Illinois Journal of Mathematics Volume 48, Number 1, Spring 2004, Pages 199–218 S 0019-2082

TOEPLITZ ALGEBRAS AND C*-ALGEBRAS ARISING FROM REDUCED (FREE) GROUP C*-ALGEBRAS

SHUANG ZHANG

ABSTRACT. Assume that Γ is a free group on n generators, where $2 \leq n < +\infty$. Let Ω be an infinite subset of Γ such that $\Gamma \setminus \Omega$ is also infinite, and let P be the projection on the subspace $l^2(\Omega)$ of $l^2(\Gamma)$. We prove that, for some choices of Ω , the C*-algebra $C_r^*(\Gamma, P)$ generated by the reduced group C*-algebra $C_r^*\Gamma$ and the projection P has exactly two non-trivial, stable, closed ideals of real rank zero. We also give a detailed analysis of the Toeplitz algebra generated by the restrictions of operators in $C_r^*(\Gamma, P)$ on the subspace $l^2(\Omega)$.

Introduction

Throughout this article, we assume, except otherwise specified, that Γ is a free group of n generators, say $\{g_1, g_2, \ldots, g_n\}$, and e is the unit of Γ , where $2 \leq n < +\infty$. Each element of Γ is a reduced word $g_{i_1}^{n_1} g_{i_2}^{n_2} \ldots g_{i_m}^{n_m}$ in the sense that it does not contain any factor of the forms gg^{-1} and $g^{-1}g$, where $n_i \in \mathbb{Z}$ (the group of all integers). Let $\{f_g : g \in \Gamma\}$ be a standard orthonormal basis of the Hilbert space $l^2(\Gamma)$ of all complex valued, square-summable sequences indexed by Γ . Let $\lambda : \Gamma \longrightarrow \mathcal{L}(l^2(\Gamma))$ be the left regular representation of Γ on $\mathcal{L}(l^2(\Gamma))$, where $\mathcal{L}(\mathcal{H})$ denotes the algebra of all bounded operators on a Hilbert space \mathcal{H} as usual, and $\lambda(g) := U(g)$ is a unitary operator defined by $U(g)(f_h) = f_{g^{-1}h}$ for all $g, h \in \Gamma$. The reduced group C*-algebra $C_r^*\Gamma$ is the norm closure of the group ring $\mathbb{C}[\Gamma]$ consisting of all linear combinations $\{\sum_{i=1}^n \alpha_i U(h_i) : h_i \in \Gamma, \alpha_i \in \mathbb{C}, \text{and } n \in \mathbb{N}\}$; in other words, $C_r^*\Gamma$ is the C*-subalgebra of $\mathcal{L}(l^2(\Gamma))$ generated by the group $\lambda(\Gamma) = \{U(g) : g \in \Gamma\}$.

The purpose of this article is to investigate the structure of the C*-algebra generated by the *reduced group* C*-algebra $C_r^*\Gamma$ and a projection P onto a subspace of the form $l^2(\Omega)$, denoted by $C_r^*(\Gamma, P)$, where both Ω and $\Gamma \setminus \Omega$ are infinite subsets of Γ . We will consider the specific cases when Ω is equal to one of the following sets:

©2004 University of Illinois

Received March 13, 2003; received in final form September 12, 2003.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46L05.

Partially supported by a Taft Grant for Summer Research in 2002.

- (1) $\Gamma_+ := \{g_{i_1}^{n_1} g_{i_2}^{n_2} \dots g_{i_j}^{n_j} : j, n_1, n_2, \dots, n_j \in \mathbb{N}\};$
- (2) $\Gamma'_{+} := \Gamma_{+} \cup \{e\};$
- (3) Γ_0 , a nontrivial subgroup of Γ ; and
- (4) Γ_A , the union of $\{e, g_1, g_2, \dots, g_n\}$ and the set of all admissible reduced words with respect to A ([8]), where A is an $n \times n$ irreducible matrix with entries in $\{0, 1\}$ ([6]).

It turns out that the cases (1) and (2) result in the same C*-algebra $C_r^*(\Gamma, P_+)$, which has exactly two nontrivial, stable, closed ideals; one is the algebra $\mathcal{K}(l^2(\Gamma))$ consisting of all compact operators on $l^2(\Gamma)$ and the other is generated by P_+ and denoted by \mathcal{I}_{P_+} (where P_+ is the projection onto $l^2(\Gamma_+)$). Furthermore, $\mathcal{I}_{P_+}/\mathcal{K}(l^2(\Gamma)) \cong \mathcal{O}_n \otimes \mathcal{K}$, and \mathcal{I}_{P_+} has real rank zero, where \mathcal{O}_n is the Cuntz algebra. The case (3) yields a C*-algebra $C_r^*(\Gamma, P_0)$ that has a nontrivial, stable, closed ideal, that is, $C_r^*\Gamma_0 \otimes \mathcal{K}$. The case (4) results in a C*algebra $C_r^*(\Gamma, R)$ that has exactly two non-trivial, stable, closed ideals; one is $\mathcal{K}(l^2(\Gamma))$ and the other is generated by R and denoted by \mathcal{I}_R (where R is the projection onto the subspace $l^2(\Gamma_A)$). In addition, $\mathcal{I}_R/\mathcal{K}(l^2(\Gamma)) \cong \mathcal{O}_A \otimes \mathcal{K}$, and \mathcal{I}_R has real rank zero, where \mathcal{O}_A is the Cuntz-Krieger algebra associated with A. Moreover, we will give a necessary and sufficient condition for the equality $\mathcal{I}_P = C_r^*(\Gamma, P)$.

The case $n = +\infty$ (i.e., the case when Γ is the free group on infinitely many generators) and the cases when Γ is any free product of finite and infinite cyclic groups have been studied in [16]; the resulting C*-algebras $C_r^*(\Gamma, P_+)$ have different structures. In [17] we proved that $C_r^*(\Gamma, P)$ can be a purely infinite simple C*-algebra (and hence has real rank zero) for some other choices of P(there Γ can be more general free products of finite or infinite cyclic groups). Thus, there are indeed many interesting C*-algebras in the class

$$\{C_r^*(\Gamma, P_\Omega) : \Omega \subset \Gamma, \ |\Omega| = |\Gamma \setminus \Omega| = +\infty\}.$$

It appears to be an interesting, but difficult problem to classify, up to *-isomorphism, all C*-algebras of the form $C_r^*(\Gamma, P_\Omega)$.

This article is self-contained with only few references needed. More references are provided only for the convenience of the reader in searching for some relevant literature.

0. Preliminaries

Let Ω be an infinite subset of Γ such that $\Gamma \setminus \Omega$ is also an infinite subset of Γ , and let P be the projection in $\mathcal{L}(l^2(\Gamma))$ onto the subspace $l^2(\Omega)$ of $l^2(\Gamma)$. It easily follows from the definition that $U(h)^* = U(h^{-1})$ for $h \in \Gamma$,

$$U(h_1h_2) = U(h_2)U(h_1) \text{ for } h_1, h_2 \in \Gamma, \text{ and for any } g \in \Gamma$$
$$U(g)^* PU(g)f_h = \begin{cases} f_h & \text{if } h \in g\Omega, \\ 0 & \text{if } h \notin g\Omega; \end{cases}$$
$$U(g)PU(g)^*f_h = \begin{cases} f_h & \text{if } h \in g^{-1}\Omega, \\ 0 & \text{if } h \notin g^{-1}\Omega. \end{cases}$$

Hence $U(g)^*PU(g)$ and $U(g)PU(g)^*$ are the projections onto the subspaces $l^2(g\Omega)$ and $l^2(g^{-1}\Omega)$, respectively. As a natural analogue of the classic Toeplitz operators associated with $\Omega := \mathbb{Z}^+ \subset \Gamma := \mathbb{Z}$, for each $g \in \Gamma$ one defines a Toeplitz operator T_g as follows:

$$T_g := PU(g)P \in \mathcal{L}(l^2(\Omega)).$$

Obviously,

$$T_g(f_h) = Pf_{g^{-1}h} = \begin{cases} f_{g^{-1}h} & \text{if } h \in g\Omega \cap \Omega, \\ 0 & \text{if } h \notin g\Omega \cap \Omega. \end{cases}$$

Thus, $\{T_g : g \in \Gamma\}$ is a set of partial isometries on $l^2(\Omega)$ such that

$$T_g^* = T_{g^{-1}},$$

 $T_g^* T_g$ is the projection onto $l^2(g\Omega \cap \Omega),$ and
 $T_g T_g^*$ is the projection onto $l^2(g^{-1}\Omega \cap \Omega).$

The C*-algebra \mathcal{T}_P generated by $\{T_g : g \in \Omega\}$ is called the *Toeplitz C*-algebra associated with* Ω (cf. [7], [8], [9]). The hereditary C*-subalgebra $\mathcal{A}_P := PC_r^*(\Gamma, P)P$ is often called a *corner algebra supported by* P. It is obvious that \mathcal{A}_P is generated by $\{T_g : g \in \Gamma\}$ and hence contains \mathcal{T}_P . We will later prove that in some cases the corner \mathcal{A}_P is actually equal to \mathcal{T}_P .

Notice that all of the above observations remain valid when Γ is any free product of cyclic groups of finite or infinite order, consisting of all reduced words of elements in the groups.

1. A criterion for $\mathcal{I}_{\mathbf{P}} = \mathbf{C}^*_{\mathbf{r}}(\mathbf{\Gamma}, \mathbf{P})$

In this section, we investigate under what condition on Ω the closed ideal \mathcal{I}_P of $C_r^*(\Gamma, P)$ generated by P is equal to $C_r^*(\Gamma, P)$. The following is a necessary and sufficient condition for this equality.

1.1. THEOREM. Let Γ be any free product of cyclic groups with finite or infinite order. Then $\mathcal{I}_P = C_r^*(\Gamma, P)$ if and only if there exist finitely many elements $h_1, h_2, \ldots, h_m \in \Gamma$ such that $\Gamma = \bigcup_{i=1}^m h_j \Omega$.

