TOEPLITZ ALGEBRAS AND C*-ALGEBRAS ARISING FROM REDUCED (FREE) GROUP C*-ALGEBRAS

SHUANG ZHANG

Abstract

Assume that Γ is a free group on n generators, where $2 \leq$ $n<+\infty$. Let Ω be an infinite subset of Γ such that $\Gamma \backslash \Omega$ is also infinite, and let P be the projection on the subspace $l^{2}(\Omega)$ of $l^{2}(\Gamma)$. We prove that, for some choices of Ω, the C^{*}-algebra $C_{r}^{*}(\Gamma, P)$ generated by the reduced group C^{*}-algebra $C_{r}^{*} \Gamma$ and the projection P has exactly two non-trivial, stable, closed ideals of real rank zero. We also give a detailed analysis of the Toeplitz algebra generated by the restrictions of operators in $C_{r}^{*}(\Gamma, P)$ on the subspace $l^{2}(\Omega)$.

Introduction

Throughout this article, we assume, except otherwise specified, that Γ is a free group of n generators, say $\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$, and e is the unit of Γ, where $2 \leq n<+\infty$. Each element of Γ is a reduced word $g_{i_{1}}^{n_{1}} g_{i_{2}}^{n_{2}} \ldots g_{i_{m}}^{n_{m}}$ in the sense that it does not contain any factor of the forms $g g^{-1}$ and $g^{-1} g$, where $n_{i} \in \mathbb{Z}$ (the group of all integers). Let $\left\{f_{g}: g \in \Gamma\right\}$ be a standard orthonormal basis of the Hilbert space $l^{2}(\Gamma)$ of all complex valued, square-summable sequences indexed by Γ. Let $\lambda: \Gamma \longrightarrow \mathcal{L}\left(l^{2}(\Gamma)\right)$ be the left regular representation of Γ on $\mathcal{L}\left(l^{2}(\Gamma)\right)$, where $\mathcal{L}(\mathcal{H})$ denotes the algebra of all bounded operators on a Hilbert space \mathcal{H} as usual, and $\lambda(g):=U(g)$ is a unitary operator defined by $U(g)\left(f_{h}\right)=f_{g^{-1} h}$ for all $g, h \in \Gamma$. The reduced group C^{*}-algebra $C_{r}^{*} \Gamma$ is the norm closure of the group ring $\mathbb{C}[\Gamma]$ consisting of all linear combinations $\left\{\sum_{i=1}^{n} \alpha_{i} U\left(h_{i}\right): h_{i} \in \Gamma, \alpha_{i} \in \mathbb{C}\right.$, and $\left.n \in \mathbb{N}\right\}$; in other words, $C_{r}^{*} \Gamma$ is the C^{*}-subalgebra of $\mathcal{L}\left(l^{2}(\Gamma)\right)$ generated by the group $\lambda(\Gamma)=\{U(g): g \in \Gamma\}$.

The purpose of this article is to investigate the structure of the C^{*}-algebra generated by the reduced group C^{*}-algebra $C_{r}^{*} \Gamma$ and a projection P onto a subspace of the form $l^{2}(\Omega)$, denoted by $C_{r}^{*}(\Gamma, P)$, where both Ω and $\Gamma \backslash \Omega$ are infinite subsets of Γ. We will consider the specific cases when Ω is equal to one of the following sets:

[^0](1) $\Gamma_{+}:=\left\{g_{i_{1}}^{n_{1}} g_{i_{2}}^{n_{2}} \ldots g_{i_{j}}^{n_{j}}: j, n_{1}, n_{2}, \ldots, n_{j} \in \mathbb{N}\right\}$;
(2) $\Gamma_{+}^{\prime}:=\Gamma_{+} \cup\{e\}$;
(3) Γ_{0}, a nontrivial subgroup of Γ; and
(4) Γ_{A}, the union of $\left\{e, g_{1}, g_{2}, \ldots, g_{n}\right\}$ and the set of all admissible reduced words with respect to $A([8])$, where A is an $n \times n$ irreducible matrix with entries in $\{0,1\}([6])$.

