NARROW OPERATORS ON VECTOR-VALUED SUP-NORMED SPACES

DMITRIY BILIK, VLADIMIR KADETS, ROMAN SHVIDKOY, GLEB SIROTKIN, AND DIRK WERNER

Abstract

We characterise narrow and strong Daugavet operators on $C(K, E)$-spaces; these are in a way the largest sensible classes of operators for which the norm equation $\|\operatorname{Id}+T\|=1+\|T\|$ is valid. For certain separable range spaces E, including all finite-dimensional spaces and all locally uniformly convex spaces, we show that an unconditionally pointwise convergent sum of narrow operators on $C(K, E)$ is narrow. This implies, for instance, the known result that these spaces do not have unconditional FDDs. In a different vein, we construct two narrow operators on $C\left([0,1], \ell_{1}\right)$ whose sum is not narrow.

1. Introduction and preliminaries

This paper is a follow-up contribution to our paper [6], where we defined and investigated narrow operators on Banach spaces with the Daugavet property. Before describing the contents of the present paper, we review some definitions and results from [5] and [6].

A Banach space X is said to have the Daugavet property if every rank-1 operator $T: X \rightarrow X$ satisfies

$$
\begin{equation*}
\|\operatorname{Id}+T\|=1+\|T\| \tag{1.1}
\end{equation*}
$$

For instance, $C(K)$ and $L_{1}(\mu)$ have the Daugavet property provided that K is perfect, i.e., has no isolated points, and μ does not have any atoms. We shall have occasion to use the following characterisation of the Daugavet property from [5]; the equivalence of (ii) and (iii) results from the HahnBanach theorem.

Received June 26, 2001; received in final form November 13, 2001.
2000 Mathematics Subject Classification. Primary 46B20. Secondary 46B04, 46B28, 46E40, 47B38.

The work of the second-named author was supported by a grant from the Alexander-von-Humboldt Stiftung.

Lemma 1.1. The following assertions are equivalent:
(i) X has the Daugavet property.
(ii) For all $x \in S(X), x^{*} \in S\left(X^{*}\right)$ and $\varepsilon>0$ there exists some $y \in S(X)$ such that $x^{*}(y)>1-\varepsilon$ and $\|x+y\|>2-\varepsilon$.
(iii) For all $x \in S(X)$ and $\varepsilon>0, B(X)=\overline{\operatorname{co}}\{z \in B(X):\|x+z\|>2-\varepsilon\}$.

It was shown in [5] and [9] that (1.1) automatically extends to wider classes of operators, e.g., weakly compact spaces and, more generally, spaces that do not fix copies of ℓ_{1} or strong Radon-Nikodým operators. (A strong RadonNikodým operator maps the unit ball into a set with the Radon-Nikodým property.) In [6] we gave new proofs of these results based on the notions of a strong Daugavet operator and a narrow operator. An operator $T: X \rightarrow Z$ is said to be a strong Daugavet operator if for any two elements $x, y \in S(X)$, the unit sphere of X, and for every $\varepsilon>0$ there is an element $u \in B(X)$, the unit ball of X, such that $\|x+u\|>2-\varepsilon$ and $\|T(y-u)\|<\varepsilon$. It is almost obvious that a strong Daugavet operator $T: X \rightarrow X$ satisfies (1.1). The nontrivial task now is to find sufficient conditions on T to be strongly Daugavet. In this vein we could show that, for instance, strong Radon-Nikodým operators and operators not fixing copies of ℓ_{1} are indeed strong Daugavet operators.

For some applications the concept of a strong Daugavet operator is somewhat too wide. Therefore we defined an operator $T: X \rightarrow Z$ to be narrow if for any two elements $x, y \in S(X)$, every $x^{*} \in X^{*}$ and every $\varepsilon>0$ there is an element $u \in B(X)$ such that $\|x+u\|>2-\varepsilon$ and $\|T(y-u)\|+\left|x^{*}(y-u)\right|<\varepsilon$. It follows that X has the Daugavet property if and only if all rank-1 operators are strong Daugavet operators if and only if there is at least one narrow operator on X. We denote the set of all strong Daugavet operators on X by $\mathcal{S D}(X)$ and the set of all narrow operators on X by $\mathcal{N A} \mathcal{A}(X)$. Actually, in [6] we took a slightly different point of view in that we declared two operators $T_{1}: X \rightarrow Z_{1}$ and $T_{2}: X \rightarrow Z_{2}$ to be equivalent if $\left\|T_{1} x\right\|=\left\|T_{2} x\right\|$ for all $x \in X$. We remark that $\mathcal{S D}(X)$ and $\mathcal{N A} \mathcal{R}(X)$ should really denote the sets of the corresponding equivalence classes; however, in this paper we shall not make this point explicitly.

In this paper we continue our investigations of this type of operator, mostly in the setting of vector-valued function spaces $C(K, E)$. One of the drawbacks of the definition of a strong Daugavet operator is that the sum of two such operators need not be a strong Daugavet operator, whereas the definition of a narrow operator has some built-in additivity property. It remained open in [6] whether the sum of any two narrow operators is always narrow, although we could prove that this is true on $C(K)$, and in general we showed that the sum of a narrow operator and an operator not fixing ℓ_{1} is narrow and that the sum of a narrow operator and a strong Radon-Nikodým operator is narrow. (Note that the sum of two strong Radon-Nikodým operators need not be a strong Radon-Nikodým operator [8].) Our work in Section 3, where we completely
characterise strong Daugavet and narrow operators on $C(K, E)$, enables us to give counterexamples to the sum problem.

For this purpose we employ a special feature of ℓ_{1} explained in Section 2. This section introduces a class of Banach spaces called USD-nonfriendly spaces that are sort of remote from spaces with the Daugavet property; USD stands for uniformly strongly Daugavet. All finite-dimensional spaces and all locally uniformly convex spaces fall within this category, but we have not been able to decide whether a reflexive space must be USD-nonfriendly.

The class of USD-nonfriendly spaces is tailored to our applications in Section 4 , where we study pointwise unconditionally convergent series $\sum_{n=1}^{\infty} T_{n}$ of narrow operators on $C(K, E)$. If E is separable and USD-nonfriendly, we prove that the sum operator must be narrow again. This is new even in the case $E=\mathbb{R}$. To achieve this, we take a detour investigating the related class of C-narrow operators, following ideas from [4]. An obvious corollary is the result from [4] that the identity on $C(K)$ is not a pointwise unconditional sum of narrow operators. This implies that $C(K)$ does not admit an unconditional Schauder decomposition into spaces not containing $C[0,1]$.

We conclude this introduction with a technical reformulation of the definition of a strong Daugavet operator. Let

$$
D(x, y, \varepsilon)=\{z \in X:\|x+y+z\|>2-\varepsilon,\|y+z\|<1+\varepsilon\}
$$

and

$$
\begin{aligned}
\mathcal{D}(X) & =\{D(x, y, \varepsilon): x \in S(X), y \in S(X), \varepsilon>0\} \\
\mathcal{D}_{0}(X) & =\{D(x, y, \varepsilon): x \in S(X), y \in B(X), \varepsilon>0\}
\end{aligned}
$$

It is easy to see that $T: X \rightarrow Z$ is a strong Daugavet operator if and only if T is not bounded from below on any set $D \in \mathcal{D}(X)$ [6, Prop. 3.4]. In Section 3 it will be more convenient to work with $\mathcal{D}_{0}(X)$ instead; the following lemma says that this does not make any difference.

Lemma 1.2. An operator $T: X \rightarrow Z$ is a strong Daugavet operator if and only if T is not bounded from below on any set $D \in \mathcal{D}_{0}(X)$.

Proof. We have to show that $T \in \mathcal{S D}(X)$ is not bounded from below on $D(x, y, \varepsilon)$ whenever $\|x\|=1,\|y\| \leq 1, \varepsilon>0$. By the above remarks, T is not bounded from below on $D(x,-x, 1)$; hence, given $\varepsilon^{\prime}>0$, for some $\zeta \in S(X)$ we have $\|T \zeta\|<\varepsilon^{\prime}$. Now pick $\lambda \geq 0$ such that $y+\lambda \zeta \in S(X)$; then there is some $z^{\prime} \in X$ such that

$$
\left\|x+(y+\lambda \zeta)+z^{\prime}\right\|>2-\varepsilon,\left\|(y+\lambda \zeta)+z^{\prime}\right\|<1+\varepsilon,\left\|T z^{\prime}\right\|<\varepsilon^{\prime}
$$

i.e., $z:=\lambda \zeta+z^{\prime} \in D(x, y, \varepsilon)$ and $\|T z\|<3 \varepsilon^{\prime}$.

2. USD-nonfriendly spaces

In this section we introduce a class of Banach spaces that are geometrically opposite to spaces with the Daugavet property. These spaces will arise naturally in Section 4.

Proposition 2.1. The following conditions for a Banach space E are equivalent.
(1) $\mathcal{S D}(E)=\{0\}$.
(2) No nonzero linear functional on E is a strong Daugavet operator.
(3) For every $x^{*} \in S\left(E^{*}\right)$ there exist some $\delta>0$ and $D \in \mathcal{D}(E)$ such that $\left|x^{*}(z)\right|>\delta$ for all $z \in D$.
(4) Every closed absolutely convex subset $A \subset E$ such that for every $\alpha>0$ and every $D \in \mathcal{D}(E)$ the intersection $(\alpha A) \cap D$ is nonempty coincides with the whole space E.