Before proving this criterion, we need to deal with some preliminary matters. The two operations \lor and \land on projections are defined in a von Neumann algebra but not in a C*-algebra in general, for the resulting projections $Q_1 \lor Q_2$

and $Q_1 \wedge Q_2$ may lie outside the C*-algebra. Nevertheless, \vee and \wedge can be partially executed in this particular C*-algebra $C_r^*(\Gamma, P)$.

- 1.2. LEMMA.
 - (i) The projections $U(h_1)PU(h_1)^*$ and $U(h_2)PU(h_2)^*$ commute for any two elements $h_1, h_2 \in \Gamma$.
- (ii) $U(h_1)PU(h_1)^* \vee \cdots \vee U(h_m)PU(h_m)^*$ and $U(h_1)PU(h_1)^* \wedge \cdots \wedge U(h_m)PU(h_m)^*$ are projections in $C_r^*(\Gamma, P)$ for any finitely many elements $h_1, h_2, \ldots, h_m \in \Gamma$.

Proof. (i) This is immediate, since $U(h_1)PU(h_1)^*$ and $U(h_2)PU(h_2)^*$ are projections onto the subspaces $l^2(h_1^{-1}\Omega)$ and $l^2(h_2^{-1}\Omega)$.

(ii) $U(h_1)PU(h_1)^*U(h_2)PU(h_2)^*$ is the projection onto $l^2(h_1^{-1}\Omega \cap h_2^{-1}\Omega)$, that is in $C_r^*(\Gamma, P)$. By definition,

$$U(h_1)PU(h_1)^* \vee U(h_2)PU(h_2)^* = U(h_1)PU(h_1)^* + U(h_2)PU(h_2)^* - U(h_1)PU(h_1)^*U(h_2)PU(h_2)^*,$$
$$U(h_1)PU(h_1)^* \wedge U(h_2)PU(h_2)^* = U(h_1)PU(h_1)^*U(h_2)PU(h_2)^*,$$

which are both projections in $C_r^*(\Gamma, P)$. The general conclusion follows by induction.

1.3. PROOF OF THEOREM 1.1. First, assume that $\Gamma = \bigcup_{j=1}^{m} h_j \Omega$, where $h_1, h_2, \ldots, h_m \in \Gamma$. We show that the identity I of $C_r^*(\Gamma, P)$ is in \mathcal{I}_P , and hence $\mathcal{I}_P = C_r^*(\Gamma, P)$. Clearly,

$$U(h_1)PU(h_2)^* \vee U(h_2)PU(h_2)^* \vee \cdots \vee U(h_m)PU(h_m)^* = I,$$

since the projection on the left-hand side of the above equality is onto the subspace $l^2(\bigcup_{j=1}^m h_j\Omega)$, that is, the whole space $l^2(\Gamma)$. Thus, $\mathcal{I}_P = C_r^*(\Gamma, P)$ by the above lemma.

Secondly, assume that $\Gamma \neq \bigcup_{j=1}^{m} h_j \Omega$ for any finitely many elements h_1, h_2, \ldots, h_m of Γ . Then $\Gamma \setminus \bigcup_{j=1}^{m} h_j \Omega$ must be an infinite subset of Γ . We show that the identity I is not in \mathcal{I}_P . To do so, we suppose $I \in \mathcal{I}_P$ and then reach a contradiction.

Since the linear span of $\{U(g) : g \in \Gamma\}$ is norm dense in $C_r^*\Gamma$, it is clear that the linear span \mathcal{L}' of all products of elements in

$$\{PU(g), U(g)P, PU(g)(I-P), (I-P)U(g)P : g \in \Gamma\}$$

is norm dense in \mathcal{I}_P . Take a linear combination X from \mathcal{L}' such that

$$||X - I|| < \delta < 1$$

Then

$$||(I-P)X(I-P) - (I-P)|| < \delta$$

Obviously, the *i*th term of (I - P)X(I - P) can be written in the form

$$X_i := \alpha_i (I - P) U(k_i) P_1 U(h_{i1}) P_2 U(h_{i2}) P_3 \dots P_{l_i} U(h_{il_i}) P_{l_{i+1}} U(k'_i) (I - P),$$

where $\alpha_i \in \mathbb{C}$ and P_j is equal to either P or I - P for $1 \leq j \leq i + 1$ and at least one of the P_j 's is equal to P, and $k_i, k'_i, h_{ij} \in \Gamma$ for $0 \leq j \leq l_i$. Let P_{j_0} be the first term P from the left occurring in the above product. It is clear that the range projection of X_i is a subprojection of the range projection of

$$(I - P)U(k_i)P_1U(h_{i1})P_2U(h_{i2})P_3\dots P_{j_0-1}U(h_{j_0-1,l_{j_0-1}})P_{j_0}$$

= $(I - P)U(k_i)(I - P)U(h_{i1})(I - P)\dots (I - P)U(h_{j_0-1,l_{j_0-1}})P_{j_0}.$

Let k'_i be the reduced form of the product $h_{j_0-1,l_{j_0-1}} \dots h_{i_2} h_{i_1} k_i$. Clearly, the range projection of

$$U(k_i)(I-P)U(h_{i1})(I-P)\dots(I-P)U(h_{j_0-1,l_{j_0-1}})P_{j_0}$$

is a subprojection of $U(k'_i)PU(k'_i)^*$ for $1 \leq i \leq m$. Take an element $h \in \Gamma \setminus \bigcup_{j=1}^m k'_j \Omega \setminus \Omega$ and any element $g \in \Omega$. Then $h \in hg^{-1}\Omega$. It follows that

$$U(gh^{-1})^* PU(gh^{-1})(I - U(k_1')PU(k_1')^* \vee \dots \vee U(k_m')PU(k_m')^* \vee P)$$

is a nonzero projection in $C_r^*(\Gamma, P)$, denoted by R. Furthermore, by the construction R is a projection in \mathcal{I}_P such that R(I - P) = R and R(I - P)X(I - P) = 0. We immediately reach the following contradiction:

$$1 = ||R|| = ||R((I - P)X(I - P) - (I - P))|| < \delta < 1.$$

Therefore, $I \notin \mathcal{I}_P$, and hence $\mathcal{I}_P \neq C_r^*(\Gamma, P)$.

For a subgroup Γ_0 of Γ , one denotes as usual the *index of* Γ_0 *in* Γ by $[\Gamma : \Gamma_0]$, the cardinality of the set of all left cosets $\{h\Gamma_0 : h \in \Gamma\}$. Let P_0 be the projection onto the subspace $l^2(\Gamma_0)$.

1.4. COROLLARY. Let Γ_0 be an infinite subgroup of Γ such that $\Gamma \setminus \Gamma_0$ is infinite. Then $\mathcal{I}_{P_0} = C_r^*(\Gamma, P_0)$ if and only if $[\Gamma : \Gamma_0] < +\infty$.

Proof. This is immediate from Theorem 1.1.

203

1.5. COROLLARY. Assume that Γ_0 is the subgroup of Γ generated by a subset Ω . If $[\Gamma : \Gamma_0] = +\infty$ and P is the projection onto $l^2(\Omega)$, then $\mathcal{I}_P \neq C_r^*(\Gamma, P)$.

Proof. Let P_0 be the projection onto $l^2(\Gamma_0)$. If $\mathcal{I}_P = C_r^*(\Gamma, P)$, then $\mathcal{I}_{P_0} = C_r^*(\Gamma, P)$ by Theorem 1.1, since $\Omega \subset \Gamma_0$.

2. Real rank of \mathcal{T}_+ and \mathcal{T}'_+

From now on, we will discuss some specific subsets Ω of the free group Γ on finitely many generators $(2 \le n < +\infty)$. In this and the next section, we take Ω to be $\Gamma'_{+} = \Gamma_{+} \cup \{e\}$, where

$$\Gamma_{+} := \left\{ g_{i_{1}}^{n_{1}} g_{i_{2}}^{n_{2}} \dots g_{i_{m}}^{n_{m}} \in \Gamma : m, n_{1}, n_{2}, \dots, n_{m} \in \mathbb{N} \right\}.$$

and we let P_+ and P'_+ be the projections onto the subspaces $l^2(\Gamma_+)$ and $l^2(\Gamma'_+)$, respectively.

We first consider $C_r^*(\Gamma, P'_+)$. For $h \in \Gamma'_+$ one observes immediately that

 $T_h T_h^* = P'_+$ and $T_h^* T_h$ is the projection onto the subspace $l^2(h\Gamma'_+)$.

The C*-subalgebra \mathcal{T}'_+ of $\mathcal{L}(l^2(\Gamma'_+))$ generated by $\{T_g : g \in \Gamma'_+\}$ involves the following extension (see [7]):

$$0 \longrightarrow \mathcal{K}(l^2(\Gamma'_+)) \longrightarrow \mathcal{T}'_+ \longrightarrow \mathcal{O}_n \longrightarrow 0,$$

where $\mathcal{K}(l^2(\Gamma'_+))$ is the algebra of all compact operators on $l^2(\Gamma'_+)$, and \mathcal{O}_n is the Cuntz algebra generated by n isometries $\{S_i\}_{i=1}^n$ such that

$$S_1 S_1^* + S_2 S_2^* + \dots + S_n S_n^* = I.$$

The corner hereditary C*-subalgebra $\mathcal{A}_{P'_{+}}$, i.e., the corner $P'_{+}C^{*}_{r}(\Gamma, P'_{+})P'_{+}$, is generated by

$$\left\{T_g := P'_+ U(g) P'_+ : g \in \Gamma\right\}$$

It is obvious that \mathcal{T}'_{+} is a *-subalgebra of $\mathcal{A}_{P'_{+}}$, $\mathcal{A}_{P'_{+}}$ is a C*-subalgebra of $\mathcal{I}_{P'_{+}}$, and $\mathcal{A}_{P'_{+}}$ generates $\mathcal{I}_{P'_{+}}$ as a closed ideal. We will clarify the relation between \mathcal{T}'_{+} and $\mathcal{A}_{P'_{+}}$ by analyzing the elements of $\mathcal{A}_{P'_{+}}$, and then determine the (closed) ideal structure of $C^*_r(\Gamma, P'_{+})$.