It turns out that the cases (1) and (2) result in the same C^{*}-algebra $C_{r}^{*}\left(\Gamma, P_{+}\right)$, which has exactly two nontrivial, stable, closed ideals; one is the algebra $\mathcal{K}\left(l^{2}(\Gamma)\right)$ consisting of all compact operators on $l^{2}(\Gamma)$ and the other is generated by P_{+}and denoted by $\mathcal{I}_{P_{+}}$(where P_{+}is the projection onto $l^{2}\left(\Gamma_{+}\right)$). Furthermore, $\mathcal{I}_{P_{+}} / \mathcal{K}\left(l^{2}(\Gamma)\right) \cong \mathcal{O}_{n} \otimes \mathcal{K}$, and $\mathcal{I}_{P_{+}}$has real rank zero, where \mathcal{O}_{n} is the Cuntz algebra. The case (3) yields a C^{*}-algebra $C_{r}^{*}\left(\Gamma, P_{0}\right)$ that has a nontrivial, stable, closed ideal, that is, $C_{r}^{*} \Gamma_{0} \otimes \mathcal{K}$. The case (4) results in a C ${ }^{*}$ algebra $C_{r}^{*}(\Gamma, R)$ that has exactly two non-trivial, stable, closed ideals; one is $\mathcal{K}\left(l^{2}(\Gamma)\right)$ and the other is generated by R and denoted by \mathcal{I}_{R} (where R is the projection onto the subspace $\left.l^{2}\left(\Gamma_{A}\right)\right)$. In addition, $\mathcal{I}_{R} / \mathcal{K}\left(l^{2}(\Gamma)\right) \cong \mathcal{O}_{A} \otimes \mathcal{K}$, and \mathcal{I}_{R} has real rank zero, where \mathcal{O}_{A} is the Cuntz-Krieger algebra associated with A. Moreover, we will give a necessary and sufficient condition for the equality $\mathcal{I}_{P}=C_{r}^{*}(\Gamma, P)$.

The case $n=+\infty$ (i.e., the case when Γ is the free group on infinitely many generators) and the cases when Γ is any free product of finite and infinite cyclic groups have been studied in [16]; the resulting C^{*}-algebras $C_{r}^{*}\left(\Gamma, P_{+}\right)$have different structures. In [17] we proved that $C_{r}^{*}(\Gamma, P)$ can be a purely infinite simple C^{*}-algebra (and hence has real rank zero) for some other choices of P (there Γ can be more general free products of finite or infinite cyclic groups). Thus, there are indeed many interesting C*-algebras in the class

$$
\left\{C_{r}^{*}\left(\Gamma, P_{\Omega}\right): \Omega \subset \Gamma, \quad|\Omega|=|\Gamma \backslash \Omega|=+\infty\right\}
$$

It appears to be an interesting, but difficult problem to classify, up to *-isomorphism, all C*-algebras of the form $C_{r}^{*}\left(\Gamma, P_{\Omega}\right)$.

This article is self-contained with only few references needed. More references are provided only for the convenience of the reader in searching for some relevant literature.

0. Preliminaries

Let Ω be an infinite subset of Γ such that $\Gamma \backslash \Omega$ is also an infinite subset of Γ, and let P be the projection in $\mathcal{L}\left(l^{2}(\Gamma)\right)$ onto the subspace $l^{2}(\Omega)$ of $l^{2}(\Gamma)$. It easily follows from the definition that $U(h)^{*}=U\left(h^{-1}\right)$ for $h \in \Gamma$,

$$
\begin{aligned}
U\left(h_{1} h_{2}\right)=U\left(h_{2}\right) U\left(h_{1}\right) \text { for } h_{1}, h_{2} \in \Gamma & , \text { and for any } g \in \Gamma \\
U(g)^{*} P U(g) f_{h} & = \begin{cases}f_{h} & \text { if } h \in g \Omega \\
0 & \text { if } h \notin g \Omega\end{cases} \\
U(g) P U(g)^{*} f_{h} & = \begin{cases}f_{h} & \text { if } h \in g^{-1} \Omega \\
0 & \text { if } h \notin g^{-1} \Omega\end{cases}
\end{aligned}
$$

Hence $U(g)^{*} P U(g)$ and $U(g) P U(g)^{*}$ are the projections onto the subspaces $l^{2}(g \Omega)$ and $l^{2}\left(g^{-1} \Omega\right)$, respectively. As a natural analogue of the classic Toeplitz operators associated with $\Omega:=\mathbb{Z}^{+} \subset \Gamma:=\mathbb{Z}$, for each $g \in \Gamma$ one defines a Toeplitz operator T_{g} as follows:

$$
T_{g}:=P U(g) P \in \mathcal{L}\left(l^{2}(\Omega)\right)
$$

Obviously,

$$
T_{g}\left(f_{h}\right)=P f_{g^{-1} h}= \begin{cases}f_{g^{-1} h} & \text { if } h \in g \Omega \cap \Omega \\ 0 & \text { if } h \notin g \Omega \cap \Omega\end{cases}
$$

Thus, $\left\{T_{g}: g \in \Gamma\right\}$ is a set of partial isometries on $l^{2}(\Omega)$ such that

$$
T_{g}^{*}=T_{g^{-1}}
$$

$T_{g}^{*} T_{g}$ is the projection onto $l^{2}(g \Omega \cap \Omega)$, and
$T_{g} T_{g}^{*}$ is the projection onto $l^{2}\left(g^{-1} \Omega \cap \Omega\right)$.
The C^{*}-algebra \mathcal{T}_{P} generated by $\left\{T_{g}: g \in \Omega\right\}$ is called the Toeplitz C^{*} algebra associated with Ω (cf. [7], [8], [9]). The hereditary C^{*}-subalgebra $\mathcal{A}_{P}:=P C_{r}^{*}(\Gamma, P) P$ is often called a corner algebra supported by P. It is obvious that \mathcal{A}_{P} is generated by $\left\{T_{g}: g \in \Gamma\right\}$ and hence contains \mathcal{T}_{P}. We will later prove that in some cases the corner \mathcal{A}_{P} is actually equal to \mathcal{T}_{P}.