Proof. The implications (1) $\Rightarrow(2) \Rightarrow(3)$ are evident.
$(3) \Rightarrow(4)$: Assume there is a closed absolutely convex subset $A \subset E$ with the property stated in (4) that does not coincide with the whole space E. By the Hahn-Banach theorem there is a functional $x^{*} \in S\left(E^{*}\right)$ and a number $r>0$ such that $\left|x^{*}(a)\right| \leq r$ for every $a \in A$. If $\delta>0$ and $D \in \mathcal{D}(E)$ are arbitrary, pick $z \in\left(\frac{\delta}{r} A\right) \cap D$; this intersection is nonempty by the assumption on A. It follows that $\left|x^{*}(z)\right| \leq \delta$, and hence (3) fails.
(4) $\Rightarrow(1)$: Suppose $T \in \mathcal{S D}(E)$ and put $A=\{e \in E:\|T e\| \leq 1\}$. By the definition of a strong Daugavet operator this set A satisfies (4). So $A=E$, and hence $T=0$.

This proposition suggests the following definition.
Definition 2.2. A Banach space E is said to be an $S D$-nonfriendly space (i.e., strong Daugavet-nonfriendly) if $\mathcal{S D}(E)=\{0\}$. A space E is said to be a USD-nonfriendly space (i.e., uniformly strong Daugavet-nonfriendly) if there exists an $\alpha>0$ such that every closed absolutely convex subset $A \subset E$ which intersects all elements of $\mathcal{D}(E)$ contains $\alpha B(E)$. The largest admissible α is called the USD-parameter of E.

Proposition 2.1 shows that a USD-nonfriendly space is indeed SD-nonfriendly, but the converse is false as will be shown shortly. Also, SD-nonfriendliness is opposite to the Daugavet property in that the latter is equivalent to the condition that every functional is a strong Daugavet operator.

To further motivate the uniformity condition in the above definition, we prove the following lemma.

Lemma 2.3. A Banach space E is USD-nonfriendly if and only if
(3*) There exists some $\delta>0$ such that for every $x^{*} \in S\left(E^{*}\right)$ there exists $D \in \mathcal{D}(E)$ such that $\left|x^{*}(z)\right|>\delta$ for all $z \in D$.

Proof. It is enough to prove the implications (a) \Rightarrow (b) \Rightarrow (c) for the following assertions about a fixed number $\delta>0$:
(a) There exists a closed absolutely convex set $A \subset E$ not containing $\delta B(E)$ that intersects all $D \in \mathcal{D}(E)$.
(b) There exists a functional $x^{*} \in S\left(E^{*}\right)$ such that for all $D \in \mathcal{D}(E)$ there exists $z_{D} \in D$ satisfying $\left|x^{*}\left(z_{D}\right)\right| \leq \delta$
(c) There exists a closed absolutely convex set $A \subset E$ not containing $\delta^{\prime} B(E)$ for any $\delta^{\prime}>\delta$ that intersects all $D \in \mathcal{D}(E)$.
To see that (a) implies (b), pick $u \notin A,\|u\| \leq \delta$. By the Hahn-Banach theorem we can separate u from A by means of a functional $x^{*} \in S\left(E^{*}\right)$, i.e., for some number $r>0$ we have $\left|x^{*}(z)\right| \leq r$ for all $z \in A$ and $x^{*}(u)>r$. On the other hand, $x^{*}(u) \leq\left\|x^{*}\right\|\|u\| \leq \delta$, and hence (b) holds for x^{*}.

If we assume (b), we define A to be the closed absolutely convex hull of the elements $z_{D}, D \in \mathcal{D}(E)$, appearing in (b). Obviously A intersects each $D \in \mathcal{D}(E)$. If $\delta^{\prime} B(E) \subset A$ for some $\delta^{\prime}>0$, then, since $\left|x^{*}\right| \leq \delta$ on A, we must have $\left|x^{*}\right| \leq \delta$ on $\delta^{\prime} B(E)$, i.e., $\delta^{\prime} \leq \delta$. Therefore A statisfies the property stated in (c).

In Proposition 2.1 and Lemma 2.3 we may replace $\mathcal{D}(E)$ by $\mathcal{D}_{0}(E)$.
We now turn to some examples.

Proposition 2.4.

(a) The space c_{0} is SD-nonfriendly, but not USD-nonfriendly.
(b) The space ℓ_{1} is not $S D$-nonfriendly, and hence not USD-nonfriendly either.

Proof. (a) Theorem 3.5 of [6] implies that $T e_{k}=0$ for every unit basis vector e_{k} if $T \in \mathcal{S D}\left(c_{0}\right)$. (Actually, the theorem quoted is formulated for operators on $C(K)$ for compact K, but the theorem holds also on $C_{0}(L)$ with L locally compact.) Hence $T=0$ is the only strong Daugavet operator on c_{0}. (Another way to see this is to apply Corollary 3.6.)

To show that c_{0} is not USD-nonfriendly we exhibit a closed absolutely convex set A intersecting each $D \in \mathcal{D}\left(c_{0}\right)$, yet containing no ball. Let $A=$ $2 B\left(\ell_{1}\right) \subset c_{0}$, i.e.,

$$
A=\left\{(x(n)) \in c_{0}: \sum_{n=1}^{\infty}|x(n)| \leq 2\right\}
$$

which is closed in c_{0}. Fix $x \in S\left(c_{0}\right)$ and $y \in S\left(c_{0}\right)$. If $|x(k)|=1$, say $x(k)=1$, pick $|\beta| \leq 2$ such that $y(k)+\beta=1$. Then $\beta e_{k} \in D(x, y, \varepsilon) \cap A$ for every $\varepsilon>0$. Obviously, A does not contain a multiple of $B\left(c_{0}\right)$.
(b) We claim that $x_{\sigma}^{*}(x)=\sum_{n=1}^{\infty} \sigma_{n} x(n)$ defines a strong Daugavet functional on ℓ_{1} whenever σ is a sequence of signs, i.e., if $\left|\sigma_{n}\right|=1$ for all n. Indeed, let $x \in S\left(\ell_{1}\right), y \in S\left(\ell_{1}\right)$ and $\varepsilon>0$. Pick N such that $\sum_{n=1}^{N}|x(n)|>1-\varepsilon$ and define $u \in S\left(\ell_{1}\right)$ by $u(n)=0$ for $n \leq N$ and $u(n)=\sigma_{n-N} y(n-N) / \sigma_{n}$ for $n>N$. Then $x^{*}(u)=x^{*}(y)$ and $\|x+u\|>2-\varepsilon$; hence $z:=u-y \in D(x, y, \varepsilon)$ and $x^{*}(z)=0$.

Next we give some examples of USD-nonfriendly spaces. Recall that a point of local uniform rotundity of the unit sphere of a Banach space E (an LUR-point) is a point $x_{0} \in S(E)$ such that $x_{n} \rightarrow x_{0}$ whenever $\left\|x_{n}\right\| \leq 1$ and $\left\|x_{n}+x_{0}\right\| \rightarrow 2$.

Proposition 2.5. If the unit sphere of E contains an $L U R$-point, then E is a USD-nonfriendly space with USD-parameter ≥ 1.

Proof. Let $x_{0} \in S(E)$ be an LUR-point and let $A \subset E$ be a closed absolutely convex subset which intersects all elements of $\mathcal{D}(E)$. In particular, for every fixed $y \in S(E)$ the set A intersects all sets $D\left(x_{0}, y, \varepsilon\right) \subset E, \varepsilon>0$. By the definition of an LUR-point this means that all points of the form $x_{0}-y$, $y \in S(E)$, belong to A, i.e., $B(E)+x_{0} \subset A$. But $-x_{0}$ is also an LUR-point, so $B(E)-x_{0} \subset A$, and by the convexity of $A, B(E) \subset A$.

COROLLARY 2.6. Every locally uniformly convex space is USD-nonfriendly with USD-parameter 2 . In particular, the spaces $L_{p}(\mu)$ are USD-nonfriendly for $1<p<\infty$.

Proof. This follows from the previous proposition; that the USD-parameter is 2 is a consequence of the fact that $B(E)+x_{0} \subset A$ for all $x_{0} \in S(E)$; see the above proof.

It is clear that no finite-dimensional space enjoys the Daugavet property, but more is true.

Proposition 2.7. Every finite-dimensional Banach space E is a USDnonfriendly space.

Proof. Assume to the contrary that there is a finite-dimensional space E that is not USD-nonfriendly. By Lemma 2.3 we can find a sequence of functionals $\left(x_{n}^{*}\right) \subset S\left(E^{*}\right)$ such that $\inf _{z \in D}\left|x_{n}^{*}(z)\right| \leq 1 / n$ for each $D \in \mathcal{D}(E)$. By the compactness of the ball we can pass to the limit and obtain a functional $x^{*} \in S\left(E^{*}\right)$ with the property that $\inf _{z \in D}\left|x^{*}(z)\right|=0$ for each $D \in \mathcal{D}(E)$.