2.0. PROPOSITION. $\mathcal{I}_{P'_{+}} \neq C^*_r(\Gamma, P'_{+}).$

Proof. This is immediate from Theorem 1.1.

The main result of this section is as follows:

- 2.1. Theorem.
 - (i) $\mathcal{T}'_+ = \mathcal{A}_{P'_+}$.
- (ii) The short sequence $0 \longrightarrow \mathcal{K}(l^2(\Gamma'_+)) \longrightarrow \mathcal{T}'_+ \longrightarrow \mathcal{O}_n \longrightarrow 0$ is exact. (iii) $RR(\mathcal{A}_{P'_+}) = RR(\mathcal{I}_{P'_+}) = 0.$

To prove this theorem, we need the following lemmas.

2.2. LEMMA. Suppose that $g \in \Gamma$ is represented by a reduced word $g_{i_1}^{\epsilon_1} g_{i_2}^{\epsilon_2} \dots g_{i_n}^{\epsilon_n}$, where the ϵ_i 's are nonzero integers. Then $T_g \neq 0$ if and only if there is $0 \leq m \leq n$ such that $\epsilon_i > 0$ for $1 \leq i \leq m$ and $\epsilon_i < 0$ for $m + 1 \leq i \leq n$,

where the cases m = 0 and m = n are to be interpreted as $\epsilon_i < 0$ for $1 \le i \le n$ and $\epsilon_i > 0$ for $1 \le i \le n$, respectively.

Proof. If $\epsilon_i < 0$ for all $1 \le i \le n$, then $T_g^* T_g = P'_+$ and $T_g T_g^*$ is the projection onto the subspace $l^2(g_{i_n}^{-\epsilon_n}g_{i_{n-1}}^{-\epsilon_{n-1}}\dots g_{i_2}^{-\epsilon_2}g_{i_1}^{-\epsilon_1}\Gamma'_+)$; note that $g_{i_n}^{-\epsilon_n}g_{i_{n-1}}^{-\epsilon_{n-1}}\dots g_{i_2}^{-\epsilon_2}g_{i_1}^{-\epsilon_1}\Gamma'_+$ is the set of all those elements of Γ'_+ that begin with $g_{i_n}^{-\epsilon_n}g_{i_{n-1}}^{-\epsilon_{n-1}}\dots g_{i_2}^{-\epsilon_2}g_{i_1}^{-\epsilon_1}$. If $\epsilon_i > 0$ for all $1 \le i \le n$, then $T_g T_g^* = P'_+$ and $T_g^* T_g$ is the projection onto the subspace associated with the subset

$$\left\{h \in \Gamma'_{+} : h \text{ starts with } g_{i_{1}}^{\epsilon_{1}} g_{i_{2}}^{\epsilon_{2}} \dots g_{i_{n}}^{\epsilon_{n}}\right\}.$$

If there is m such that 1 < m < n, $\epsilon_i > 0$ for $1 \le i \le m$, and $\epsilon_i < 0$ for $m < i \le n$, then $T_g T_g^*$ is the projection onto the subspace associated with

$$\left\{h\in \Gamma'_+: h \text{ starts with } g_{i_n}^{-\epsilon_n}g_{i_{n-1}}^{-\epsilon_{n-1}}\dots g_{i_{m+1}}^{-\epsilon_{m+1}}\right\};$$

and $T_g^{\ast}T_g$ is the projection onto the subspace associated with

$$\left\{h \in \Gamma'_{+} : h \text{ starts with } g_{i_{1}}^{\epsilon_{1}} g_{i_{2}}^{\epsilon_{2}} \dots g_{i_{m}}^{\epsilon_{m}}\right\}.$$

This proves the direction "if" of the lemma.

We now verify the direction "only if". Assume that $T_g \neq 0$ and that ϵ_m is the last positive power occurring in the reduced word $g = g_{i_1}^{\epsilon_1} g_{i_2}^{\epsilon_2} \dots g_{i_n}^{\epsilon_n}$. It suffices to show that $\epsilon_i > 0$ for any $1 \leq i \leq m$. If $\epsilon_i < 0$ for some $1 \leq i \leq m-1$, then $g\Gamma'_+ \cap \Gamma'_+ = \emptyset$; but this would imply $T_g = 0$.

2.3. LEMMA. Let $g = g_{i_1}^{\epsilon_1} g_{i_2}^{\epsilon_2} \dots g_{i_m}^{\epsilon_m} \in \Gamma'_+$, where $\epsilon_i > 0$ for $1 \le i \le m$. Then:

(i) The unitary operator U(g) can be written, with respect to the decomposition P'₊ ⊕ P'[⊥]₊ = I, in the matrix form

$$\begin{pmatrix} A & 0 \\ C & D \end{pmatrix}$$
,

where $A = P'_{+}U(g)P'_{+}, C = P'^{\perp}_{+}U(g)P'_{+}, and D = P'^{\perp}_{+}U(g)P'_{+}.$ (ii) $T_{g_{1}^{\epsilon_{1}}g_{2}^{\epsilon_{2}}\dots g_{m}^{\epsilon_{m}}} = T_{g_{m}^{\epsilon_{m}}}T_{g_{m-1}^{\epsilon_{m-1}}}\dots T_{g_{2}^{\epsilon_{2}}}T_{g_{1}^{\epsilon_{1}}}.$

Proof. (i) Since $U(g)^*P'_+U(g)$ is the projection onto the subspace $l^2(g\Gamma'_+)$ and $g\Gamma'_+ \subset \Gamma'_+$, it follows that $P'^{\perp}_+U(g)^*P'_+U(g)P'^{\perp}_+ = 0$. Thus $P'_+U(g)P'^{\perp}_+ = 0$.

(ii) It is easily checked with a simple matrix multiplication that $P'_+U(g_1^{\epsilon_1}g_2^{\epsilon_2})P'_+ = P'_+U(g_2^{\epsilon_2})P'_+U(g_1^{\epsilon_1})P'_+$ whenever $\epsilon_i > 0$. The general situation follows by induction.

2.4. LEMMA. Assume that $T_g \neq 0$, where $g = g_{i_1}^{\epsilon_1} g_{i_2}^{\epsilon_2} \dots g_{i_n}^{\epsilon_n}$, $\epsilon_i > 0$ for $1 \leq i \leq m$, and $\epsilon_i < 0$ for $m+1 \leq i \leq n$ $(0 \leq m \leq n)$. Then

$$T_g = T_{g_{i_n}}^{*-\epsilon_n} T_{g_{i_{n-1}}}^{*-\epsilon_{n-1}} \dots T_{g_{i_{m+1}}}^{*-\epsilon_{m+1}} T_{g_{i_m}}^{\epsilon_m} T_{g_{i_{m-1}}}^{\epsilon_{m-1}} \dots T_{g_{i_1}}^{\epsilon_1}$$

Proof. By the definition we have $U(g) = U(g_{i_{m+1}}^{\epsilon_{m+1}} \dots g_{i_n}^{\epsilon_n})U(g_{i_1}^{\epsilon_1} \dots g_{i_m}^{\epsilon_m})$. We claim that

$$P'_+U(g_{i_{m+1}}^{\epsilon_{m+1}}\ldots g_{i_n}^{\epsilon_n})P'^\perp_+U(g_{i_1}^{\epsilon_1}\ldots g_{i_m}^{\epsilon_m})P'_+=0.$$

For the cases m = 0 and m = n this equality is trivial. Assume 1 < m < n. First, observe that the range projection of $P_+^{\prime \perp} U(g_{i_1}^{\epsilon_1} \dots g_{i_m}^{\epsilon_m})P_+^{\prime}$ is a subprojection of the projection onto the subspace associated with the set of all reduced words starting with $g_{i_m}^{-\epsilon_m} \dots g_{i_k}^{-\epsilon_k}$ for some $1 \le k \le m - 1$; secondly, notice that the range projection of $U(g_{i_{m+1}}^{\epsilon_{m+1}} \dots g_{i_n}^{\epsilon_n})P_+^{\prime \perp} U(g_{i_1}^{\epsilon_1} \dots g_{i_m}^{\epsilon_m})P_+^{\prime}$ is a subprojection of the projection onto the subspace associated with the set of all reduced words starting with

$$g_{i_n}^{-\epsilon_n} \dots g_{i_{m+1}}^{-\epsilon_{m+1}} g_{i_m}^{-\epsilon_m} \dots g_{i_k}^{-\epsilon_k}$$

for some $1 \le k \le m-1$; thirdly, the set of all reduced words starting with

$$g_{i_n}^{-\epsilon_n} \cdots g_{i_{m+1}}^{-\epsilon_{m+1}} g_{i_m}^{-\epsilon_m} \cdots g_{i_k}^{-\epsilon_k}$$

is disjoint from Γ'_+ . Thus, the above equality is proved.