Notice that all of the above observations remain valid when Γ is any free product of cyclic groups of finite or infinite order, consisting of all reduced words of elements in the groups.

1. A criterion for $\mathcal{I}_{\mathbf{P}}=\mathbf{C}_{\mathbf{r}}^{*}(\boldsymbol{\Gamma}, \mathbf{P})$

In this section, we investigate under what condition on Ω the closed ideal \mathcal{I}_{P} of $C_{r}^{*}(\Gamma, P)$ generated by P is equal to $C_{r}^{*}(\Gamma, P)$. The following is a necessary and sufficient condition for this equality.
1.1. Theorem. Let Γ be any free product of cyclic groups with finite or infinite order. Then $\mathcal{I}_{P}=C_{r}^{*}(\Gamma, P)$ if and only if there exist finitely many elements $h_{1}, h_{2}, \ldots, h_{m} \in \Gamma$ such that $\Gamma=\bigcup_{j=1}^{m} h_{j} \Omega$.

Before proving this criterion, we need to deal with some preliminary matters. The two operations \vee and \wedge on projections are defined in a von Neumann algebra but not in a C^{*}-algebra in general, for the resulting projections $Q_{1} \vee Q_{2}$
and $Q_{1} \wedge Q_{2}$ may lie outside the C^{*}-algebra. Nevertheless, \vee and \wedge can be partially executed in this particular C^{*}-algebra $C_{r}^{*}(\Gamma, P)$.
1.2. Lemma.
(i) The projections $U\left(h_{1}\right) P U\left(h_{1}\right)^{*}$ and $U\left(h_{2}\right) P U\left(h_{2}\right)^{*}$ commute for any two elements $h_{1}, h_{2} \in \Gamma$.
(ii) $U\left(h_{1}\right) P U\left(h_{1}\right)^{*} \vee \cdots \vee U\left(h_{m}\right) P U\left(h_{m}\right)^{*}$ and $U\left(h_{1}\right) P U\left(h_{1}\right)^{*} \wedge \cdots \wedge$ $U\left(h_{m}\right) P U\left(h_{m}\right)^{*}$ are projections in $C_{r}^{*}(\Gamma, P)$ for any finitely many elements $h_{1}, h_{2}, \ldots, h_{m} \in \Gamma$.

Proof. (i) This is immediate, since $U\left(h_{1}\right) P U\left(h_{1}\right)^{*}$ and $U\left(h_{2}\right) P U\left(h_{2}\right)^{*}$ are projections onto the subspaces $l^{2}\left(h_{1}^{-1} \Omega\right)$ and $l^{2}\left(h_{2}^{-1} \Omega\right)$.
(ii) $U\left(h_{1}\right) P U\left(h_{1}\right)^{*} U\left(h_{2}\right) P U\left(h_{2}\right)^{*}$ is the projection onto $l^{2}\left(h_{1}^{-1} \Omega \cap h_{2}^{-1} \Omega\right)$, that is in $C_{r}^{*}(\Gamma, P)$. By definition,

$$
\begin{aligned}
& U\left(h_{1}\right) P U\left(h_{1}\right)^{*} \vee U\left(h_{2}\right) P U\left(h_{2}\right)^{*}= U\left(h_{1}\right) P U\left(h_{1}\right)^{*}+U\left(h_{2}\right) P U\left(h_{2}\right)^{*} \\
&-U\left(h_{1}\right) P U\left(h_{1}\right)^{*} U\left(h_{2}\right) P U\left(h_{2}\right)^{*}, \\
& U\left(h_{1}\right) P U\left(h_{1}\right)^{*} \wedge U\left(h_{2}\right) P U\left(h_{2}\right)^{*}=U\left(h_{1}\right) P U\left(h_{1}\right)^{*} U\left(h_{2}\right) P U\left(h_{2}\right)^{*}
\end{aligned}
$$