Set $K=\left\{e \in B(E): x^{*}(e)=1\right\}$; this is a norm-compact convex set. Let $x_{0} \in K$ be an arbitrary point. If we apply the above property to $D\left(x_{0},-x_{0}, \varepsilon\right)$ for all $\varepsilon>0$, we obtain, again by compactness, some z_{0} such that $\left\|z_{0}-x_{0}\right\|=1$, $\left\|z_{0}\right\|=2$ and $x^{*}\left(z_{0}\right)=0$. We have
$x^{*}\left(x_{0}-z_{0}\right)=1$, so $x_{0}-z_{0} \in K$. Therefore

$$
2 \geq \operatorname{diam} K \geq \sup _{y \in K}\left\|x_{0}-y\right\| \geq\left\|x_{0}-\left(x_{0}-z_{0}\right)\right\|=\left\|z_{0}\right\|=2
$$

hence $\operatorname{diam} K=2$ and x_{0} is a diametral point of K, i.e.,

$$
\sup _{y \in K}\left\|x_{0}-y\right\|=\operatorname{diam} K
$$

But any compact convex set of positive diameter contains a nondiametral point [3, p. 38]; thus we have reached a contradiction.

We shall later estimate the worst possible USD-parameter of an n-dimensional normed space.

We have not been able to decide whether every reflexive space is USD-nonfriendly. Proposition 2.10 below presents a necessary condition a hypothetical reflexive USD-friendly ($=$ not USD-nonfriendly) space must fulfill.

We first give an easy geometrical lemma.
Lemma 2.8. Let $x, h \in E,\|x\| \leq 1+\varepsilon,\|h\| \leq 1+\varepsilon,\|x+h\| \geq 2-\varepsilon$. Let $f \in S\left(E^{*}\right)$ be a supporting functional of $(x+h) /\|x+h\|$. Then $f(x)$ as well as $f(h)$ are bounded from below by $1-2 \varepsilon$.

Proof. Set $a=f(x), b=f(h)$. Then $\max (a, b) \leq 1+\varepsilon$ but $a+b \geq 2-\varepsilon$. So $\min (a, b)=a+b-\max (a, b) \geq 1-2 \varepsilon$.

Let E be a reflexive space, and let x_{0}^{*} be a strongly exposed point of $S\left(E^{*}\right)$ with strongly exposing evaluation functional x_{0}; i.e., the diameter of the slice $\left\{x^{*} \in S\left(E^{*}\right): x^{*}\left(x_{0}\right)>1-\varepsilon\right\}$ tends to 0 when ε tends to 0 . Set

$$
S_{x_{0}^{*}}=\left\{x \in S(E): x_{0}^{*}(x)=1\right\} .
$$

Proposition 2.9. Let E, x_{0}^{*}, x_{0} be as above, and let A be a closed convex set which intersects all sets $D\left(x_{0}, 0, \varepsilon\right), \varepsilon>0$. Then A intersects $S_{x_{0}^{*}}$.

Proof. For every $n \in \mathbb{N}$ select $h_{n} \in A \cap D\left(x_{0}, 0,1 / n\right)$. Then $\left\|h_{n}\right\| \leq$ $1+1 / n,\left\|x_{0}+h_{n}\right\| \geq 2-1 / n$. Denote by f_{n} a supporting functional of $\left(x_{0}+h_{n}\right) /\left\|x_{0}+h_{n}\right\|$. By the previous lemma $f_{n}\left(x_{0}\right)$ tends to 1 when n tends to infinity. So by the definition of an exposing functional, f_{n} tends to x_{0}^{*}. By the same lemma $f_{n}\left(h_{n}\right)$ tends to 1 , so $x_{0}^{*}\left(h_{n}\right)$ also tends to 1 . Hence every weak limit point of the sequence $\left(h_{n}\right)$ belongs to the intersection of A and $S_{x_{0}^{*}}$. Therefore this intersection is nonempty.

Proposition 2.10. Let E be a reflexive space.
(a) If E is USD-nonfriendly with USD-parameter $<\alpha$, then there exists a functional $x^{*} \in S\left(E^{*}\right)$ such that for every strongly exposed point x_{0}^{*} of $B\left(E^{*}\right)$ the numerical set $x^{*}\left(S_{x_{0}^{*}}\right)$ contains the interval $[-1+\alpha$, $1-\alpha]$.
(b) If E is not USD-nonfriendly, then for every strongly exposed point x_{0}^{*} of $B\left(E^{*}\right)$ the set $S_{x_{0}^{*}}$ has diameter 2 . Moreover, for every $\delta>0$ there exists a functional $x^{*} \in S\left(E^{*}\right)$ such that for every strongly exposed point x_{0}^{*} of $B\left(E^{*}\right)$ the numerical set $x^{*}\left(S_{x_{0}^{*}}\right)$ contains the interval $[-1+\delta, 1-\delta]$.

Proof. (a) Let A be a closed absolutely convex set which intersects all sets $D \in \mathcal{D}(E)$, but does not contain $\alpha B(E)$. By the Hahn-Banach theorem there exists a functional $x^{*} \in S\left(E^{*}\right)$ such that $\left|x^{*}(a)\right|<\alpha$ for every $a \in A$. We fix $y \in S(E)$ with $x^{*}(y)=-1$.

Let $x_{0}^{*} \in S\left(E^{*}\right)$ be a strongly exposed point of $B\left(E^{*}\right)$. As before, we denote an exposing evaluation functional by x_{0}. Now $A \cap D\left(x_{0}, y, \varepsilon\right) \neq \emptyset$ for all $\varepsilon>0$. By Proposition 2.9 and the evident equality $D\left(x_{0}, 0, \varepsilon\right)-y=D\left(x_{0}, y, \varepsilon\right)$ this implies that the set $A+y$ intersects $S_{x_{0}^{*}}$. If z_{1} is an element of this intersection, we see that $x^{*}\left(z_{1}\right)<\alpha-1$.

Likewise, since $D\left(-x_{0}, 0, \varepsilon\right)=-D\left(x_{0}, 0, \varepsilon\right)$, we find some $z_{2} \in(-A-y) \cap$ $S_{x_{0}^{*}}$; hence $x^{*}\left(z_{2}\right)>-\alpha+1$. Therefore, $[-1+\alpha, 1-\alpha] \subset x^{*}\left(S_{x_{0}^{*}}\right)$.
(b) The argument is the same as in (a).

This proposition allows us to estimate the USD-parameter of finite-dimensional spaces.

Proposition 2.11. If E is n-dimensional, then its USD-parameter is $\geq 2 / n$.

Proof. Assume that $\operatorname{dim}(E)=n$ and that its USD-parameter is $<2 / n$; then this parameter is strictly smaller than some $\alpha<2 / n$. Choose x^{*} as in Proposition 2.10 so that

$$
\begin{equation*}
[-1+\alpha, 1-\alpha] \subset x^{*}\left(S_{x_{0}^{*}}\right) \tag{2.1}
\end{equation*}
$$

for every strongly exposed functional $x_{0}^{*} \in S\left(E^{*}\right)$.
We now claim that in any ε-neighbourhood of x^{*} there is some $y^{*} \in B\left(E^{*}\right)$ which can be represented as a convex combination of $\leq n$ strongly exposed functionals. First we observe that the convex hull of the set stexp $B\left(E^{*}\right)$ of strongly exposed functionals is norm-dense in $B\left(E^{*}\right)$; in fact, this is true of any bounded closed convex set in a separable dual space [1, p. 110]. Hence, for some $\left\|y_{1}^{*}-x^{*}\right\|<\varepsilon, \lambda_{1}^{\prime}, \ldots, \lambda_{r}^{\prime} \geq 0$ with $\sum_{k=1}^{r} \lambda_{k}^{\prime}=1$ and $x_{1}^{*}, \ldots, x_{r}^{*} \in$ stexp $B\left(E^{*}\right)$,

$$
y_{1}^{*}=\sum_{k=1}^{r} \lambda_{k}^{\prime} x_{k}^{*}
$$

Let $C=\operatorname{co}\left\{x_{1}^{*}, \ldots, x_{r}^{*}\right\}$ and let y^{*} be the point of intersection of the segment [y_{1}^{*}, x^{*}] with the relative boundary of C, i.e., $y^{*}=\tau x^{*}+(1-\tau) y_{1}^{*}$ with $\tau=$ $\sup \left\{t \in[0,1]: t x^{*}+(1-t) y_{1}^{*} \in C\right\}$. Let F be the face of C generated by y^{*}; then F is a convex set of dimension $<n$. Therefore an appeal to Carathéodory's
theorem shows that y^{*} can be represented as a convex combination of no more than n extreme points of F. But ex $F \subset \operatorname{ex} C \subset\left\{x_{1}^{*}, \ldots, x_{r}^{*}\right\} \subset \operatorname{stexp} B\left(E^{*}\right)$, and our claim is established.