Using this equality, we have

$$\begin{split} P'_{+}U(g_{i_{1}}^{\epsilon_{1}}\ldots g_{i_{n}}^{\epsilon_{n}})P'_{+} &= P'_{+}U(g_{i_{m+1}}^{\epsilon_{m+1}}\ldots g_{i_{n}}^{\epsilon_{n}})P'_{+}U(g_{i_{1}}^{\epsilon_{1}}\ldots g_{i_{m}}^{\epsilon_{m}})P'_{+} \\ &+ P'_{+}U(g_{i_{m+1}}^{\epsilon_{m+1}}\ldots g_{i_{n}}^{\epsilon_{n}})P'_{+}U(g_{i_{1}}^{\epsilon_{1}}\ldots g_{i_{m}}^{\epsilon_{m}})P'_{+} \\ &= P'_{+}U(g_{i_{m+1}}^{\epsilon_{m+1}}\ldots g_{i_{n}}^{\epsilon_{n}})P'_{+}U(g_{i_{1}}^{\epsilon_{1}}\ldots g_{i_{m}}^{\epsilon_{m}})P'_{+}. \end{split}$$

Since $\epsilon_i > 0$ for $1 \le i \le m$, from the definition and the matrix form of $U(g_i)$ as given in Lemma 2.3(i) one sees that

$$T_{g_{i_1}^{\epsilon_1}\dots g_{i_m}^{\epsilon_m}} = P'_+ U(g_{i_1}^{\epsilon_1} g_{i_2}^{\epsilon_2} \dots g_{i_m}^{\epsilon_m}) P'_+$$

= $(P'_+ U(g_{i_m}) P'_+)^{\epsilon_m} (P'_+ U(g_{i_{m-1}}) P'_+)^{\epsilon_{m-1}} \dots (P'_+ U(g_{i_1}) P'_+)^{\epsilon_1}$
= $T_{g_{i_m}}^{\epsilon_m} T_{g_{i_{m-1}}}^{\epsilon_{m-1}} \dots T_{g_{i_1}}^{\epsilon_1}.$

Since $U(g^{-1}) = U(g)^*$ for any $g \in \Gamma$ and $\epsilon_i < 0$ for $m + 1 \le i \le n$, it is again easily seen from Lemma 2.3(i) that

$$T_{g_{i_{m+1}}^{\epsilon_{m+1}}\dots g_{i_{n}}^{\epsilon_{n}}} = P'_{+}U(g_{i_{m+1}}^{\epsilon_{m+1}}\dots g_{i_{n}}^{\epsilon_{n}})P'_{+}$$

$$= (P'_{+}U(g_{i_{n}}^{-1})P'_{+})^{-\epsilon_{n}}\dots (P'_{+}U(g_{i_{m+1}}^{-1})P'_{+})^{-\epsilon_{m+1}}$$

$$= T_{g_{i_{n}}}^{-\epsilon_{n}}\dots T_{g_{i_{m+1}}}^{-\epsilon_{m+1}}$$

$$= T_{g_{i_{n}}}^{*-\epsilon_{n}}T_{g_{n-1}}^{*-\epsilon_{n-1}}\dots T_{g_{i_{m+1}}}^{*-\epsilon_{m+1}}.$$

Therefore, we have the equality

$$T_g = T_{g_{i_n}}^{*-\epsilon_n} T_{g_{i_{n-1}}}^{*-\epsilon_{n-1}} \dots T_{g_{i_{m+1}}}^{*-\epsilon_{m+1}} T_{g_{i_m}}^{\epsilon_m} T_{g_{i_{m-1}}}^{\epsilon_{m-1}} \dots T_{g_{i_1}}^{\epsilon_1}.$$

2.5. PROOF OF THEOREM 2.1. (i) By definition the C*-algebra \mathcal{T}'_{+} is generated by $\{T_g : g \in \Gamma'_{+}\}$, i.e., \mathcal{T}'_{+} is the norm closure of the linear span of all possible words of elements in $\{T^*_h; h \in \Gamma'_{+}\} \cup \{T_{h'} : h, h' \in \Gamma'_{+}\}$. From Lemmas 2.2 and 2.4 one sees that \mathcal{T}'_{+} coincides with the corner algebra $\mathcal{A}_{P'_{+}}$ that is generated by the apparently larger set $\{T_g : g \in \Gamma\}$.

(ii) By a result from [7] one has the *-isomorphism

$$\mathcal{T}'_+/\mathcal{K}(l^2(\Gamma'_+))\cong \mathcal{O}_n$$

via by the exact sequence $0 \longrightarrow \mathcal{K}(l^2(\Gamma'_+)) \longrightarrow \mathcal{T}'_+ \longrightarrow \mathcal{O}_n \longrightarrow 0$. Since $\mathcal{A}_{P'_+} = \mathcal{T}'_+$, we have therefore $\mathcal{A}_{P'_+}/\mathcal{K}(l^2(\Gamma'_+)) \cong \mathcal{O}_n$, and the following sequence is also exact:

$$0 \longrightarrow \mathcal{K}(l^2(\Gamma'_+)) \longrightarrow \mathcal{A}_{P'_+} \longrightarrow \mathcal{O}_n \longrightarrow 0.$$

(iii) Since $K_1(\mathcal{K}(l^2(\Gamma'_+))) = 0$, $RR(\mathcal{K}(l^2(\Gamma'_+))) = 0$, and $RR(\mathcal{O}_n) = 0$ (see [13] or [15]), it follows from [2, 3.14] or [15, 2.4] that $RR(\mathcal{A}_{P'_+}) = 0$. Thus, $RR(\mathcal{A}_{P'_+} \otimes \mathcal{K}) = 0$ (see [2, 2.5]). Since $\mathcal{A}_{P'_+}$ is a full corner of $\mathcal{I}_{P'_+}$ (i.e., $\mathcal{A}_{P'_+}$ generates $\mathcal{I}_{P'_+}$ as a closed ideal), by [1, 2.8] one has

$$\mathcal{I}_{P'_{\perp}} \otimes \mathcal{K} \cong \mathcal{A}_{P'_{\perp}} \otimes \mathcal{K}.$$

Therefore, $RR(\mathcal{I}_{P'_{+}} \otimes \mathcal{K}) = 0$, and hence $RR(\mathcal{I}_{P'_{+}}) = 0$.

The following is a necessary condition for the product $T_{h_1}T_{h_2}...T_{h_k}$ to be a nonzero operator.

2.6. PROPOSITION. Assume that $h_1, h_2, \ldots, h_k \in \Gamma$ and $T_{h_1}, T_{h_2}, \ldots, T_{h_k}$ satisfy

$$T_{h_1}T_{h_2}\dots T_{h_k}\neq 0.$$

Then, after canceling all factors of the forms gg^{-1} or $g^{-1}g$, the element $h_kh_{k-1}\ldots h_2h_1$ can be simplified to either e or to the form $g_{i_1}^{\epsilon_1}g_{i_2}^{\epsilon_2}\ldots g_{i_l}^{\epsilon_l}$, where $\epsilon_i > 0$ for $0 \le i \le m$ and $\epsilon_i < 0$ for $m+1 \le i \le l$ (for some $m \le l$ as in Lemma 2.2).

Proof. By induction we only need to prove the lemma for k = 2. Because $T_e = P'_+$ is the identity of \mathcal{T}_+ , we can assume that $h_i \neq e$ for $1 \leq i \leq k$. Since $T_{h_1} \neq 0$ and $T_{h_2} \neq 0$, by Lemma 2.2 one can write

$$\begin{split} h_1 &= g_{j_1}^{n_1} g_{j_2}^{n_2} \dots g_{j_t}^{n_t} g_{j_{t+1}}^{-n_{t+1}} g_{j_{t+2}}^{-n_{t+2}} \dots g_{j_{t_0}}^{-n_{t_0}}, \\ h_2 &= g_{k_1}^{m_1} g_{k_2}^{m_2} \dots g_{k_s}^{m_s} g_{k_{s+1}}^{-m_{s+1}} g_{k_{s+2}}^{-m_{s+2}} \dots g_{k_{s_0}}^{-m_{s_0}}, \end{split}$$

where $n_1, n_2, \ldots, n_{t_0}, m_1, m_2, \ldots, m_{s_0}$ are all positive integers. By definition, for the range projection $R_2 := T_{h_2}T_{h_2}^*$ of T_{h_2} there are three possibilities:

(1) When s = 0, R_2 is the projection onto the subspace associated with the subset

 $\left\{h \in \Gamma'_{+} : h \text{ starts with } g_{k_{s_{0}}}^{m_{s_{0}}} \dots g_{k_{2}}^{m_{2}} g_{k_{1}}^{m_{1}}\right\};$

(2) When $s = s_0, R_2 = P'_+$.

(3) When $1 \leq s < s_0$, R_2 is the projection onto the subspace associated with the subset

$$\left\{h\in \Gamma'_+: h \text{ starts with } g_{k_{s_0}}^{m_{s_0}}\dots g_{k_{s+1}}^{m_{s+1}}\right\}.$$

Notice that $T_{h_1}T_{h_2} = P'_+U(h_1)T_{h_2}$. In case (1) the range projection of $U(h_1)T_{h_2}$ is onto the subspace associated with the subset

 $\{h \in \Gamma'_+ : h \text{ starts with the reduced form of } h_1^{-1}h_2^{-1}\}.$

If $P'_{+}U(h_1)T_{h_2} \neq 0$, then, by Lemma 2.2, $h_1^{-1}h_2^{-1}$ can be simplified to the required form (after canceling all factors of the form $g_jg_j^{-1}$ or $g_j^{-1}g_j$); equivalently, h_2h_1 can be simplified to the required form. In case (2) we always have $T_{h_1}T_{h_2} \neq 0$, since h_2h_1 is of the required form for any $T_{h_1} \neq 0$. In case (3) the range projection of $U(h_1)T_{h_2}$ is onto the subspace associated with the subset

 $\left\{h\in \Gamma'_+: h \text{ starts with the reduced form of } h_1^{-1}g_{k_{s_0}}^{m_{s_0}}\dots g_{k_{s+1}}^{m_{s+1}}\right\}.$

If $T_{h_1}T_{h_2} \neq 0$, then, by applying Lemma 2.2 again, $h_1^{-1}g_{k_{s_0}}^{m_{s_0}} \dots g_{k_{s+1}}^{m_{s+1}}$ can be simplified to the required form; this happens if and only if $h_1^{-1}h_2^{-1}$ can be simplified to the required form, which in turn holds if and only if h_2h_1 can be reduced to the required form.