which are both projections in $C_{r}^{*}(\Gamma, P)$. The general conclusion follows by induction.
1.3. Proof of Theorem 1.1. First, assume that $\Gamma=\bigcup_{j=1}^{m} h_{j} \Omega$, where $h_{1}, h_{2}, \ldots, h_{m} \in \Gamma$. We show that the identity I of $C_{r}^{*}(\Gamma, P)$ is in \mathcal{I}_{P}, and hence $\mathcal{I}_{P}=C_{r}^{*}(\Gamma, P)$. Clearly,

$$
U\left(h_{1}\right) P U\left(h_{2}\right)^{*} \vee U\left(h_{2}\right) P U\left(h_{2}\right)^{*} \vee \cdots \vee U\left(h_{m}\right) P U\left(h_{m}\right)^{*}=I
$$

since the projection on the left-hand side of the above equality is onto the subspace $l^{2}\left(\bigcup_{j=1}^{m} h_{j} \Omega\right)$, that is, the whole space $l^{2}(\Gamma)$. Thus, $\mathcal{I}_{P}=C_{r}^{*}(\Gamma, P)$ by the above lemma.

Secondly, assume that $\Gamma \neq \bigcup_{j=1}^{m} h_{j} \Omega$ for any finitely many elements h_{1}, h_{2}, \ldots, h_{m} of Γ. Then $\Gamma \backslash \bigcup_{j=1}^{m} h_{j} \Omega$ must be an infinite subset of Γ. We show that the identity I is not in \mathcal{I}_{P}. To do so, we suppose $I \in \mathcal{I}_{P}$ and then reach a contradiction.

Since the linear span of $\{U(g): g \in \Gamma\}$ is norm dense in $C_{r}^{*} \Gamma$, it is clear that the linear span \mathcal{L}^{\prime} of all products of elements in

$$
\{P U(g), U(g) P, P U(g)(I-P),(I-P) U(g) P: g \in \Gamma\}
$$

is norm dense in \mathcal{I}_{P}. Take a linear combination X from \mathcal{L}^{\prime} such that

$$
\|X-I\|<\delta<1
$$

Then

$$
\|(I-P) X(I-P)-(I-P)\|<\delta
$$

Obviously, the i th term of $(I-P) X(I-P)$ can be written in the form

$$
X_{i}:=\alpha_{i}(I-P) U\left(k_{i}\right) P_{1} U\left(h_{i 1}\right) P_{2} U\left(h_{i 2}\right) P_{3} \ldots P_{l_{i}} U\left(h_{i l_{i}}\right) P_{l_{i+1}} U\left(k_{i}^{\prime}\right)(I-P)
$$

where $\alpha_{i} \in \mathbb{C}$ and P_{j} is equal to either P or $I-P$ for $1 \leq j \leq i+1$ and at least one of the P_{j} 's is equal to P, and $k_{i}, k_{i}^{\prime}, h_{i j} \in \Gamma$ for $0 \leq j \leq l_{i}$. Let $P_{j_{0}}$ be the first term P from the left occurring in the above product. It is clear that the range projection of X_{i} is a subprojection of the range projection of

$$
\begin{aligned}
& (I-P) U\left(k_{i}\right) P_{1} U\left(h_{i 1}\right) P_{2} U\left(h_{i 2}\right) P_{3} \ldots P_{j_{0}-1} U\left(h_{j_{0}-1, l_{j_{0}-1}}\right) P_{j_{0}} \\
& \quad=(I-P) U\left(k_{i}\right)(I-P) U\left(h_{i 1}\right)(I-P) \ldots(I-P) U\left(h_{j_{0}-1, l_{j_{0}-1}}\right) P_{j_{0}}
\end{aligned}
$$

Let k_{i}^{\prime} be the reduced form of the product $h_{j_{0}-1, l_{j_{0}-1}} \ldots h_{i 2} h_{i 1} k_{i}$. Clearly, the range projection of

$$
U\left(k_{i}\right)(I-P) U\left(h_{i 1}\right)(I-P) \ldots(I-P) U\left(h_{j_{0}-1, l_{j_{0}-1}}\right) P_{j_{0}}
$$

is a subprojection of $U\left(k_{i}^{\prime}\right) P U\left(k_{i}^{\prime}\right)^{*}$ for $1 \leq i \leq m$. Take an element $h \in$ $\Gamma \backslash \bigcup_{j=1}^{m} k_{j}^{\prime-1} \Omega \backslash \Omega$ and any element $g \in \Omega$. Then $h \in h g^{-1} \Omega$. It follows that

$$
U\left(g h^{-1}\right)^{*} P U\left(g h^{-1}\right)\left(I-U\left(k_{1}^{\prime}\right) P U\left(k_{1}^{\prime}\right)^{*} \vee \cdots \vee U\left(k_{m}^{\prime}\right) P U\left(k_{m}^{\prime}\right)^{*} \vee P\right)
$$