We apply the claim with some $\varepsilon<2 / n-\alpha$ to obtain a convex combination $y^{*}=\sum_{k=1}^{n} \lambda_{k} x_{k}^{*}$ of n strongly exposed functionals such that $\left\|y^{*}-x^{*}\right\|<\varepsilon$. One of the coefficients must be $\geq 1 / n$, say $\lambda_{n} \geq 1 / n$. Now if $x \in S_{x_{n}^{*}}$, then

$$
\begin{aligned}
x^{*}(x) & \geq x^{*}(y)-\varepsilon=\sum_{k=1}^{n-1} \lambda_{k} x_{k}^{*}(x)+\lambda_{n}-\varepsilon \\
& \geq-\sum_{k=1}^{n-1} \lambda_{k}+\lambda_{n}=-1+2 \lambda_{n}-\varepsilon \geq-1+2 / n-\varepsilon
\end{aligned}
$$

By (2.1) we have $-1+\alpha \geq-1+2 / n-\varepsilon$ which contradicts our choice of ε.
For ℓ_{∞}^{n} we can say more, namely that its USD-parameter is the worst possible.

Proposition 2.12. The USD-parameter of ℓ_{∞}^{n} is $2 / n$.
Proof. In the setting of ℓ_{∞}^{n} instead of c_{0}, the argument of Proposition 2.4(a) implies that the USD-parameter of ℓ_{∞}^{n} is $\leq 2 / n$. The reverse inequality follows from Proposition 2.11.

3. Strong Daugavet and narrow operators in spaces of vector-valued functions

Let E be a Banach space and let X be a subspace of the space of all bounded E-valued functions defined on a set K, equipped with the sup-norm. It will be convenient to use the following notation: A disjoint pair (U, V) of subsets of K is said to be interpolating for X if for all $f, g \in X$ with $\|f\|<1$ and $\left\|g \chi_{V}\right\|<1$ there exists $h \in B(X)$ such that $h=f$ on U and $h=g$ on V.

For arbitrary $V \subset K$ denote by X_{V} the subspace of all functions from X vanishing on V.

Proposition 3.1. Let X be as above and let (U, V) be an interpolating pair for X. Then for every $f \in X$

$$
\operatorname{dist}\left(f, X_{V}\right) \leq \sup _{t \in V}\|f(t)\|
$$

Proof. By the definition of an interpolating pair, for an arbitrary $\varepsilon>0$ there exists an element $h \in X,\|h\|<\sup _{t \in V}\|f(t)\|+\varepsilon$, such that $h=0$ on U and $h=f$ on V. Then the element $f-h$ belongs to X_{V}, so

$$
\operatorname{dist}\left(f, X_{V}\right) \leq\|f-(f-h)\|=\|h\|<\sup _{t \in V}\|f(t)\|+\varepsilon
$$

which completes the proof.

Lemma 3.2. Let $X \subset \ell_{\infty}(K, E), U, V \subset K, f \in S\left(X_{V}\right)$ and $\varepsilon>0$. Assume that $U \supset\{t \in K:\|f(t)\|>1-\varepsilon\}$ and that (U, V) is an interpolating pair for X. If T is a strong Daugavet operator on X and $g \in B(X)$, there is a function $h \in X_{V},\|h\| \leq 2+\varepsilon$, satisfying

$$
\|T h\|<\varepsilon,\left\|(g+h) \chi_{U}\right\|<1+\varepsilon \text { and }\left\|(f+g+h) \chi_{U}\right\|>2-\varepsilon .
$$

Proof. Before we begin the proof proper, we formulate a number of technical assertions that are easy to verify and will be needed later.

Sublemma 3.3. If T is a strong Daugavet operator on a Banach space X, and if $1-\eta<\|x\|<1+\eta$ and $\|y\|<1+\eta$, then there is an element $z \in X$ such that

$$
\|x+y+z\|>2-3 \eta,\|y+z\|<1+2 \eta,\|T z\|<\eta
$$

Proof. Choose $x_{0} \in S(X)$ and $y_{0} \in B(X)$ such that $\left\|x_{0}-x\right\|<\eta,\left\|y_{0}-y\right\|<$ η and pick by Lemma $1.2 z \in D\left(x_{0}, y_{0}, \eta\right)$ such that $\|T z\|<\eta$; this element z clearly has the required property.

Sublemma 3.4. If $\|x\|<1+\eta,\|y\|<1+\eta$ and $\|(x+y) / 2\|>1-\eta$ in a normed space, then $\|\lambda x+(1-\lambda) y\|>1-3 \eta$ whenever $0 \leq \lambda \leq 1$.

Proof. If $\|\lambda x+(1-\lambda) y\| \leq 1-3 \eta$ for some $0 \leq \lambda \leq 1 / 2$, then, since $\lambda_{1} x+\left(1-\lambda_{1}\right)(\lambda x+(1-\lambda) y)=(x+y) / 2$ for $\lambda_{1}=(1 / 2-\lambda) /(1-\lambda) \in[0,1 / 2]$, we would have

$$
\left\|\frac{x+y}{2}\right\| \leq \lambda_{1}(1+\eta)+\left(1-\lambda_{1}\right)(1-3 \eta)=1-\left(3-4 \lambda_{1}\right) \eta \leq 1-\eta
$$

contradicting the hypothesis of the Sublemma. The case $\lambda>1 / 2$ is analogous.

Sublemma 3.5. If $\|y\|<1+\eta$ and $\|x+N y\| /(N+1)>1-3 \eta$ in a normed space, then $\|(x+y) / 2\|>1-(2 N+1) \eta$.

Proof. If $\|(x+y) / 2\| \leq 1-(2 N+1) \eta$, then we would have

$$
\begin{aligned}
\left\|\frac{x+N y}{1+N}\right\| & \leq \frac{2}{1+N}\left\|\frac{x+y}{2}\right\|+\left(1-\frac{2}{1+N}\right)\|y\| \\
& \leq \frac{2}{1+N}(1-(2 N+1) \eta)+\left(1-\frac{2}{1+N}\right)(1+\eta) \\
& =1-3 \eta
\end{aligned}
$$

which is a contradiction.
We now begin the proof of Lemma 3.2. We may assume that $\|T\|=1$. Fix $N>6 / \varepsilon$ and $\delta>0$ such that $2(2 N+1) 9^{N} \delta<\varepsilon$, and let $\delta_{n}=9^{n} \delta$, so that $(2 N+1) \delta_{N}<\varepsilon / 2$. Put $f_{1}=f, g_{1}=g$, and pick $h_{1} \in X$ such that

$$
\left\|f_{1}+g_{1}+h_{1}\right\|>2-\delta_{1},\left\|g_{1}+h_{1}\right\|<1+2 \delta_{0},\left\|T h_{1}\right\|<\delta_{0}
$$

We will construct inductively functions $f_{n}, g_{n}, h_{n} \in X$ satisfying
(a) $f_{n+1}=\frac{1}{n+1}\left(f_{1}+\sum_{k=1}^{n}\left(g_{k}+h_{k}\right)\right)=\frac{n}{n+1} f_{n}+\frac{1}{n+1}\left(g_{n}+h_{n}\right), 1-3 \delta_{n}<$ $\left\|f_{n+1}\right\|<1+\delta_{n}$
(b) $g_{n+1}=g_{1}$ on U and $g_{n+1}=g_{n}+h_{n}\left(=g_{1}+h_{1}+\cdots+h_{n}\right)$ on V, $\left\|g_{n+1}\right\|<1+\delta_{n}$
(c) $\left\|f_{n+1}+g_{n+1}+h_{n+1}\right\|>2-\delta_{n+1}, 1-2 \delta_{n}<\left\|g_{n+1}+h_{n+1}\right\|<1+6 \delta_{n}<$ $1+\delta_{n+1},\left\|T h_{n+1}\right\|<3 \delta_{n}$.
Suppose that these functions have already been constructed for the indices $1, \ldots, n$, and define f_{n+1} as in (a). Since, by the induction hypothesis, $\left\|f_{n}\right\|<$ $1+\delta_{n-1}$ and $\left\|g_{n}+h_{n}\right\|<1+\delta_{n}$ we clearly have $\left\|f_{n+1}\right\|<1+\delta_{n}$. From $\left\|f_{n}+g_{n}+h_{n}\right\|>2-\delta_{n}$, we conclude, using Sublemma 3.4 (with $\eta=\delta_{n}$), that $\left\|f_{n+1}\right\|>1-3 \delta_{n}$. Thus (a) holds. To obtain (b) it is enough to use that (U, V) is interpolating along with the induction hypothesis that $\left\|g_{n}+h_{n}\right\|<1+\delta_{n}$. Finally, (c) follows from Sublemma 3.3 with $\eta=3 \delta_{n}$.

