 and Proposition 4.3; note that K
is perfect if there exists a narrow operator defined on C(K,E) in case E
fails the Daugavet property. To see the latter, assume that K = {k} ∪ K ′
for some isolated point k. If there exists a narrow operator on C(K,E) ∼=
E ⊕∞ C(K ′, E), then this space has the Daugavet property, and so has E [5,
Lemma 2.15].

We remark that the case of a sum of two narrow operators on C(K) was
treated earlier in [4] and [6], but the assertion about infinite sums is new even
in this case. In [5] it was shown that a pointwise unconditionally convergent



438 D. BILIK, V. KADETS, R. SHVIDKOY, G. SIROTKIN, AND D. WERNER

sum T =
∑∞
n=1 Tn on a space with the Daugavet property satisfies

‖Id + T‖ ≥ 1

whenever ‖Id + S‖ = 1 + ‖S‖ for every S in the linear span of the Tn. In the
context of Theorem 4.4 we have, in fact,

(4.1) ‖Id + T‖ = 1 + ‖T‖

in the case when all Tn are narrow on C(K). In particular, the identity on
C(K) cannot be represented as an unconditional sum of narrow operators,
since obviously (4.1) fails for T = −Id. This last consequence shows that
for an unconditional Schauder decomposition C(K) = X1 ⊕ X2 ⊕ . . . with
corresponding projections P1, P2, . . . one of the Pn must be non-narrow, since
Id =

∑∞
n=1 Pn pointwise unconditionally. Hence one of the Xn must be

infinite-dimensional if K is a perfect compact Hausdorff space. In fact, one
of the Xn must contain a copy of C[0, 1] and therefore, by a theorem of
Pe lczyński [7], be isomorphic to C[0, 1] if K is in addition metrisable; see [4]
and [5] for more results along these lines.

We now turn to the proof of Theorem 4.4, for which we need an auxiliary
concept. A similar idea was used in [4].

Definition 4.6. Let G be a closed Gδ-set in K and let T ∈ L(C(K),W ).
We say that G is a vanishing set of T if there is a sequence of open sets (Ui)i∈N
in K and a sequence of functions (fi)i∈N in S(C(K)) such that

(a) G =
⋂∞
i=1Ui;

(b) supp(fi) ⊂ Ui;
(c) limi→∞fi = χG pointwise;
(d) limi→∞‖Tfi‖ = 0.

The collection of all vanishing sets of T is denoted by vanT .

Let T ∈ L(C(K),W ). By the Riesz Representation Theorem, T ∗w∗ can be
viewed as a regular measure on the Borel subsets of K whenever w∗ ∈ W ∗.
For convenience, we denote this regular measure also by T ∗w∗.

Lemma 4.7. Suppose G is a closed Gδ-set in K and T ∈ L(C(K),W ).
Then G ∈ vanT if and only if T ∗w∗(G) = 0 for all w∗ ∈W ∗.

Proof. Let G ∈ vanT , and pick functions (fi)i∈N as in Definition 4.6. Then
by the Lebesgue Dominated Convergence Theorem, for any given w∗ ∈ W ∗
we have

T ∗w∗(G) =
∫
K

χG dT
∗w∗ = lim

i→∞

∫
K

fi dT
∗w∗ = lim

i→∞
w∗(Tfi) = 0.

Conversely, let (Ui)i∈N be a sequence of open sets in K such that U i+1 ⊂ Ui
and G =

⋂∞
i=1 Ui. By the Urysohn Lemma there exist functions (fi)i∈N having
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the following properties: 0 ≤ fi(t) ≤ 1 for all t ∈ K, supp(fi) ⊂ Ui, and
fi(t) = 1 if t ∈ U i+1. Clearly, limi→∞ fi = χG pointwise, and

lim
i→∞

w∗(Tfi) = lim
i→∞

T ∗w∗(fi) = T ∗w∗(G) = 0

whenever w∗ ∈ W ∗. This means that the sequence (Tfi)i∈N is weakly null.
Applying the Mazur Theorem we finally obtain a sequence of convex combi-
nations of the functions (fi)i∈N which satisfies all conditions of Definition 4.6.

This completes the proof. �

Lemma 4.8. An operator T ∈ L(C(K),W ) is C-narrow if and only if
every non-empty open set U ⊂ K contains a non-empty vanishing set of T .
Moreover, if (Tn)n∈N ⊂ L(C(K),W ) is a sequence of C-narrow operators,
every open set U 6= ∅ contains a set G 6= ∅ that is simultaneously a vanishing
set for all Tn.