is a nonzero projection in $C_{r}^{*}(\Gamma, P)$, denoted by R. Furthermore, by the construction R is a projection in \mathcal{I}_{P} such that $R(I-P)=R$ and $R(I-$ $P) X(I-P)=0$. We immediately reach the following contradiction:

$$
1=\|R\|=\|R((I-P) X(I-P)-(I-P))\|<\delta<1
$$

Therefore, $I \notin \mathcal{I}_{P}$, and hence $\mathcal{I}_{P} \neq C_{r}^{*}(\Gamma, P)$.
For a subgroup Γ_{0} of Γ, one denotes as usual the index of Γ_{0} in Γ by $\left[\Gamma: \Gamma_{0}\right]$, the cardinality of the set of all left cosets $\left\{h \Gamma_{0}: h \in \Gamma\right\}$. Let P_{0} be the projection onto the subspace $l^{2}\left(\Gamma_{0}\right)$.
1.4. Corollary. Let Γ_{0} be an infinite subgroup of Γ such that $\Gamma \backslash \Gamma_{0}$ is infinite. Then $\mathcal{I}_{P_{0}}=C_{r}^{*}\left(\Gamma, P_{0}\right)$ if and only if $\left[\Gamma: \Gamma_{0}\right]<+\infty$.

Proof. This is immediate from Theorem 1.1.
1.5. Corollary. Assume that Γ_{0} is the subgroup of Γ generated by a subset Ω. If $\left[\Gamma: \Gamma_{0}\right]=+\infty$ and P is the projection onto $l^{2}(\Omega)$, then $\mathcal{I}_{P} \neq C_{r}^{*}(\Gamma, P)$.

Proof. Let P_{0} be the projection onto $l^{2}\left(\Gamma_{0}\right)$. If $\mathcal{I}_{P}=C_{r}^{*}(\Gamma, P)$, then $\mathcal{I}_{P_{0}}=$ $C_{r}^{*}(\Gamma, P)$ by Theorem 1.1, since $\Omega \subset \Gamma_{0}$.

2. Real rank of \mathcal{T}_{+}and \mathcal{T}_{+}^{\prime}

From now on, we will discuss some specific subsets Ω of the free group Γ on finitely many generators $(2 \leq n<+\infty)$. In this and the next section, we take Ω to be $\Gamma_{+}^{\prime}=\Gamma_{+} \cup\{e\}$, where

$$
\Gamma_{+}:=\left\{g_{i_{1}}^{n_{1}} g_{i_{2}}^{n_{2}} \ldots g_{i_{m}}^{n_{m}} \in \Gamma: m, n_{1}, n_{2}, \ldots, n_{m} \in \mathbb{N}\right\}
$$

and we let P_{+}and P_{+}^{\prime} be the projections onto the subspaces $l^{2}\left(\Gamma_{+}\right)$and $l^{2}\left(\Gamma_{+}^{\prime}\right)$, respectively.

We first consider $C_{r}^{*}\left(\Gamma, P_{+}^{\prime}\right)$. For $h \in \Gamma_{+}^{\prime}$ one observes immediately that

$$
T_{h} T_{h}^{*}=P_{+}^{\prime} \text { and } T_{h}^{*} T_{h} \text { is the projection onto the subspace } l^{2}\left(h \Gamma_{+}^{\prime}\right)
$$

The C^{*}-subalgebra \mathcal{T}_{+}^{\prime} of $\mathcal{L}\left(l^{2}\left(\Gamma_{+}^{\prime}\right)\right)$ generated by $\left\{T_{g}: g \in \Gamma_{+}^{\prime}\right\}$ involves the following extension (see [7]):

$$
0 \longrightarrow \mathcal{K}\left(l^{2}\left(\Gamma_{+}^{\prime}\right)\right) \longrightarrow \mathcal{T}_{+}^{\prime} \longrightarrow \mathcal{O}_{n} \longrightarrow 0
$$

where $\mathcal{K}\left(l^{2}\left(\Gamma_{+}^{\prime}\right)\right)$ is the algebra of all compact operators on $l^{2}\left(\Gamma_{+}^{\prime}\right)$, and \mathcal{O}_{n} is the Cuntz algebra generated by n isometries $\left\{S_{i}\right\}_{i=1}^{n}$ such that

$$
S_{1} S_{1}^{*}+S_{2} S_{2}^{*}+\cdots+S_{n} S_{n}^{*}=I
$$

The corner hereditary C^{*}-subalgebra $\mathcal{A}_{P_{+}^{\prime}}$, i.e., the corner $P_{+}^{\prime} C_{r}^{*}\left(\Gamma, P_{+}^{\prime}\right) P_{+}^{\prime}$, is generated by