Next we claim that

$$
\left\|f_{1}+\frac{1}{N} \sum_{k=1}^{N}\left(g_{k}+h_{k}\right)\right\|>2-\varepsilon / 2
$$

This follows from Sublemma 3.5, (c) and (a), and our choice of δ. But for $t \notin U$ we can estimate

$$
\left\|f_{1}(t)+\frac{1}{N} \sum_{k=1}^{N}\left(g_{k}(t)+h_{k}(t)\right)\right\| \leq 1-\varepsilon+1-\delta_{N} \leq 2-2 \varepsilon
$$

and therefore, letting $w=\frac{1}{N} \sum_{k=1}^{N} h_{k}$,

$$
\left\|(f+g+w) \chi_{U}\right\|=\left\|\left(f_{1}+\frac{1}{N} \sum_{k=1}^{N}\left(g_{k}+h_{k}\right) \chi_{U}\right)\right\|>2-\varepsilon / 2
$$

Furthermore we have the estimates

$$
\begin{aligned}
\left\|(g+w) \chi_{U}\right\| & =\left\|\frac{1}{N} \sum_{k=1}^{N}\left(g_{k}+h_{k}\right) \chi_{U}\right\| \leq 1+\delta_{N}<1+\varepsilon / 2 \\
\|T w\| & \leq \frac{1}{N} \sum_{k=1}^{N}\left\|T h_{k}\right\|<3 \delta_{N-1}=\frac{1}{3} \delta_{N}<\varepsilon / 2 \\
\left\|h_{k}\right\| & \leq\left\|g_{k}+h_{k}\right\|+\left\|g_{k}\right\| \leq 2+2 \delta_{k} \leq 2+2 \delta_{N} \leq 2+\varepsilon / 2 \\
\|w\| & \leq \frac{1}{N} \sum_{k=1}^{N}\left\|h_{k}\right\| \leq 2+\varepsilon / 2
\end{aligned}
$$

and for $t \in V$

$$
\|w(t)\|=\frac{1}{N}\left\|g_{N+1}(t)-g_{1}(t)\right\| \leq \frac{2+\delta_{N}}{N}<\frac{3}{N}<\varepsilon / 2
$$

By Proposition 3.1 and the above remarks we see that $\operatorname{dist}\left(w, X_{V}\right)<\varepsilon / 2$. Hence, to complete the proof, it remains to replace w by an element $h \in X_{V}$, $\|h-w\| \leq \varepsilon / 2$.

Let us remark that the conditions of Lemma 3.2 are fulfilled for an arbitrary compact Hausdorff space K, any closed subset $V \subset K$, and for $X=C(K, E)$ as well as for $X=C_{w}(K, E)$. The following corollary gives another example:

Corollary 3.6. If $X=X_{1} \oplus_{\infty} X_{2}$ and $T \in \mathcal{S D}(X)$, then $\left.T\right|_{X_{1}} \in \mathcal{S D}\left(X_{1}\right)$.
To see this, let $K=\operatorname{ex} B\left(X^{*}\right), K_{1}=\operatorname{ex} B\left(X_{1}^{*}\right), K_{2}=\operatorname{ex} B\left(X_{2}^{*}\right)$, so that $K=K_{1} \cup K_{2}$ and $X \subset \ell_{\infty}(K)$ canonically. It remains to apply Lemma 3.2 with the interpolating pair $\left(K_{1}, K_{2}\right)$. A direct proof of Corollary 3.6 was given in [2].

In the sequel, given an element $y \in E$ we also use the symbol y to denote the constant function in $C(K, E)$ taking that value.

Theorem 3.7. Let K be a compact Hausdorff space, E a Banach space and T an operator on $X=C(K, E)$. Then the following conditions are equivalent:
(1) $T \in \mathcal{S D}(X)$.
(2) For every closed subset $V \subset K$, every $x \in S(E)$, every $y \in B(E)$ and every $\varepsilon>0$ there exists an open subset $W \subset K \backslash V$, an element $e \in E$ with $\|e+y\|<1+\varepsilon,\|e+y+x\|>2-\varepsilon$, and a function $h \in X_{V}$, $\|h\| \leq 2+\varepsilon$, such that $\|T h\|<\varepsilon$ and $\|e-h(t)\|<\varepsilon$ for $t \in W$.
(3) For every closed subset $V \subset K$, every $x \in S(E)$, every $y \in B(E)$ and every $\varepsilon>0$ there exists a function $f \in X_{V}$ such that $\|T f\|<\varepsilon$, $\|f+y\|<1+\varepsilon,\|f+y+x\|>2-\varepsilon$.
If K has no isolated points, then these conditions are equivalent to
(4) $T \in \mathcal{N A} \mathcal{R}(X)$.

Proof. The implication (1) $\Rightarrow(2)$ follows from Lemma 3.2 as follows. Let us apply Lemma 3.2 with $\varepsilon / 4>0, g=\chi_{K} \otimes y, f=f_{1} \otimes x \in S(X)$, where f_{1} is a positive scalar function vanishing on V, and $U=\{t \in K:\|f(t)\|>1-\varepsilon / 4\}$, and let $h \in X_{V}$ be obtained from this lemma. Choose a point $t_{0} \in U$ such that $\left\|(f+g+h)\left(t_{0}\right)\right\|=\left\|(f+h)\left(t_{0}\right)+y\right\|>2-\varepsilon / 4$. Because $\left\|h\left(t_{0}\right)+y\right\|<1+\varepsilon / 4$ we have $\left\|f\left(t_{0}\right)\right\|>1-\varepsilon / 2$, i.e., $\left\|f\left(t_{0}\right)-x\right\|<\varepsilon / 2$. Now select an open neighbourhood $W \subset U$ of t_{0} such that $\|f(\tau)-x\|<\varepsilon / 2$ for all $\tau \in W$, and put $e=h\left(t_{0}\right)$.

To prove the implication $(2) \Rightarrow(3)$ let us fix positive numbers $\varepsilon<1 / 10$, $\delta<\varepsilon / 4$ and $N>6+2 / \varepsilon$. Now apply inductively condition (2) to obtain elements $x_{k}, y_{k}, e_{k}, x_{1}=x, y_{k}=y, k=1, \ldots, N$, open subsets $W_{1} \supset W_{2} \supset$ \cdots, closed subsets $V_{k+1}=K \backslash W_{k}, V_{1}=V$, and functions $h_{k} \in X_{V_{k}}$, with the following properties:
(a) $x_{n+1}=\frac{x+\sum_{k=1}^{n}\left(y_{k}+e_{k}\right)}{\left\|x+\sum_{k=1}^{n}\left(y_{k}+e_{k}\right)\right\|} \in S(E)$;
(b) $\left\|e_{k}+y_{k}\right\|<1+\delta,\left\|e_{k}+y_{k}+x_{k}\right\|>2-\delta$;
(c) $h_{k} \in X_{V_{k}},\left\|h_{k}(t)-e_{k}\right\|<\varepsilon / 4$ for all $t \in W_{k},\left\|h_{k}\right\| \leq 2+\varepsilon$, and $\left\|T h_{k}\right\|<\varepsilon$.
By an argument similar to that used in the proof of Lemma 3.2, we have with a suitable choice of δ

$$
\left\|x+y+\frac{1}{N} \sum_{k=1}^{N} e_{k}\right\|=\left\|x+\frac{1}{N} \sum_{k=1}^{N}\left(y_{k}+e_{k}\right)\right\|>2-\frac{\varepsilon}{2} .
$$

Let us put $f=\frac{1}{N} \sum_{k=1}^{N} h_{k}$. Then the last inequality and (c) of our construction yield that $f \in X_{V},\|f+y+x\|>2-\varepsilon$, and $\|T f\|<\varepsilon$. It remains to estimate $\|f+y\|$ from above. If $t \in V$, then $\|f(t)+y\|=\|y\| \leq 1$. If $t \in W_{n} \backslash W_{n+1}$ for some n, then

$$
\|f(t)+y\|=\left\|\frac{1}{N} \sum_{k=1}^{n} h_{k}(t)+y\right\|=\left\|\frac{1}{N} \sum_{k=1}^{n}\left(h_{k}(t)+y\right)\right\|
$$

In this sum all summands except for the last one satisfy the inequality $\| h_{k}(t)+$ $y \| \leq 1+\varepsilon / 2$, and the last summand $h_{n}(t)+y$ is bounded by $3+\varepsilon$. So

$$
\|f(t)+y\| \leq \frac{1}{N} \sum_{k=1}^{n-1}\left(1+\frac{\varepsilon}{2}\right)+\frac{1}{N}(3+\varepsilon) \leq 1+\frac{\varepsilon}{2}+\frac{1}{N}(3+\varepsilon) \leq 1+\varepsilon
$$

The same estimate holds for $t \in W_{N}$.
To prove the implication $(3) \Rightarrow(1)$ fix $f, g \in S(X)$ and $0<\varepsilon<1 / 10$. Pick a point $t \in K$ with $\|f(t)\|>1-\varepsilon / 4$ and a neighbourhood U of t such that

$$
\|f(t)-f(\tau)\|+\|g(t)-g(\tau)\|<\frac{\varepsilon}{4} \text { for all } \tau \in U
$$

Set $x=f(t) /\|f(t)\|$ and $y=g(t)$ and apply condition (3) to obtain a function $h \in X_{V}$ such that $\|T h\|<\varepsilon,\|h+y\|<1+\varepsilon / 4$, and $\|h+y+x\|>2-\varepsilon / 4$. For this function h we have $\|h+g\|<1+\varepsilon$ and $\|h+g+f\|>2-\varepsilon$, so $T \in \mathcal{S D}(X)$.