Proof. We first prove the more general “moreover” part. Put U1,1 = U .
By the definition of a C-narrow operator and Proposition 4.2 there is a
function f1,1 ⊂ S(C(K)) with supp(f1,1) ⊂ U1,1, U1,2 := f−1

1,1 (1/2, 1] 6= ∅
and ‖T1f1,1‖ < 1/2. Obviously, U1,2 ⊂ f−1

1,1 [1/2, 1] ⊂ U1,1. Again apply-
ing the definition we find f1,2 ∈ S(C(K)) with supp(f1,2) ⊂ U1,2, U2,1 =
f−1

1,2 (2/3, 1] 6= ∅ and ‖T1f1,2‖ < 1/3. As above U2,1 ⊂ U1,2.
In view of the C-narrowness of T2 there exists a function f2,1 ∈ S(C(K))

with supp(f2,1) ⊂ U2,1, U1,3 = f−1
2,1 (2/3, 1] 6= ∅ and ‖T2f2,1‖ < 1/3. In the

next step we construct f1,3 ∈ S(C(K)) such that U2,2 = f−1
1,3 (3/4, 1] 6= ∅ and

‖T1f1,3‖ < 1/4.
Proceeding in the same way, in the nth step we find a set of functions

(fk,l)k+l=n ⊂ S(C(K)) and nonempty open sets (Uk,l)k+l=n in K such that
supp(fk,l) ⊂ Uk,l, ‖Tkfk,n−k‖ < 1

n and Uk,l = f−1
k−1,l+1(n−1

n , 1], if k 6= 1. Then
we put U1,n = f−1

n−1,1(n−1
n , 1] to begin the next step.

It remains to show that the set G =
⋂
k,l∈N Uk,l =

⋂
k,l∈N Uk,l is as desired.

Indeed, G is clearly a nonempty closed Gδ-set and G =
⋂∞
i=1 Un,i for every

n ∈ N. It is easily seen that the sequences (fn,i)i∈N and (Un,i)i∈N meet the
conditions of Definition 4.6 for the operator Tn. Hence, G ∈ vanTn for every
n ∈ N.

To prove the converse, let U 6= ∅ be any open set in K and let ε > 0.
By the assumption on vanT we can find a closed Gδ-set ∅ 6= G ⊂ U , G ∈
vanT . Consider the open sets (Ui)i∈N and the functions (fi)i∈N provided by
Definition 4.6. For sufficiently large i ∈ N we have Ui ⊂ U and ‖Tfi‖ < ε so
that fi may serve as the function required in Definition 4.1.

This finishes the proof. �

We are now in a position to prove Theorem 4.4.
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Proof of Theorem 4.4. By virtue of Proposition 4.2 we may assume that
E = R. By Lemma 4.8 it suffices to show that

⋂∞
n=1 vanTn ⊂ vanT .

Suppose G ∈
⋂∞
n=1 vanTn. According to Lemma 4.7 we need to prove

that T ∗w∗(G) = 0 for all w∗ ∈ W ∗. By the hypothesis of the theorem, the
series

∑∞
n=1T

∗
nw
∗ is weak∗-unconditionally Cauchy and hence weakly uncon-

ditionally Cauchy. Since C(K)∗ does not contain a copy of c0, it is actually
unconditionally norm convergent by the Bessaga-Pe lczyński Theorem. This
implies that the bounded sequence of functions (fi)i∈N satisfying fi → χG
pointwise, which was constructed in the proof of Lemma 4.7, satisfies

T ∗w∗(G) = lim
i→∞

T ∗w∗(fi) = lim
i→∞

∞∑
n=1

T ∗nw
∗(fi)

=
∞∑
n=1

T ∗nw
∗(χG) =

∞∑
n=1

T ∗nw
∗(G) = 0.

This completes the proof. �

References

[1] Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis, Vol. 1,

Colloquium Publ., no. 48, Amer. Math. Soc., Providence, RI, 2000.

[2] D. Bilik, V. Kadets, R. Shvidkoy, and D. Werner, Narrow operators and the Daugavet
property for ultraproducts, to appear; preprint available from http://xxx.lanl.gov.

[3] J. Diestel, Geometry of Banach spaces—selected topics, Lecture Notes in Math., vol.
485, Springer-Verlag, Berlin-Heidelberg-New York, 1975.

[4] V. M. Kadets and M. M. Popov, The Daugavet property for narrow operators in rich

subspaces of C[0, 1] and L1[0, 1], St. Petersburg Math. J. 8 (1997), 571–584.
[5] V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin, and D. Werner, Banach spaces with the

Daugavet property, Trans. Amer. Math. Soc. 352 (2000), 855–873.
[6] V. M. Kadets, R. V. Shvidkoy, and D. Werner, Narrow operators and rich subspaces of

Banach spaces with the Daugavet property, Studia Math. 147 (2001), 269–298.
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