$$
\left\{T_{g}:=P_{+}^{\prime} U(g) P_{+}^{\prime}: g \in \Gamma\right\} .
$$

It is obvious that \mathcal{T}_{+}^{\prime} is a ${ }^{*}$-subalgebra of $\mathcal{A}_{P_{+}^{\prime}}, \mathcal{A}_{P_{+}^{\prime}}$ is a C^{*}-subalgebra of $\mathcal{I}_{P_{+}^{\prime}}$, and $\mathcal{A}_{P_{+}^{\prime}}$ generates $\mathcal{I}_{P_{+}^{\prime}}$ as a closed ideal. We will clarify the relation between \mathcal{T}_{+}^{\prime} and $\mathcal{A}_{P_{+}^{\prime}}$ by analyzing the elements of $\mathcal{A}_{P_{+}^{\prime}}$, and then determine the (closed) ideal structure of $C_{r}^{*}\left(\Gamma, P_{+}^{\prime}\right)$.

2.0. Proposition. $\mathcal{I}_{P_{+}^{\prime}} \neq C_{r}^{*}\left(\Gamma, P_{+}^{\prime}\right)$.

Proof. This is immediate from Theorem 1.1.
The main result of this section is as follows:
2.1. Theorem.
(i) $\mathcal{T}_{+}^{\prime}=\mathcal{A}_{P_{+}^{\prime}}$.
(ii) The short sequence $0 \longrightarrow \mathcal{K}\left(l^{2}\left(\Gamma_{+}^{\prime}\right)\right) \longrightarrow \mathcal{T}_{+}^{\prime} \longrightarrow \mathcal{O}_{n} \longrightarrow 0$ is exact.
(iii) $R R\left(\mathcal{A}_{P_{+}^{\prime}}\right)=R R\left(\mathcal{I}_{P_{+}^{\prime}}\right)=0$.

To prove this theorem, we need the following lemmas.
2.2. Lemma. Suppose that $g \in \Gamma$ is represented by a reduced word $g_{i_{1}}^{\epsilon_{1}} g_{i_{2}}^{\epsilon_{2}}$ $\ldots g_{i_{n}}^{\epsilon_{n}}$, where the ϵ_{i} 's are nonzero integers. Then $T_{g} \neq 0$ if and only if there is $0 \leq m \leq n$ such that $\epsilon_{i}>0$ for $1 \leq i \leq m$ and $\epsilon_{i}<0$ for $m+1 \leq i \leq n$,
where the cases $m=0$ and $m=n$ are to be interpreted as $\epsilon_{i}<0$ for $1 \leq i \leq n$ and $\epsilon_{i}>0$ for $1 \leq i \leq n$, respectively.

Proof. If $\epsilon_{i}<0$ for all $1 \leq i \leq n$, then $T_{g}^{*} T_{g}=P_{+}^{\prime}$ and $T_{g} T_{g}^{*}$ is the projection onto the subspace $l^{2}\left(g_{i_{n}}^{-\epsilon_{n}} g_{i_{n-1}}^{-\epsilon_{n-1}} \ldots g_{i_{2}}^{-\epsilon_{2}} g_{i_{1}}^{-\epsilon_{1}} \Gamma_{+}^{\prime}\right)$; note that $g_{i_{n}}^{-\epsilon_{n}} g_{i_{n-1}}^{-\epsilon_{n-1}}$ $\ldots g_{i_{2}}^{-\epsilon_{2}} g_{i_{1}}^{-\epsilon_{1}} \Gamma_{+}^{\prime}$ is the set of all those elements of Γ_{+}^{\prime} that begin with $g_{i_{n}}^{-\epsilon_{n}} g_{i_{n-1}}^{-\epsilon_{n-1}}$ $\ldots g_{i_{2}}^{-\epsilon_{2}} g_{i_{1}}^{-\epsilon_{1}}$. If $\epsilon_{i}>0$ for all $1 \leq i \leq n$, then $T_{g} T_{g}^{*}=P_{+}^{\prime}$ and $T_{g}^{*} T_{g}$ is the projection onto the subspace associated with the subset

$$
\left\{h \in \Gamma_{+}^{\prime}: h \text { starts with } g_{i_{1}}^{\epsilon_{1}} g_{i_{2}}^{\epsilon_{2}} \ldots g_{i_{n}}^{\epsilon_{n}}\right\}
$$

If there is m such that $1<m<n, \epsilon_{i}>0$ for $1 \leq i \leq m$, and $\epsilon_{i}<0$ for $m<i \leq n$, then $T_{g} T_{g}^{*}$ is the projection onto the subspace associated with

$$
\left\{h \in \Gamma_{+}^{\prime}: h \text { starts with } g_{i_{n}}^{-\epsilon_{n}} g_{i_{n-1}}^{-\epsilon_{n-1}} \ldots g_{i_{m+1}}^{-\epsilon_{m+1}}\right\}
$$

and $T_{g}^{*} T_{g}$ is the projection onto the subspace associated with

$$
\left\{h \in \Gamma_{+}^{\prime}: h \text { starts with } g_{i_{1}}^{\epsilon_{1}} g_{i_{2}}^{\epsilon_{2}} \ldots g_{i_{m}}^{\epsilon_{m}}\right\}
$$