2.7. COROLLARY. Assume that the final projection of T_{h_i} is a subprojection of the initial projection of $T_{h_{i-1}}$ for $2 \le i \le k$, and that $h_k h_{k-1} \ldots h_2 h_1$ can be simplified to a reduced word $g_{j_1}^{n_1} g_{j_2}^{n_2} \ldots g_{j_m}^{n_m} g_{j_{m+1}}^{-n_{m+1}} \ldots g_{j_l}^{-n_l}$, where $0 \le m \le l$ and n_1, n_2, \ldots, n_l are all non-negative integers. Then

$$T_{h_1}T_{h_2}\dots T_{h_k} = T_{g_{j_l}}^{*n_l}T_{g_{j_{l-1}}}^{*n_{l-1}}\dots T_{g_{j_{m+1}}}^{*n_{m+1}}T_{g_{j_m}}^{n_m}T_{g_{j_{m-1}}}^{n_{m-1}}\dots T_{g_{j_1}}^{n_1}$$
$$= T_{g_{j_{m+1}}}^{*n_{m+1}}g_{j_{m+2}}^{n_{m+2}}\dots g_{j_l}^{n_l}T_{g_{j_1}}^{n_1}g_{j_2}^{n_2}\dots g_{j_m}^{n_m}.$$

Proof. This follows by combining Lemma 2.4 and Proposition 2.6. \Box

2.8. REMARK. Assume that $h_1, h_2, \ldots, h_k \in \Gamma$ are such that $T_{h_1}T_{h_2} \ldots T_{h_k} \neq 0$. The reader is reminded that the relation $T_{h_1}T_{h_2} \ldots T_{h_k} = T_{h_kh_{k-1}\ldots h_2h_1}$ is not valid in general; thus, the condition in Proposition 2.6 is necessary, but not sufficient.

An immediate counterexample is given by $h_1 = g_1^{-3}$, $h_2 = g_1^3$, and $h_3 = g_1$; in this case,

$$T_{h_1}T_{h_2}T_{h_3} = T_{g_1^3}^*T_{g_1^3}T_{g_1} = P_{g_1^3}T_{g_1} \neq T_{g_1},$$

where $P_{g_1^3}$ is the projection onto the subspace $l^2(g_1^3\Gamma'_+)$. In fact, the initial projection of T_{g_1} is the projection P_{g_1} onto the subspace $l^2(g_1\Gamma'_+)$, while the initial projection of $P_{g_1^3}T_{g_1}$ is $P_{g_1^4}$, the projection onto $l^2(g_1^4\Gamma'_+)$.

3. Ideal structure of $C_r^*(\Gamma, P'_+)$

In this section we will determine all non-trivial closed ideals of $C_r^*(\Gamma, P'_+)$ and the structure of $\mathcal{I}_{P'_+}$. The main result is the following theorem.

- 3.1. THEOREM.
 - (i) The only nontrivial closed ideals of $C_r^*(\Gamma, P'_+)$ are $\mathcal{K}(l^2(\Gamma))$ and $\mathcal{I}_{P'_+}$.
- (ii) $\mathcal{I}_{P'_{+}} \cong \mathcal{I}_{P'_{+}} \otimes \mathcal{K} \text{ and } \mathcal{I}_{P'_{+}} / \mathcal{K}(l^{2}(\Gamma)) \cong \mathcal{O}_{n} \otimes \mathcal{K}.$

Clearly, $C_r^*(\Gamma, P'_+)$ contains $\mathcal{K}(l^2(\Gamma))$ as a closed ideal, since \mathcal{T}'_+ contains a rank one projection onto the subspace spanned by f_e . We prove the remaining assertions with the following lemmas.

3.2. LEMMA. The following short sequence is exact:

$$0 \longrightarrow \mathcal{I}_{P'_{+}} \longrightarrow C^{*}_{r}(\Gamma, P'_{+}) \longrightarrow C^{*}_{r}\Gamma \longrightarrow 0.$$

Proof. To prove the exactness of the above short sequence, one only needs to show that the canonical map from $C_r^*(\Gamma, P'_+)$ to the quotient

 $C_r^*(\Gamma, P'_+)/\mathcal{I}_{P'_+}$

is injective. In fact, since $C_r^*\Gamma$ is simple [10], each nonzero element of $C_r^*\Gamma$ generates $C_r^*\Gamma$ as a closed ideal. If a nonzero element Y of $C_r^*\Gamma$ is in $\mathcal{I}_{P'_+}$, then the closed ideal generated by Y, that is, $C_r^*\Gamma$, would be in $\mathcal{I}_{P'_+}$. This contradicts the fact that $\mathcal{I}_{P'_+}$ is a non-trivial closed ideal of $C_r^*\Gamma$.

3.3. LEMMA. $\mathcal{I}_{P'_{+}}/\mathcal{K}(l^{2}(\Gamma)) \cong \mathcal{O}_{n} \otimes \mathcal{K}.$

Proof. Consider the exact sequence

$$0 \longrightarrow \mathcal{K}(l^{2}(\Gamma)) \longrightarrow \mathcal{I}_{P'_{+}} \longrightarrow \mathcal{I}_{P'_{+}} / \mathcal{K}(l^{2}(\Gamma)) \longrightarrow 0.$$

Since $P'_+ \mathcal{I}_{P'_+} P'_+ = \mathcal{A}_{P'_+}$, by [1, 2.8] it follows that

$$\mathcal{A}_{P'_{+}} \otimes \mathcal{K} \cong \mathcal{I}_{P'_{+}} \otimes \mathcal{K}.$$

By Theorem 2.1, $\mathcal{A}_{P'_{+}}/\mathcal{K}(l^{2}(\Gamma'_{+})) \cong \mathcal{O}_{n}$. Since \mathcal{O}_{n} is simple [4], it is clear that $\mathcal{K}(l^{2}(\Gamma))$ is the only non-trivial closed ideal of $\mathcal{I}_{P'_{+}}$. Let π be the Calkin map from $\mathcal{L}(l^{2}(\Gamma))$ to $\mathcal{L}(l^{2}(\Gamma))/\mathcal{K}(l^{2}(\Gamma))$. Then it is obvious that

$$\pi(P'_{+}) \left\{ \mathcal{I}_{P'_{+}} / \mathcal{K}(l^{2}(\Gamma)) \right\} \pi(P'_{+}) = \mathcal{A}_{P'_{+}} / \mathcal{K}(l^{2}(\Gamma'_{+})).$$

It follows from [1, 2.8] again (or by a direct proof) that

$$\left\{ \mathcal{I}_{P'_{+}}/\mathcal{K}(l^{2}(\Gamma)) \right\} \otimes \mathcal{K} \cong \mathcal{O}_{n} \otimes \mathcal{K}.$$

Thus, $\mathcal{I}_{P'_{+}}/\mathcal{K}(l^{2}(\Gamma))$ is a purely infinite, simple C*-algebra (see [4] and [15, 1.4]). By using a structural result in [15, 1.2] stating that a σ -unital (in

particular, separable), purely infinite, simple C*-algebra is either unital or stable, we see that $\mathcal{I}_{P'_{\perp}}/\mathcal{K}(l^2(\Gamma))$ is stable; i.e., we have

$$\mathcal{I}_{P'_{+}}/\mathcal{K}(l^{2}(\Gamma)) \cong \left\{ \mathcal{I}_{P'_{+}}/\mathcal{K}(l^{2}(\Gamma)) \right\} \otimes \mathcal{K},$$

since $\mathcal{I}_{P'_{\perp}}/\mathcal{K}(l^2(\Gamma))$ is non-unital (by Proposition 2.0) and separable. Finally,

$$\mathcal{I}_{P'_{\perp}}/\mathcal{K}(l^{2}(\Gamma)) \cong \mathcal{O}_{n} \otimes \mathcal{K}.$$

3.4. COROLLARY. The *-isomorphism of Lemma 3.3 between $\mathcal{I}_{P'_{+}}/\mathcal{K}(l^{2}(\Gamma))$ and $\mathcal{O}_{n} \otimes \mathcal{K}$ induces the following exact sequence:

$$0 \longrightarrow \mathcal{K}(l^2(\Gamma)) \longrightarrow \mathcal{I}_{P'_+} \longrightarrow \mathcal{O}_n \otimes \mathcal{K} \longrightarrow 0.$$

Proof. This is obvious.

3.5. LEMMA. $\mathcal{I}_{P'_{+}}$ and $\mathcal{K}(l^{2}(\Gamma))$ are the only non-trivial closed ideals of $C_{r}^{*}(\Gamma, P'_{+})$.

Proof. Using the fact that $C_r^*\Gamma$ is simple [10] and Lemma 3.2, one concludes that there is no closed ideal between $\mathcal{I}_{P'_+}$ and $C_r^*(\Gamma, P'_+)$. There is also no closed ideal between $\mathcal{K}(l^2(\Gamma))$ and $\mathcal{I}_{P'_+}$, since $\mathcal{I}_{P'_+}/\mathcal{K}(l^2(\Gamma)) \cong \mathcal{O}_n \otimes \mathcal{K}$ is simple. There is obviously no other closed ideal in $C_r^*(\Gamma, P'_+)$.

To finish the proof of Theorem 3.1, it remains to show that $\mathcal{I}_{P'_+}$ is a stable C*-algebra. The following is an auxiliary lemma with a standard proof (see [14, 2.5] for similar results).

3.6. LEMMA (cf. [14, 2.5]). Assume that \mathcal{I} is a stable closed ideal of a C^* -algebra \mathcal{A} with $RR(\mathcal{I}) = 0$, and assume that every projection in \mathcal{A}/\mathcal{I} lifts to a projection in \mathcal{A} . If a projection $\bar{R}_1 \in \mathcal{A}/\mathcal{I}$ lifts to a projection $R_1 \in \mathcal{A}$ and a projection $\bar{R}_2 \in (\bar{I} - \bar{R}_1)\mathcal{A}/\mathcal{I}(\bar{I} - \bar{R}_1)$ is equivalent to \bar{R}_1 , then \bar{R}_2 lifts to a projection $R_2 \in (I - R_1)\mathcal{A}(I - R_1)$ such that $R_1 \sim R_2$.