Let us now consider the case of a perfect compact space K. The implication $(4) \Rightarrow(1)$ is evident. The proof of the remaining implication $(3) \Rightarrow$ (4) is similar to that of the implication (3) $\Rightarrow(1)$. Namely, let $f, g \in S(X)$, $x^{*} \in X^{*}$, and let $\varepsilon>0$ be small. We have to show that there is an element $h \in X$ such that

$$
\begin{equation*}
\|f+g+h\|>2-\varepsilon, \quad\|g+h\|<1+\varepsilon \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|T h\|+\left|x^{*} h\right|<\varepsilon \tag{3.2}
\end{equation*}
$$

To this end, let us pick a closed subset $V \subset K$, whose complement $K \backslash V$ we denote by U, and a point $t \in U$ such that $\|f(t)\|>1-\varepsilon / 4$,

$$
\begin{equation*}
\left|x^{*}\right|_{X_{V}}<\frac{\varepsilon}{4} \tag{3.3}
\end{equation*}
$$

and for every $\tau \in U$

$$
\begin{equation*}
\|f(t)-f(\tau)\|+\|g(t)-g(\tau)\|<\frac{\varepsilon}{4} \tag{3.4}
\end{equation*}
$$

Set $x=f(t) /\|f(t)\|, y=g(t)$ and apply condition (3) to obtain a function $h \in X_{V}$ such that $\|T h\|<\varepsilon / 4,\|h+y\|<1+\varepsilon / 4$ and $\|h+y+x\|>2-\varepsilon / 4$. For this function h, (3.1) follows from (3.4), and (3.2) follows from (3.3).

In [6] we defined the tilde-sum of two operators $T_{1}: X \rightarrow Y_{1}, T_{2}: X \rightarrow Y_{2}$ by

$$
T_{1} \tilde{+} T_{2}: X \rightarrow Y_{1} \oplus_{1} Y_{2}, x \mapsto\left(T_{1} x, T_{2} x\right)
$$

We proved that the $\widetilde{+}$-sum, and therefore also the ordinary sum, of two narrow operators on $C(K)$ is narrow (another proof will be given in the next section), and we asked whether this is so on any space with the Daugavet property. We are now in a position to provide a counterexample.

Let $T: E \rightarrow F$ be an operator on a Banach space. Let us denote by T^{K} the corresponding "multiplication" or "diagonal" operator $T^{K}: C(K, E) \rightarrow$ $C(K, F)$ defined by

$$
\left(T^{K} f\right)(t)=T(f(t))
$$

Proposition 3.8. $\quad T^{K} \in \mathcal{S D}(C(K, E))$ if and only if $T \in \mathcal{S D}(E)$.
Proof. Condition (3) of Theorem 3.7 immediately yields the result.
Here is the promised counterexample:
Theorem 3.9. There exists a Banach space X for which $\mathcal{N A R}(X)$ does not form a semigroup under the operation $\widetilde{+}$; in fact, $C\left([0,1], \ell_{1}\right)$ is such a space.

Proof. The key feature of ℓ_{1} is that $\mathcal{S D}\left(\ell_{1}\right)$ is not a $\widetilde{+}$-semigroup, for we have shown in Proposition 2.4(b) that $x_{1}^{*}(x)=\sum_{n=1}^{\infty} x(n)$ and $x_{2}^{*}(x)=x(1)-$ $\sum_{n=2}^{\infty} x(n)$ define strong Daugavet functionals on ℓ_{1}, but $x_{1}^{*}+x_{2}^{*}: x \mapsto 2 x(1)$ is not in $\mathcal{S D}\left(\ell_{1}\right)$, and hence $x_{1}^{*} \widetilde{+} x_{2}^{*}$ is also not in $\mathcal{S D}\left(\ell_{1}\right)$.

Now if $\mathcal{S D}(E)$ is not a $\widetilde{+}$-semigroup, pick $T_{1}, T_{2} \in \mathcal{S D}(E)$ with $T_{1} \widetilde{+} T_{2} \notin$ $\mathcal{S D}(E)$. Put $X=C(K, E)$ for a perfect compact Hausdorff space K; then by Proposition 3.8 and Theorem 3.7, $T_{1}^{K}, T_{2}^{K} \in \mathcal{N} \mathcal{A R}(X)$, but $T_{1}^{K} \widetilde{+} T_{2}^{K} \notin$ $\mathcal{N A} \mathcal{R}(X)$.

Another example of a space for which $\mathcal{S D}(E)$ is not a $\widetilde{+}$-semigroup is $E=$ $L_{1}[0,1]$. This is much more subtle than the case of ℓ_{1} and is proved in [6, Th. 6.3]. This example has the additional feature of involving a space with
the Daugavet property; by Theorem 3.9, however, $E=C\left([0,1], \ell_{1}\right)$ is another example of this kind.

4. Narrow and C-narrow operators on $C(K, E)$

The following definition extends the notion of a C-narrow operator studied in [4] and [6] to the vector-valued setting.

Definition 4.1. An operator $T \in L(C(K, E), W)$ is called C-narrow if there is a constant λ such that given any $\varepsilon>0, x \in S(E)$, and an open set $U \subset K$ there is a function $f \in C(K, E),\|f\| \leq \lambda$, satisfying the following conditions:
(a) $\operatorname{supp}(f) \subset U$;
(b) $f^{-1}(B(x, \varepsilon)) \neq \emptyset$, where $B(x, \varepsilon)=\{z \in E:\|z-x\|<\varepsilon\}$;
(c) $\|T f\|<\varepsilon$.

As the following proposition shows, condition (b) of this definition can be substantially strengthened. In particular, the size of the constant λ is immaterial, but introducing this constant in the definition allows for more flexibility in applications. Also, Proposition 4.2 shows that for $E=\mathbb{R}$ the new notion of C-narrowness coincides with that given in [6].

Proposition 4.2. If T is a C-narrow operator, then for every $\varepsilon>0$, every $x \in S(E)$, and any open set $U \subset K$ there is a function f of the form $g \otimes x$, where $g \in C(K), \operatorname{supp}(g) \subset U,\|g\|=1$, and g is nonnegative, such that $\|T f\|<\varepsilon$.

Proof. Let us fix $\varepsilon>0$, an open set U in K, and $x \in S(E)$. By Definition 4.1 there exists a function $f_{1} \in C(K, E)$ as described in this definition corresponding to ε, U, and x. Put $U_{1}=U$ and $U_{2}=f_{1}^{-1}(B(x, 1 / 2))$. As above, there is a function f_{2} corresponding to ε, U_{2} and x. We set $U_{3}=f_{2}^{-1}(B(x, 1 / 4))$ and continue the process. In the r th step we get the set $U_{r}=f_{r-1}^{-1}\left(B\left(x, 1 / 2^{r-1}\right)\right)$ and apply Definition 4.1 to obtain a function f_{r} corresponding to U_{r}.

Choose $n \in \mathbb{N}$ so that $(\lambda+2) / n<\varepsilon$ and put $f=\frac{1}{n}\left(f_{1}+f_{2}+\cdots+f_{n}\right)$. By the Urysohn Lemma we can find a continuous function g satisfying $\frac{k-1}{n} \leq g(t) \leq \frac{k}{n}$ for all $t \in U_{k}, k=1, \ldots, n,\|g\|=1$, and vanishing outside U_{1}. We claim that $\|f-g \otimes x\|<\varepsilon$. Indeed, by our construction, if $t \in K \backslash U_{1}$, then $\|(f-g \otimes x)(t)\|=0$, and if $t \in U_{k} \backslash U_{k+1}$ (with the understanding that U_{n+1} stands for $\emptyset)$, then

$$
\begin{aligned}
\|(f-g \otimes x)(t)\| & =\left\|\frac{1}{n}\left(f_{1}+\cdots+f_{k}\right)(t)-g(t) \cdot x\right\| \\
& \leq\left\|\frac{1}{n}\left(\left(f_{1}(t)-x\right)+\cdots+\left(f_{k-1}(t)-x\right)+f_{k}(t)\right)\right\|+\frac{1}{n} \\
& \leq \frac{1}{n}\left(\frac{1}{2}+\cdots+\frac{1}{2^{k-1}}+\lambda\right)+\frac{1}{n}<\frac{\lambda+2}{n}<\varepsilon
\end{aligned}
$$

Moreover,

$$
\|T f\| \leq \frac{1}{n}\left(\left\|T f_{1}\right\|+\left\|T f_{2}\right\|+\cdots+\left\|T f_{n}\right\|\right)<\varepsilon
$$

Thus $\|T(g \otimes x)\|<\varepsilon+\varepsilon\|T\|$, and since ε was chosen arbitrarily, we are done.

Another way to express this proposition is to say that $T: C(K, E) \rightarrow W$ is C-narrow if and only if, for each $x \in E$, the restriction $T_{x}: C(K) \rightarrow W$, $T_{x}(g)=T(g \otimes x)$, is C-narrow.

Proposition 4.3.

(a) Every C-narrow operator on $C(K, E)$ is a strong Daugavet operator. Hence, in the case of a perfect compact space K every C-narrow operator on $C(K, E)$ is narrow.
(b) If E is a separable USD-nonfriendly space, then every strong Daugavet operator on $C(K, E)$ is C-narrow.
(c) If every strong Daugavet operator on $C(K, E)$ is C-narrow, then E is SD-nonfriendly.