This proves the direction "if" of the lemma.
We now verify the direction "only if". Assume that $T_{g} \neq 0$ and that ϵ_{m} is the last positive power occurring in the reduced word $g=g_{i_{1}}^{\epsilon_{1}} g_{i_{2}}^{\epsilon_{2}} \ldots g_{i_{n}}^{\epsilon_{n}}$. It suffices to show that $\epsilon_{i}>0$ for any $1 \leq i \leq m$. If $\epsilon_{i}<0$ for some $1 \leq i \leq m-1$, then $g \Gamma_{+}^{\prime} \cap \Gamma_{+}^{\prime}=\emptyset$; but this would imply $T_{g}=0$.
2.3. Lemma. Let $g=g_{i_{1}}^{\epsilon_{1}} g_{i_{2}}^{\epsilon_{2}} \ldots g_{i_{m}}^{\epsilon_{m}} \in \Gamma_{+}^{\prime}$, where $\epsilon_{i}>0$ for $1 \leq i \leq m$. Then:
(i) The unitary operator $U(g)$ can be written, with respect to the decomposition $P_{+}^{\prime} \oplus P_{+}^{\prime \perp}=I$, in the matrix form

$$
\left(\begin{array}{ll}
A & 0 \\
C & D
\end{array}\right),
$$

where $A=P_{+}^{\prime} U(g) P_{+}^{\prime}, C=P_{+}^{\prime \perp} U(g) P_{+}^{\prime}$, and $D=P_{+}^{\prime \perp} U(g) P_{+}^{\prime \perp}$.
(ii) $T_{g_{1}^{\epsilon_{1}} g_{2}^{\epsilon_{2}} \ldots g_{m}^{\epsilon_{m}}}=T_{g_{m}^{\epsilon_{m}}} T_{g_{m-1}^{\epsilon_{m-1}}} \ldots T_{g_{2}^{\epsilon_{2}}} T_{g_{1}^{\epsilon_{1}}}$.

Proof. (i) Since $U(g)^{*} P_{+}^{\prime} U(g)$ is the projection onto the subspace $l^{2}\left(g \Gamma_{+}^{\prime}\right)$ and $g \Gamma_{+}^{\prime} \subset \Gamma_{+}^{\prime}$, it follows that $P_{+}^{\prime \perp} U(g)^{*} P_{+}^{\prime} U(g) P_{+}^{\prime \perp}=0$. Thus $P_{+}^{\prime} U(g) P_{+}^{\prime \perp}=$ 0.
(ii) It is easily checked with a simple matrix multiplication that $P_{+}^{\prime} U\left(g_{1}^{\epsilon_{1}} g_{2}^{\epsilon_{2}}\right) P_{+}^{\prime}=P_{+}^{\prime} U\left(g_{2}^{\epsilon_{2}}\right) P_{+}^{\prime} U\left(g_{1}^{\epsilon_{1}}\right) P_{+}^{\prime}$ whenever $\epsilon_{i}>0$. The general situation follows by induction.
2.4. Lemma. Assume that $T_{g} \neq 0$, where $g=g_{i_{1}}^{\epsilon_{1}} g_{i_{2}}^{\epsilon_{2}} \ldots g_{i_{n}}^{\epsilon_{n}}, \epsilon_{i}>0$ for $1 \leq i \leq m$, and $\epsilon_{i}<0$ for $m+1 \leq i \leq n(0 \leq m \leq n)$. Then

$$
T_{g}=T_{g_{i_{n}}}^{*-\epsilon_{n}} T_{g_{i_{n-1}}}^{*-\epsilon_{n-1}} \ldots T_{g_{i_{m+1}}}^{*-\epsilon_{m+1}} T_{g_{i_{m}}}^{\epsilon_{m}} T_{g_{i_{m-1}}}^{\epsilon_{m-1}} \ldots T_{g_{i_{1}}}^{\epsilon_{1}}
$$

Proof. By the definition we have $U(g)=U\left(g_{i_{m+1}}^{\epsilon_{m+1}} \ldots g_{i_{n}}^{\epsilon_{n}}\right) U\left(g_{i_{1}}^{\epsilon_{1}} \ldots g_{i_{m}}^{\epsilon_{m}}\right)$. We claim that

$$
P_{+}^{\prime} U\left(g_{i_{m+1}}^{\epsilon_{m+1}} \ldots g_{i_{n}}^{\epsilon_{n}}\right) P_{+}^{\prime \perp} U\left(g_{i_{1}}^{\epsilon_{1}} \ldots g_{i_{m}}^{\epsilon_{m}}\right) P_{+}^{\prime}=0
$$