Proof. Let \bar{V} be a partial isometry in \mathcal{A}/\mathcal{I} such that $\bar{V}^*\bar{V} = \bar{R}_1$ and $\bar{V}\bar{V}^* = \bar{R}_2$. Let $V \in \mathcal{A}$ be such that \bar{V} is the image of V in \mathcal{A}/\mathcal{I} . Set $W = (I - R_1)VR_1$. Then $W - V \in \mathcal{I}$, since $\bar{R}_1\bar{R}_2 = \bar{0}$. Since the real rank of $R_1\mathcal{I}R_1$ is again zero, one can take a projection $R \in R_1\mathcal{I}R_1$ such that

$$||(R_1 - R)(R_1 - W^*W)(R_1 - R)|| < 1.$$

Set

$$U = \{(R_1 - R)W^*W(R_1 - R)\}^{-1/2}W^*.$$

Then $UU^* = R_1 - R$ and $U^*U \leq I - R_1$. Furthermore, from the construction it is easy to see that the image of U^*U in \mathcal{A}/\mathcal{I} is \overline{R}_2 . Since \mathcal{I} is stable, one can find a projection $R' \in (I - R_1 - U^*U)\mathcal{I}(I - R_1 - U^*U)$ such that $R \sim R'$. Let V_1 be a partial isometry in \mathcal{I} such that $V_1^*V_1 = R'$ and $V_1V_1^* = R$.

Set $W_0 = U + V_1$. Then $W_0 W_0^* = R_1$ and $W_0^* W_0 = U^* U \oplus R' := R_2$, as desired.

3.7. LEMMA. $\mathcal{I}_{P'_{\perp}} \cong \mathcal{I}_{P'_{\perp}} \otimes \mathcal{K}.$

Proof. Consider $\mathcal{I}_{P'_{+}}/\mathcal{K}(l^{2}(\Gamma)) \cong \mathcal{O}_{n} \otimes \mathcal{K}$. Let 1 denote the identity of \mathcal{O}_{n} , and let $\{e_{ij}\}$ be the set of matrix units of \mathcal{K} . By repatedly applying Lemma 3.6, one can lift the projections $1 \otimes e_{ii}$ of $\mathcal{O}_{n} \otimes \mathcal{K}$ to mutually orthogonal projections $P_{1}, P_{2}, \ldots P_{n}, \ldots$ of $\mathcal{I}_{P'_{+}}$ that are all equivalent in $\mathcal{I}_{P'_{+}}$. Then $(I - \sum_{i=1}^{\infty} P_{i})\mathcal{I}_{P'_{+}}(I - \sum_{i=1}^{\infty} P_{i}) \subset \mathcal{K}(l^{2}(\Gamma))$, where the reader is reminded that the infinite sums above and below are taken in the corresponding multiplier algebras instead of the underlying C*-algebras. Take mutually orthogonal, one-dimensional projections $\{Q_{k}\}$ in $\mathcal{I}_{P'_{+}}$ such that

$$I - \sum_{i=1}^{\infty} P_i = \sum_k Q_k$$

(where the sum $\sum_{k} Q_k$ may contain a finite or infinite number of terms). Take a one-dimensional subprojection R_i of P_i for each $i \ge 1$ such that all $P_i - R_i$ $(i \ge 1)$ are still equivalent in $\mathcal{I}_{P'_+}$; this can be done by taking a one-dimensional subprojection R_1 of P_1 , and letting R_i $(i \ge 2)$ be the one-dimensional subprojection of P_i under the equivalence of P_1 and P_i . Write $I - \sum_{i=1}^{\infty} (P_i - R_i) = \sum_{j=1}^{\infty} R'_j$, where

$$\{R'_j : j \in \mathbb{N}\} = \{Q_k : k\} \cup \{R_i : i \in \mathbb{N}\}.$$

Set $P'_i = (P_i - R_i) \oplus R'_i$ for $i \ge 1$. Then all P'_i are mutually orthogonal projections in $\mathcal{I}_{P'_{\perp}}$ and they are still mutually equivalent in $\mathcal{I}_{P'_{\perp}}$. Also,

$$\sum_{i=1}^{\infty} P_i' = I.$$

Then it is clear that

$$\mathcal{I}_{P'_{\perp}} \cong (P'_1 \mathcal{I}_{P'_{\perp}} P'_1) \otimes \mathcal{K}$$

Since P_1 generates $\mathcal{I}_{P'_{\perp}}$ as a closed ideal, one sees from [1, 2.8] that

$$\mathcal{I}_{P'_{+}} \cong \mathcal{I}_{P'_{+}} \otimes \mathcal{K}.$$

We have completed the proof of Theorem 3.1.

3.8 REMARK-PROPOSITION. Using exactly the same arguments in the proofs of Lemma 3.6 and Lemma 3.7, one reaches the following general conclusion:

PROPOSITION. Assume that \mathcal{H} is any separable infinite-dimensional Hilbert space. If \mathcal{A} is a separable C^* -subalgebra of $\mathcal{L}(\mathcal{H})$ such that $\mathcal{K}(\mathcal{H}) \subset \mathcal{A}$ and

 $\mathcal{A}/\mathcal{K}(\mathcal{H})$ is a non-unital, purely infinite, simple C*-algebra, then \mathcal{A} is a stable C*-algebra.

4. The C*-algebra $C_r^*(\Gamma, P_+)$

After investigating the structure of $C_r^*(\Gamma, P'_+)$ in the last two sections, we now consider the relation between $C_r^*(\Gamma, P'_+)$ and $C_r^*(\Gamma, P_+)$, where P_+ is the projection onto the subspace $l^2(\Gamma_+)$. The following are the conclusions:

- 4.1. Theorem.
 - (i) $C_r^*(\Gamma, P'_+) = C_r^*(\Gamma, P_+)$, and $\mathcal{I}_{P'_+} = \mathcal{I}_{P_+}$.
- (ii) The Toeplitz algebra \mathcal{T}_+ associated with P_+ coincides with the corner $\mathcal{A}_{P_+} := P_+ C_r^*(\Gamma, P_+) P_+$; and $\mathcal{A}_{P_+} / \mathcal{K}(l^2(\Gamma_+)) \cong \mathcal{O}_n$.

Proof. (i) The projection $P_1 = P_+ U(g_1g_2^{-1})^* P_+ U(g_1g_2^{-1})P_+$ is onto the subspace $l^2(g_1g_2^{-1}\Gamma_+ \cap \Gamma_+)$. Clearly, P_1 is the projection onto the subspace $l^2(\Gamma_+(g_1))$, since

$$g_1g_2^{-1}\Gamma_+ \cap \Gamma_+ = g_1g_2^{-1}\Gamma_+(g_2) = \Gamma_+(g_1),$$

where $\Gamma_+(g_i)$ is the set of all reduced words in Γ_+ with initial word g_i . The projection $P_2 := P_+U(g_1)^*P_+U(g_1)P_+$ is onto the subspace $l^2(g_1\Gamma_+\cap\Gamma_+)$. Since $g_1\Gamma_+\cap\Gamma_+ = g_1\Gamma_+ = \Gamma_+(g_1) \setminus \{g_1\}, P_1 - P_2$ is the one-dimensional projection P_1 onto the subspace spanned by f_{g_1} . Consequently, $\mathcal{K}(l^2(\Gamma))$ is a subalgebra of $C_r^*(\Gamma, P_+)$.

Let P_e be the one-dimensional projection onto the subspace spanned by f_e . The relation $P'_{+} = P_{+} + P_e$ implies that

$$P_+ \in C_r^*(\Gamma, P'_+)$$
 and $P'_+ \in C_r^*(\Gamma, P_+).$

Therefore, $C_r^*(\Gamma, P_+) = C_r^*(\Gamma, P'_+).$

(ii) First, all conclusions of Lemmas 2.2, 2.3 and 2.4 remain valid if Γ'_+ is replaced by Γ_+ ; the details are left to the reader. Then $\mathcal{A}_{P_+} = \mathcal{T}_+$, the algebra generated by all Toeplitz operators

$$\{T_h := P_+ U(h) P_+ : h \in \Gamma'_+\}$$

Obviously, $\sum_{i=1}^{n} T_{q_i}^* T_{q_i} = P_+$, since Γ_+ is the disjoint union

$$\bigcup_{i=1}^{n} \left\{ h \in \Gamma_{+} : h \text{ starts with } g_{i} \right\}.$$

Thus, the same arguments as in [7] show that the following sequence is exact:

$$0 \longrightarrow \mathcal{K}(l^2(\Gamma_+)) \longrightarrow \mathcal{T}_+ \longrightarrow \mathcal{O}_n \longrightarrow 0.$$

Therefore, $\mathcal{T}_+/\mathcal{K}(l^2(\Gamma_+)) \cong \mathcal{O}_n$.

212

5. $C_r^*(\Gamma, \mathbf{R})$ and the Cuntz-Krieger algebras

Assume from now on that A is not a permutation matrix. An $n \times n$ matrix $A = [t_{ij}]$ with all entries either 0 or 1 is said to be *irreducible* if for any pair (i, j) there is $k_{ij} \in \mathbb{N}$ such that the (i, j)-entry of $A^{k_{ij}}$ is nonzero. The Cuntz-Krieger algebra \mathcal{O}_A is generated by nonzero partial isometries $\{S_i : i = 1, 2, \ldots, n\}$ on a separable Hilbert space such that

$$S_i^* S_i = \sum_{j=1}^n t_{i,j} S_j S_j^*, \quad S_l^* S_k = 0 \quad (l \neq k).$$

In particular, if A is an $n \times n$ matrix with all entries 1, then $\mathcal{O}_A = \mathcal{O}_n$. The reader can find more information about \mathcal{O}_A in [6], [4], and some of the subsequent references.

Let Ω_A be the subset of Γ_+ consisting of the generators $\{g_1, g_2, \ldots, g_n\}$, the identity e, and all *admissible* reduced words with respect to A, where a reduced word $g_{i_1}g_{i_2}\ldots g_{i_m}$ $(i_j = i_k \text{ for } j \neq k \text{ is allowed})$ is said to be admissible with respect to A if $\{i_1, i_2, \ldots, i_m\} \subset \{1, 2, \ldots, n\}$ and $t_{i_1, i_2} =$ $t_{i_2, i_3} = \cdots = t_{i_{m-1}, i_m} = 1$ ([8]).