Proof. (a) Let T be C-narrow. We will use condition (3) of Theorem 3.7. Let $F \subset K$ be a closed subset, $x \in S(E), y \in B(E)$, and $\varepsilon>0$. According to Proposition 4.2 there exists a function f vanishing on F of the form $g \otimes$ $(x-y)$, where $g \in C(K),\|g\|=1$, and g is nonnegative, such that $\|T f\|<$ ε. Evidently this function f satisfies all requirements of condition (3) in Theorem 3.7.
(b) Let T be a strong Daugavet operator, and suppose E is separable. Let $U \subset K$ be a non-empty open subset. Given $x, y \in S(E)$ and $\varepsilon^{\prime}>0$, we define

$$
\begin{gathered}
O\left(x, y, \varepsilon^{\prime}\right)=\left\{t \in U: \exists f \in C(K, E): \operatorname{supp} f \subset U,\|f+y\|<1+\varepsilon^{\prime}\right. \\
\left.\|f(t)+y+x\|>2-\varepsilon^{\prime},\|T f\|<\varepsilon^{\prime}\right\}
\end{gathered}
$$

This is an open subset of K, and by Theorem $3.7(3)$ it is dense in U. Now pick a countable dense subset $\left\{\left(x_{n}, y_{n}\right): n \in \mathbb{N}\right\}$ of $S(E) \times S(E)$ and a null sequence $\left(\varepsilon_{n}\right)$. Then, by Baire's theorem, $G:=\bigcap_{n} O\left(x_{n}, y_{n}, \varepsilon_{n}\right)$ is nonempty.

Let $\varepsilon>0$, and fix $t_{0} \in G$. We denote by $A(U, \varepsilon)$ the closure of

$$
\left\{f\left(t_{0}\right): f \in C(K, E),\|f\|<2+\varepsilon,\|T f\|<\varepsilon, \operatorname{supp} f \subset U\right\}
$$

this is an absolutely convex set. We claim that $A(U, \varepsilon)$ intersects each set $D\left(x, y, \varepsilon^{\prime}\right) \in \mathcal{D}(E)$. Indeed, if $\left\|x_{n}-x\right\|<\varepsilon^{\prime} / 4,\left\|y_{n}-y\right\|<\varepsilon^{\prime} / 4, \varepsilon_{n}<\varepsilon^{\prime} / 2$
and $\varepsilon_{n}<\varepsilon$, then for a function f_{n} as given in the definition of $O\left(x_{n}, y_{n}, \varepsilon_{n}\right)$ we have $f_{n}\left(t_{0}\right) \in A(U, \varepsilon) \cap D\left(x_{n}, y_{n}, \varepsilon_{n}\right) \subset A(U, \varepsilon) \cap D\left(x, y, \varepsilon^{\prime}\right)$.

Since E is USD-nonfriendly, say with parameter α, the set $A(U, \varepsilon)$ contains $\alpha B(E)$. This implies that T satisfies the definition of a C-narrow operator with constant $\lambda=3 / \alpha$.
(c) Let $T \in \mathcal{S D}(E)$; then by Proposition $3.8 T^{K}$ is a strong Daugavet operator on $C(K, E)$. But

$$
\left(T^{K}(g \otimes e)\right)(t)=T((g \otimes e)(t))=g(t) T e
$$

Hence T^{K} is not C-narrow unless $T=0$.
The example $E=c_{0}$ shows that the converse of (b) is false. We have already pointed out in Proposition 2.4(a) that c_{0} fails to be USD-nonfriendly; yet every strong Daugavet operator on $C\left(K, c_{0}\right)$ is C-narrow. To see this we first remark that it is enough to verify the condition of Proposition 4.2 for x belonging to a dense subset of $S(E)$. In our context we may therefore assume that the sequence x vanishes eventually, say $x(n)=0$ for $n>N$. If we write $c_{0}=\ell_{\infty}^{N} \oplus_{\infty} Z$, where Z is the space of null sequences supported on $\{N+1, N+2, \ldots\}$, we also have $C\left(K, c_{0}\right)=C\left(K, \ell_{\infty}^{N}\right) \oplus_{\infty} C(K, Z)$. By Corollary 3.6 the restriction of any strong Daugavet operator T on $C\left(K, c_{0}\right)$ to $C\left(K, \ell_{\infty}^{N}\right)$ is again a strong Daugavet operator, and hence it is C-narrow, since ℓ_{∞}^{N} is USD-nonfriendly (Proposition 2.7). This implies that T is C-narrow.

We do not know whether (c) is actually an equivalence.
One of the fundamental properties of C-narrow operators is stated in our next theorem.

Theorem 4.4. Suppose that the operators $T, T_{n} \in L(C(K, E), W)$ are such that the series $\sum_{n=1}^{\infty} w^{*}\left(T_{n} f\right)$ converges absolutely to $w^{*}(T f)$, for every $w^{*} \in W^{*}$ and $f \in C(K, E)$. If all T_{n} are C-narrow, then so is T. In particular, the sum of two C-narrow operators is a C-narrow operator.

Corollary 4.5. A pointwise unconditionally convergent sum of narrow operators on $C(K, E)$ is a narrow operator itself if E is separable and USDnonfriendly.

Indeed, this follows from Theorem 4.4 and Proposition 4.3; note that K is perfect if there exists a narrow operator defined on $C(K, E)$ in case E fails the Daugavet property. To see the latter, assume that $K=\{k\} \cup K^{\prime}$ for some isolated point k. If there exists a narrow operator on $C(K, E) \cong$ $E \oplus_{\infty} C\left(K^{\prime}, E\right)$, then this space has the Daugavet property, and so has $E[5$, Lemma 2.15].

We remark that the case of a sum of two narrow operators on $C(K)$ was treated earlier in [4] and [6], but the assertion about infinite sums is new even in this case. In [5] it was shown that a pointwise unconditionally convergent
sum $T=\sum_{n=1}^{\infty} T_{n}$ on a space with the Daugavet property satisfies

$$
\|\operatorname{Id}+T\| \geq 1
$$

whenever $\|\mathrm{Id}+S\|=1+\|S\|$ for every S in the linear span of the T_{n}. In the context of Theorem 4.4 we have, in fact,

$$
\begin{equation*}
\|\operatorname{Id}+T\|=1+\|T\| \tag{4.1}
\end{equation*}
$$

in the case when all T_{n} are narrow on $C(K)$. In particular, the identity on $C(K)$ cannot be represented as an unconditional sum of narrow operators, since obviously (4.1) fails for $T=-\mathrm{Id}$. This last consequence shows that for an unconditional Schauder decomposition $C(K)=X_{1} \oplus X_{2} \oplus \ldots$ with corresponding projections P_{1}, P_{2}, \ldots one of the P_{n} must be non-narrow, since Id $=\sum_{n=1}^{\infty} P_{n}$ pointwise unconditionally. Hence one of the X_{n} must be infinite-dimensional if K is a perfect compact Hausdorff space. In fact, one of the X_{n} must contain a copy of $C[0,1]$ and therefore, by a theorem of Pełczyński [7], be isomorphic to $C[0,1]$ if K is in addition metrisable; see [4] and [5] for more results along these lines.

We now turn to the proof of Theorem 4.4, for which we need an auxiliary concept. A similar idea was used in [4].

Definition 4.6. Let G be a closed G_{δ}-set in K and let $T \in L(C(K), W)$. We say that G is a vanishing set of T if there is a sequence of open sets $\left(U_{i}\right)_{i \in \mathbb{N}}$ in K and a sequence of functions $\left(f_{i}\right)_{i \in \mathbb{N}}$ in $S(C(K))$ such that
(a) $G=\bigcap_{i=1}^{\infty} U_{i}$;
(b) $\operatorname{supp}\left(f_{i}\right) \subset U_{i}$;
(c) $\lim _{i \rightarrow \infty} f_{i}=\chi_{G}$ pointwise;
(d) $\lim _{i \rightarrow \infty}\left\|T f_{i}\right\|=0$.

The collection of all vanishing sets of T is denoted by $\operatorname{van} T$.
Let $T \in L(C(K), W)$. By the Riesz Representation Theorem, $T^{*} w^{*}$ can be viewed as a regular measure on the Borel subsets of K whenever $w^{*} \in W^{*}$. For convenience, we denote this regular measure also by $T^{*} w^{*}$.

Lemma 4.7. Suppose G is a closed G_{δ}-set in K and $T \in L(C(K), W)$. Then $G \in \operatorname{van} T$ if and only if $T^{*} w^{*}(G)=0$ for all $w^{*} \in W^{*}$.

Proof. Let $G \in \operatorname{van} T$, and pick functions $\left(f_{i}\right)_{i \in \mathbb{N}}$ as in Definition 4.6. Then by the Lebesgue Dominated Convergence Theorem, for any given $w^{*} \in W^{*}$ we have

$$
T^{*} w^{*}(G)=\int_{K} \chi_{G} d T^{*} w^{*}=\lim _{i \rightarrow \infty} \int_{K} f_{i} d T^{*} w^{*}=\lim _{i \rightarrow \infty} w^{*}\left(T f_{i}\right)=0
$$

Conversely, let $\left(U_{i}\right)_{i \in \mathbb{N}}$ be a sequence of open sets in K such that $\bar{U}_{i+1} \subset U_{i}$ and $G=\bigcap_{i=1}^{\infty} U_{i}$. By the Urysohn Lemma there exist functions $\left(f_{i}\right)_{i \in \mathbb{N}}$ having
the following properties: $0 \leq f_{i}(t) \leq 1$ for all $t \in K$, $\operatorname{supp}\left(f_{i}\right) \subset U_{i}$, and $f_{i}(t)=1$ if $t \in \bar{U}_{i+1}$. Clearly, $\lim _{i \rightarrow \infty} f_{i}=\chi_{G}$ pointwise, and

$$
\lim _{i \rightarrow \infty} w^{*}\left(T f_{i}\right)=\lim _{i \rightarrow \infty} T^{*} w^{*}\left(f_{i}\right)=T^{*} w^{*}(G)=0
$$

whenever $w^{*} \in W^{*}$. This means that the sequence $\left(T f_{i}\right)_{i \in \mathbb{N}}$ is weakly null. Applying the Mazur Theorem we finally obtain a sequence of convex combinations of the functions $\left(f_{i}\right)_{i \in \mathbb{N}}$ which satisfies all conditions of Definition 4.6.