Let R be the projection onto the subspace $l^2(\Omega_A)$. The Toeplitz algebra \mathcal{T}_A generated by $\{T_h := RU(h)R : h \in \Omega_A\}$ has been studied in [8]. The following short sequence is exact (see [8]):

$$0 \longrightarrow \mathcal{K}(l^2(\Omega_A)) \longrightarrow \mathcal{T}_A \longrightarrow \mathcal{O}_A \longrightarrow 0$$

Here we are interested in studying the structure of $C_r^*(\Gamma, R)$ and the corner algebra $\mathcal{A}_R := RC_r^*(\Gamma, R)R$. As in [8] we assume that the number of generators of Γ is precisely the matrix size n.

5.1. THEOREM. Assume that \mathcal{A} is an irreducible $n \times n$ matrix with entries in $\{0,1\}$ and Γ is the free group on n generators. Then:

- (i) $\mathcal{A}_R = \mathcal{T}_A$.
- (ii) C^{*}_r(Γ, R) has two nontrivial closed ideals, K(l²(Γ)) and the closed ideal *I_R* generated by R.
- (iii) $\mathcal{I}_R \cong \mathcal{I}_R \otimes \mathcal{K}, \ \mathcal{I}_R / \mathcal{K}(l^2(\Gamma)) \cong \mathcal{O}_A \otimes \mathcal{K}.$
- (iv) $RR(\mathcal{A}_R) = RR(\mathcal{I}_R) = 0.$

To prove this result, we again proceed in several steps as follows.

5.2. LEMMA. We have $T_h \neq 0$ if and only if $h = g_{i_1}g_{i_2}\dots g_{i_l}$, or $h = g_{j_k}^{-1}g_{j_{k-1}}^{-1}\dots g_{j_2}^{-1}g_{j_1}^{-1}$, or $h = g_{i_1}g_{i_2}\dots g_{i_l}g_{j_k}^{-1}g_{j_{k-1}}^{-1}\dots g_{j_2}^{-1}g_{j_1}^{-1}$ such that $i_l > 0$ and $t_{i_l,j} = t_{j_k,j} = 1$ for some $j \in \{1, 2, \dots, n\}$, where all of the above words are reduced words such that $g_{i_1}g_{i_2}\dots g_{i_l}$ and $g_{j_1}g_{j_2}\dots g_{j_k}$ are elements in Ω_A .

Proof. Since, for any $h \in \Gamma$, $T_h T_h^*$ is the projection onto $l^2(h^{-1}\Omega_A \cap \Omega_A)$ and $T_h^*T_h$ is the projection onto $l^2(h\Omega_A \cap \Omega_A)$, one sees that $T_h \neq 0$ iff $h\Omega_A \cap \Omega_A$

is not empty. Thus, in order for $T_h \neq 0$, it is necessary that $h = h_1 h_2^{-1}$ for some $h_1, h_2 \in \Omega_A$, that is,

$$h = g_{i_1}g_{i_2}\dots g_{i_l}g_{j_k}^{-1}g_{j_{k-1}}^{-1}\dots g_{j_2}^{-1}g_{j_1}^{-1},$$

where $t_{i_1,i_2} = t_{i_2,i_3} = \dots = t_{i_{l-1},i_l} = 1$, and $t_{j_1,j_2} = t_{j_2,j_3} = \dots = t_{j_{k-1},j_k} = 1$.

Two extreme cases here are when either $h_1 = e$ or $h_2 = e$. The above condition is also sufficient. In fact, if $h = g_{j_k}^{-1} g_{j_{k-1}}^{-1} \cdots g_{j_2}^{-1} g_{j_1}^{-1}$ (when $h_1 = e$), then $h\Omega_A \cap \Omega_A$ is the set of those reduced words in Ω_A that start with g_j and satisfy $t_{j_k,j} = 1$ and e. Thus $T_h \neq 0$. If $h = g_{i_1}g_{i_2}\dots g_{i_l}$ (when $h_2 = e$), then

$$T_h = T^*_{g_{i_l}^{-1}g_{i_{l-1}}^{-1}\dots g_{i_2}^{-1}g_{i_1}^{-1}}$$

Thus $T_h \neq 0$.

If $h = g_{i_1}g_{i_2}\dots g_{i_l}g_{j_k}^{-1}g_{j_{k-1}}^{-1}\dots g_{j_2}^{-1}g_{j_1}^{-1}$ with $i_l > 0$, then $h\Omega_A \cap \Omega_A$ is the set of those reduced words in Ω_A that start with $g_{i_1}g_{i_2}\dots g_{i_l}g_j$, where $t_{j_k,j} = 1$; furthermore, $t_{i_l,j} = 1$ is also necessary for $g_{i_1}g_{i_2}\ldots g_{i_l}g_j \in \Omega_A$. Therefore, the existence of such a j with $t_{i_l,j} = t_{j_k,j} = 1$ is a necessary and sufficient condition in order for $h\Omega_A \cap \Omega_A \neq \emptyset$.

5.3. LEMMA. Assume that $h = g_{i_1}g_{i_2}\dots g_{i_l}g_{j_k}^{-1}g_{j_{k-1}}^{-1}\dots g_{j_2}^{-1}g_{j_1}^{-1}$ with $i_l \ge 1$ and that $t_{i_l,j} = t_{j_k,j} = 1$ for some $j \in \{1, 2, \dots, n\}$. Then $T_h =$ $T^*_{g_{j_1}g_{j_2}\dots g_{j_k}}T_{g_{i_1}g_{i_2}\dots g_{i_l}}.$

Proof. Let
$$h_1 = g_{i_1}g_{i_2}\dots g_{i_l}$$
 and $h_2 = g_{j_1}g_{j_2}\dots g_{j_k}$. Then
 $T_h = T_{h_1h_2^{-1}} = RU(h_1h_2^{-1})R = RU(h_2)^*U(h_1)R.$

To show $T_{h_1h_2^{-1}} = T_{h_2}^*T_{h_1}$, it suffices to show that

$$RU(h_2)^*(I - R)U(h_1)R = 0.$$

The range of $(I - R)U(h_1)R$ is the subspace

$$d^2(g_{i_l}^{-1}\ldots g_{i_2}^{-1}g_{i_1}^{-1}\Omega_A\cap (\Gamma\setminus\Omega_A)).$$

Clearly, each reduced word in $g_{i_l}^{-1} \dots g_{i_2}^{-1} g_{i_1}^{-1} \Omega_A \cap (\Gamma \setminus \Omega_A)$ starts with $g_{i_l}^{-1}$ $\dots g_{i_k}^{-1}$ for some $1 \leq k \leq l-1$. It follows that the range of $U(h_2)^*(I-1)$ $R(h_1)R$ is associated with the subset of Γ in which each reduced word starts with the reduced word $h_2 g_{i_l}^{-1} \dots g_{i_k}^{-1}$ for some $1 \le k \le l-1$. Thus the range projection of $U(h_2)^*(I-R)U(h_1)R$ is a subprojection of I-R. Therefore, $RU(h_2)^*(I-R)U(h_1)R = 0.$

5.4 PROOF OF THEOREM 5.1. From Lemma 5.2 and Lemma 5.3 one sees that the two sets $\{T_h : h \in \Omega_A\}$ and $\{T_h : h \in \Gamma\}$ generate the same C^{*}algebra. Equivalently, the Toeplitz algebra \mathcal{T}_A is exactly the corner $\mathcal{A}_R :=$ $RC_r^*(\Gamma, R)R.$

215

It follows from Theorem 1.1 that the projection R generates a nontrivial closed ideal \mathcal{I}_R of $C_r^*(\Gamma, R)$. The same argument as for Lemma 3.2 shows that the natural short sequence

$$0 \longrightarrow \mathcal{I}_R \longrightarrow C_r^*(\Gamma, R) \longrightarrow C_r^*\Gamma \longrightarrow 0$$

is exact. Using the short exact sequence (see [8])

$$0 \longrightarrow \mathcal{K}(l^2(\Omega_A)) \longrightarrow \mathcal{T}_A \longrightarrow \mathcal{O}_A \longrightarrow 0$$

and the fact that $\mathcal{T}_A = \mathcal{A}_R$, one obtains the exact sequence

$$0 \longrightarrow \mathcal{K}(l^2(\Omega_A)) \longrightarrow \mathcal{A}_R \longrightarrow \mathcal{O}_A \longrightarrow 0.$$

Since A is irreducible, the C*-algebra \mathcal{O}_A is purely infinite and simple [4]. Since \mathcal{A}_R generates \mathcal{I}_R as a closed ideal, $\mathcal{I}_R/\mathcal{K}(l^2(\Gamma))$ is stably isomorphic to $\mathcal{A}_R/\mathcal{K}(l^2(\Omega_A))$, and hence $\mathcal{I}_R/\mathcal{K}(l^2(\Gamma))$ is stably isomorphic to \mathcal{O}_A . Thus, $\mathcal{I}_R/\mathcal{K}(l^2(\Gamma))$ is purely infinite and simple; furthermore, $\mathcal{I}_R/\mathcal{K}(l^2(\Gamma))$ is nonunital and separable. From the general result [15, 1.2] that every non-unital, σ -unital, purely infinite simple C*-algebra is stable it follows that

$$\mathcal{I}_R/\mathcal{K}(l^2(\Gamma)) \cong \mathcal{O}_A \otimes \mathcal{K}$$

Hence the following short sequence is exact:

$$0 \longrightarrow \mathcal{K}(l^2(\Gamma)) \longrightarrow \mathcal{I}_R \longrightarrow \mathcal{O}_A \otimes \mathcal{K} \longrightarrow 0.$$

Using exactly the same proof as for Lemma 3.7, one shows that \mathcal{I}_R is a stable C*-algebra, that is, $\mathcal{I}_R \cong \mathcal{I}_R \otimes \mathcal{K}$.