This completes the proof.
Lemma 4.8. An operator $T \in L(C(K), W)$ is C-narrow if and only if every non-empty open set $U \subset K$ contains a non-empty vanishing set of T. Moreover, if $\left(T_{n}\right)_{n \in \mathbb{N}} \subset L(C(K), W)$ is a sequence of C-narrow operators, every open set $U \neq \emptyset$ contains a set $G \neq \emptyset$ that is simultaneously a vanishing set for all T_{n}.

Proof. We first prove the more general "moreover" part. Put $U_{1,1}=U$. By the definition of a C-narrow operator and Proposition 4.2 there is a function $f_{1,1} \subset S(C(K))$ with $\operatorname{supp}\left(f_{1,1}\right) \subset U_{1,1}, U_{1,2}:=f_{1,1}^{-1}(1 / 2,1] \neq \emptyset$ and $\left\|T_{1} f_{1,1}\right\|<1 / 2$. Obviously, $\bar{U}_{1,2} \subset f_{1,1}^{-1}[1 / 2,1] \subset U_{1,1}$. Again applying the definition we find $f_{1,2} \in S(C(K))$ with $\operatorname{supp}\left(f_{1,2}\right) \subset U_{1,2}, U_{2,1}=$ $f_{1,2}^{-1}(2 / 3,1] \neq \emptyset$ and $\left\|T_{1} f_{1,2}\right\|<1 / 3$. As above $\bar{U}_{2,1} \subset U_{1,2}$.

In view of the C-narrowness of T_{2} there exists a function $f_{2,1} \in S(C(K))$ with $\operatorname{supp}\left(f_{2,1}\right) \subset U_{2,1}, U_{1,3}=f_{2,1}^{-1}(2 / 3,1] \neq \emptyset$ and $\left\|T_{2} f_{2,1}\right\|<1 / 3$. In the next step we construct $f_{1,3} \in S(C(K))$ such that $U_{2,2}=f_{1,3}^{-1}(3 / 4,1] \neq \emptyset$ and $\left\|T_{1} f_{1,3}\right\|<1 / 4$.

Proceeding in the same way, in the nth step we find a set of functions $\left(f_{k, l}\right)_{k+l=n} \subset S(C(K))$ and nonempty open sets $\left(U_{k, l}\right)_{k+l=n}$ in K such that $\operatorname{supp}\left(f_{k, l}\right) \subset U_{k, l},\left\|T_{k} f_{k, n-k}\right\|<\frac{1}{n}$ and $U_{k, l}=f_{k-1, l+1}^{-1}\left(\frac{n-1}{n}, 1\right]$, if $k \neq 1$. Then we put $U_{1, n}=f_{n-1,1}^{-1}\left(\frac{n-1}{n}, 1\right]$ to begin the next step.

It remains to show that the set $G=\bigcap_{k, l \in \mathbb{N}} U_{k, l}=\bigcap_{k, l \in \mathbb{N}} \bar{U}_{k, l}$ is as desired. Indeed, G is clearly a nonempty closed G_{δ}-set and $G=\bigcap_{i=1}^{\infty} U_{n, i}$ for every $n \in \mathbb{N}$. It is easily seen that the sequences $\left(f_{n, i}\right)_{i \in \mathbb{N}}$ and $\left(U_{n, i}\right)_{i \in \mathbb{N}}$ meet the conditions of Definition 4.6 for the operator T_{n}. Hence, $G \in \operatorname{van} T_{n}$ for every $n \in \mathbb{N}$.

To prove the converse, let $U \neq \emptyset$ be any open set in K and let $\varepsilon>0$. By the assumption on $\operatorname{van} T$ we can find a closed G_{δ}-set $\emptyset \neq G \subset U, G \in$ $\operatorname{van} T$. Consider the open sets $\left(U_{i}\right)_{i \in \mathbb{N}}$ and the functions $\left(f_{i}\right)_{i \in \mathbb{N}}$ provided by Definition 4.6. For sufficiently large $i \in \mathbb{N}$ we have $U_{i} \subset U$ and $\left\|T f_{i}\right\|<\varepsilon$ so that f_{i} may serve as the function required in Definition 4.1.

This finishes the proof.
We are now in a position to prove Theorem 4.4.

Proof of Theorem 4.4. By virtue of Proposition 4.2 we may assume that $E=\mathbb{R}$. By Lemma 4.8 it suffices to show that $\bigcap_{n=1}^{\infty} \operatorname{van} T_{n} \subset \operatorname{van} T$.

Suppose $G \in \bigcap_{n=1}^{\infty} \operatorname{van} T_{n}$. According to Lemma 4.7 we need to prove that $T^{*} w^{*}(G)=0$ for all $w^{*} \in W^{*}$. By the hypothesis of the theorem, the series $\sum_{n=1}^{\infty} T_{n}^{*} w^{*}$ is weak*-unconditionally Cauchy and hence weakly unconditionally Cauchy. Since $C(K)^{*}$ does not contain a copy of c_{0}, it is actually unconditionally norm convergent by the Bessaga-Pełczyński Theorem. This implies that the bounded sequence of functions $\left(f_{i}\right)_{i \in \mathbb{N}}$ satisfying $f_{i} \rightarrow \chi_{G}$ pointwise, which was constructed in the proof of Lemma 4.7, satisfies

$$
\begin{aligned}
T^{*} w^{*}(G) & =\lim _{i \rightarrow \infty} T^{*} w^{*}\left(f_{i}\right)=\lim _{i \rightarrow \infty} \sum_{n=1}^{\infty} T_{n}^{*} w^{*}\left(f_{i}\right) \\
& =\sum_{n=1}^{\infty} T_{n}^{*} w^{*}\left(\chi_{G}\right)=\sum_{n=1}^{\infty} T_{n}^{*} w^{*}(G)=0
\end{aligned}
$$

This completes the proof.

References

[1] Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis, Vol. 1, Colloquium Publ., no. 48, Amer. Math. Soc., Providence, RI, 2000.
[2] D. Bilik, V. Kadets, R. Shvidkoy, and D. Werner, Narrow operators and the Daugavet property for ultraproducts, to appear; preprint available from http://xxx.lanl.gov.
[3] J. Diestel, Geometry of Banach spaces-selected topics, Lecture Notes in Math., vol. 485, Springer-Verlag, Berlin-Heidelberg-New York, 1975.
[4] V. M. Kadets and M. M. Popov, The Daugavet property for narrow operators in rich subspaces of $C[0,1]$ and $L_{1}[0,1]$, St. Petersburg Math. J. 8 (1997), 571-584.
[5] V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin, and D. Werner, Banach spaces with the Daugavet property, Trans. Amer. Math. Soc. 352 (2000), 855-873.
[6] V. M. Kadets, R. V. Shvidkoy, and D. Werner, Narrow operators and rich subspaces of Banach spaces with the Daugavet property, Studia Math. 147 (2001), 269-298.
[7] A. Pełczyński, On $C(S)$-subspaces of separable Banach spaces, Studia Math. 31 (1968), 513-522; Correction, ibid. 39 (1971), 593.
[8] W. Schachermayer, The sum of two Radon-Nikodym sets need not be a Radon-Nikodym set, Proc. Amer. Math. Soc. 95 (1985), 51-57.
[9] R. V. Shvidkoy, Geometric aspects of the Daugavet property, J. Funct. Anal. 176 (2000), 198-212.
D. Bilik, Department of Mathematics, University of Missouri, Columbia MO 65211, USA

E-mail address: bilik_d@yahoo.com
V. Kadets, Faculty of Mechanics and Mathematics, Kharkov National UniverSity, pl. Svobody 4, 61077 Kharkov, Ukraine

E-mail address: anna.m.vishnyakova@univer.kharkov.ua
Current address: Department of Mathematics, Freie Universität Berlin, Arnimallee 2-6, D-14195 Berlin, Germany

E-mail address: kadets@math.fu-berlin.de
R. Shvidkoy, Department of Mathematics, University of Missouri, Columbia MO 65211, USA

Current address: Department of Mathematics, University of Texas at Austin, Austin, TX 78712, USA

E-mail address: shvidkoy@math.utexas.edu
G. Sirotkin, Department of Mathematics, Indiana University - Purdue UniverSity Indianapolis, 402 Backford Street, Indianapolis, IN 46202, USA

E-mail address: syrotkin@math.iupui.edu
D. Werner, Department of Mathematics, Freie Universität Berlin, Arnimallee 2-6, D-14 195 Berlin, Germany

E-mail address: werner@math.fu-berlin.de