The above two exact sequences imply that $C_r^*(\Gamma, R)$ has only two nontrivial closed ideals, $\mathcal{K}(l^2(\Gamma))$ and \mathcal{I}_R .

Finally, we obtain $RR(\mathcal{A}_R) = 0$ by combining the results of [4] and [13] provided A is irreducible. Also, $RR(\mathcal{I}_R) = 0$, since \mathcal{I}_R and \mathcal{A}_R are stably *-isomorphic (by [1, 2.8]).

5.5. REMARK. In contrast to the cases Γ'_+ and Γ_+ we discussed earlier, it seems that \mathcal{T}_A is not the closed linear span of Toeplitz operators associated with R.

6. $\mathbf{C}^*_{\mathbf{r}}(\Gamma, \mathbf{P})$ associated with subgroups of Γ

Let Γ_0 be a non-trivial subgroup of Γ (i.e., $\Gamma_0 \neq \Gamma$, $\{e\}$). Then Γ_0 is also a free group, and, of course, Γ_0 as well as $\Gamma \setminus \Gamma_0$ are infinite sets. Let P_0 be the projection onto the subspace $l^2(\Gamma_0)$. Consider the C*-algebra $C_r^*(\Gamma, P_0)$ generated by $C_r^*\Gamma$ and P_0 . In this situation, $T_h := P_0U(h)P_0$ for each $h \in \Gamma$, and the Toeplitz algebra is denoted by \mathcal{T}_0 .

- 6.1. Theorem.
 - (i) $P_0 C_r^*(\Gamma, P_0) P_0 = \mathcal{T}_0 \cong C_r^* \Gamma_0.$

- (ii) The closed ideal \mathcal{I}_0 of $C_r^*(\Gamma, P_0)$ generated by the projection P_0 is isomorphic to $C_r^*\Gamma_0 \otimes \mathcal{K}$ (of course, $\mathcal{I}_0 \neq C_r^*(\Gamma, P_0)$).
- (iii) The following short sequence is exact:

 $0 \longrightarrow C_r^* \Gamma_0 \otimes \mathcal{K} \longrightarrow C_r^* (\Gamma, P_0) \longrightarrow C_r^* \Gamma \longrightarrow 0.$

Proof. The result follows from the following claims.

CLAIM 1. $T_h \neq 0$ if and only if $h \in \Gamma_0$.

In fact, $T_h \neq 0$ iff $h\Gamma_0 \cap \Gamma_0 \neq \emptyset$. Since Γ_0 is a subgroup of Γ , we have $h\Gamma_0 \cap \Gamma_0 \neq \emptyset$ iff $h \in \Gamma_0$.

CLAIM 2. $P_0 C_r^*(\Gamma, P_0) P_0 = C_r^* \Gamma_0.$

In fact, one needs only to observe that $T_h = U(h)P_0$ is a unitary operator onto $l^2(\Gamma_0)$ for each $h \in \Gamma_0$, and that $P_0U(h)P_0 = 0$ for all $h \notin \Gamma_0$.

CLAIM 3. The closed ideal \mathcal{I}_{P_0} of $C_r^*(\Gamma, P_0)$ generated by P_0 is nontrivial (cf. Corollary 1.4).

CLAIM 4. $\mathcal{I}_{P_0} \cong C_r^* \Gamma_0 \otimes \mathcal{K}.$

In fact, since Γ_0 is a subgroup of Γ , it is clear that $h_1\Gamma_0 \cap h_2\Gamma_0 \neq \emptyset$ if and only if $h_1\Gamma_0 = h_2\Gamma_0$. One can choose recursively a sequence $h_1 = e, h_2, \ldots, h_n, \ldots$ in Γ such that

$$h_i \Gamma_0 \cap h_j \Gamma_0 = \emptyset \ (i \neq j) \text{ and } \Gamma = \bigcup_{i=1}^{\infty} h_i \Gamma_0.$$

On the other hand, $U(h_i)^* P_0 U(h_i)$ is the projection onto the subspace $l^2(h_i \Gamma_0)$ for $i \ge 1$. Since $P_0 \sim U(h_1)^* P_0 U(h_i)$ for $i \ge 1$ and $\sum_{i=1}^{\infty} U(h_i)^* P_0 U(h_i) = I$, it is clear that

$$P_0C_r^*(\Gamma, P_0)P_0\otimes \mathcal{K}=\mathcal{I}_0.$$

Hence it follows from Claim 2 above that $\mathcal{I}_0 \cong C_r^* \Gamma_0 \otimes \mathcal{K}$.

CLAIM 5. The natural short sequence $0 \longrightarrow C_r^* \Gamma_0 \otimes \mathcal{K} \longrightarrow C^*(\Gamma, P_0) \longrightarrow C_r^* \Gamma \longrightarrow 0$ is exact.

In fact, the same argument as in the proof of Lemma 3.2 applies. Combining the claims yields a complete proof of Theorem 6.1. $\hfill \Box$

6.2 EXAMPLE. Let us look at the following particular case. First, take any element $g \in \Gamma \setminus \{e\}$ and let $\Gamma_1 := \{g^n : n \in \mathbb{Z}\}$. Then Γ_1 is an infinite subgroup of Γ such that $\Gamma \setminus \Gamma_1$ is an infinite subset of Γ . Let P_1 be the projection onto the subspace $l^2(\Gamma_1)$. Consider the C*-algebra $C_r^*(\Gamma, P_1)$ generated by $C_r^*\Gamma$ and P_1 . Note that a Toeplitz operator with respect to P_1 is of the form

217

 $T_h := P_1 U(h) P_1$ for any $h \in \Gamma$. We will denote the corresponding Toeplitz algebra by $\mathcal{T}_{\mathbb{Z}}$. Then we have the following corollary.

COROLLARY.

- (i) $P_1 C_r^*(\Gamma, P_1) P_1 = \mathcal{T}_{\mathbb{Z}} \cong C(S^1).$
- (ii) The closed ideal \mathcal{I}_0 of $C_r^*(\Gamma, P_1)$ generated by P_1 is *-isomorphic to $C(S^1) \otimes \mathcal{K}$ (of course, $\mathcal{I}_0 \neq C_r^*(\Gamma, P_1)$).
- (iii) The following short sequence is exact:

$$0 \longrightarrow C(S^1) \otimes \mathcal{K} \longrightarrow C_r^*(\Gamma, P_1) \longrightarrow C_r^*\Gamma \longrightarrow 0.$$

Proof. (i) The corner algebra $P_1C_r^*(\Gamma, P_1)P_1$ is generated by $\{T_h : h \in \Gamma\}$. On the other hand, Claim 1 in the proof of Theorem 6.1 implies that

$$\{T_h : h \in \Gamma\} = \{T_{q_1^n} : n \in \mathbb{Z}\}.$$

Hence $\mathcal{T}_{\mathbb{Z}}$ is the abelian C*-algebra generated by the bilateral shift $U(g_1)$. It is well known that $\mathcal{T}_{\mathbb{Z}} \cong C(S^1)$.

(ii) and (iii) follow from Theorem 6.1 and the trivial fact that $C_r^*\Gamma_1 = C(S^1)$.

References

- L. G. Brown, Stable isomorphism of hereditary C*-algebras, Pacific J. Math. 71 (1977), 335–348. MR 56#12894
- [2] L. G. Brown and G. K. Pedersen, C^{*}-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131–149. MR 92m:46086
- J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173–185. MR 57#7189
- [4] _____, K-theory for certain C*-algebras, Ann. of Math. (2) 113 (1981), 181–197. MR 84c:46058
- [5] _____, K-theoretic amenability for discrete groups, J. Reine Angew. Math. 344 (1983), 180–195. MR 86e:46064
- J. Cuntz and W. Krieger, A class of C^{*}-algebras and topological Markov chains, Invent. Math. 56 (1980), 251–268. MR 82f:46073a
- [7] M. Enomoto, H. Takehana, and Y. Watatani, C*-algebras on free semigroups as extensions of Cuntz algebras, Math. Japon. 24 (1979/80), 527–531. MR 82b:46070
- [8] D. Handelman and H.-S. Yin, Toeplitz extensions and automorphisms affiliated with linear characters of groups, Bull. London Math. Soc. 20 (1988), 54–60. MR 90a:46176
- [9] G. J. Murphy, Toeplitz operators and algebras, Math. Z. 208 (1991), 355–362. MR 93e:46072
- [10] R. T. Powers, Simplicity of the C*-algebra associated with the free group on two generators, Duke Math. J. 42 (1975), 151–156. MR 51#10534
- J. Spielberg, Free-product groups, Cuntz-Krieger algebras, and covariant maps, Internat. J. Math. 2 (1991), 457–476. MR 92j:46120
- [12] W. Szymański and S. Zhang, Infinite simple C*-algebras and reduced cross products of abelian C*-algebras and free groups, Manuscripta Math. 92 (1997), 487–514. MR 98a:46073
- [13] S. Zhang, A property of purely infinite simple C*-algebras, Proc. Amer. Math. Soc. 109 (1990), 717–720. MR 90k:46134

- [14] _____, K₁-groups, quasidiagonality, and interpolation by multiplier projections, Trans. Amer. Math. Soc. **325** (1991), 793–818. MR **91j**:46069
- [15] _____, Certain C*-algebras with real rank zero and their corona and multiplier algebras. I, Pacific J. Math. 155 (1992), 169–197. MR 94i:46093
- [16] _____, Toeplitz algebras and infinite simple C*-algebras associated with reduced group C*-algebras, Math. Scand. 81 (1997), 86–100 (1998). MR 98k:46095
- [17] _____, Purely infinite simple C*-algebras arising from reduced group C*-algebras, Operator algebras and operator theory (Shanghai, 1997), Contemp. Math., vol. 228, Amer. Math. Soc., Providence, RI, 1998, pp. 365–389. MR 2000g:46082

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025, USA

 $E\text{-}mail \ address: \texttt{zhangs@math.uc.edu}$