For the cases $m=0$ and $m=n$ this equality is trivial. Assume $1<m<n$. First, observe that the range projection of $P_{+}^{\prime \perp} U\left(g_{i_{1}}^{\epsilon_{1}} \ldots g_{i_{m}}^{\epsilon_{m}}\right) P_{+}^{\prime}$ is a subprojection of the projection onto the subspace associated with the set of all reduced words starting with $g_{i_{m}}^{-\epsilon_{m}} \ldots g_{i_{k}}^{-\epsilon_{k}}$ for some $1 \leq k \leq m-1$; secondly, notice that the range projection of $U\left(g_{i_{m+1}}^{\epsilon_{m+1}} \ldots g_{i_{n}}^{\epsilon_{n}}\right) P_{+}^{\prime \perp} U\left(g_{i_{1}}^{\epsilon_{1}} \ldots g_{i_{m}}^{\epsilon_{m}}\right) P_{+}^{\prime}$ is a subprojection of the projection onto the subspace associated with the set of all reduced words starting with

$$
g_{i_{n}}^{-\epsilon_{n}} \ldots g_{i_{m+1}}^{-\epsilon_{m+1}} g_{i_{m}}^{-\epsilon_{m}} \ldots g_{i_{k}}^{-\epsilon_{k}}
$$

for some $1 \leq k \leq m-1$; thirdly, the set of all reduced words starting with

$$
g_{i_{n}}^{-\epsilon_{n}} \ldots g_{i_{m+1}}^{-\epsilon_{m+1}} g_{i_{m}}^{-\epsilon_{m}} \ldots g_{i_{k}}^{-\epsilon_{k}}
$$

is disjoint from Γ_{+}^{\prime}. Thus, the above equality is proved.
Using this equality, we have

$$
\begin{aligned}
P_{+}^{\prime} U\left(g_{i_{1}}^{\epsilon_{1}} \ldots g_{i_{n}}^{\epsilon_{n}}\right) P_{+}^{\prime}= & P_{+}^{\prime} U\left(g_{i_{m+1}}^{\epsilon_{m+1}} \ldots g_{i_{n}}^{\epsilon_{n}}\right) P_{+}^{\prime} U\left(g_{i_{1}}^{\epsilon_{1}} \ldots g_{i_{m}}^{\epsilon_{m}}\right) P_{+}^{\prime} \\
& +P_{+}^{\prime} U\left(g_{i_{m+1}}^{\epsilon_{m+1}} \ldots g_{i_{n}}^{\epsilon_{n}}\right) P_{+}^{\prime \perp} U\left(g_{i_{1}}^{\epsilon_{1}} \ldots g_{i_{m}}^{\epsilon_{m}}\right) P_{+}^{\prime} \\
= & P_{+}^{\prime} U\left(g_{i_{m+1}}^{\epsilon_{m+1}} \ldots g_{i_{n}}^{\epsilon_{n}}\right) P_{+}^{\prime} U\left(g_{i_{1}}^{\epsilon_{1}} \ldots g_{i_{m}}^{\epsilon_{m}}\right) P_{+}^{\prime}
\end{aligned}
$$

Since $\epsilon_{i}>0$ for $1 \leq i \leq m$, from the definition and the matrix form of $U\left(g_{i}\right)$ as given in Lemma 2.3(i) one sees that

$$
\begin{aligned}
T_{g_{i_{1}} \ldots g_{i_{m}}}^{\epsilon_{1}} & =P_{+}^{\prime} U\left(g_{i_{1}}^{\epsilon_{1}} g_{i_{2}}^{\epsilon_{2}} \ldots g_{i_{m}}^{\epsilon_{m}}\right) P_{+}^{\prime} \\
& =\left(P_{+}^{\prime} U\left(g_{i_{m}}\right) P_{+}^{\prime}\right)^{\epsilon_{m}}\left(P_{+}^{\prime} U\left(g_{i_{m-1}}\right) P_{+}^{\prime}\right)^{\epsilon_{m-1}} \ldots\left(P_{+}^{\prime} U\left(g_{i_{1}}\right) P_{+}^{\prime}\right)^{\epsilon_{1}} \\
& =T_{g_{i_{m}}}^{\epsilon_{m}} T_{g_{i_{m-1}}}^{\epsilon_{m-1}} \ldots T_{g_{i_{1}}}^{\epsilon_{1}} .
\end{aligned}
$$

Since $U\left(g^{-1}\right)=U(g)^{*}$ for any $g \in \Gamma$ and $\epsilon_{i}<0$ for $m+1 \leq i \leq n$, it is again easily seen from Lemma 2.3(i) that

$$
\begin{aligned}
T_{g_{i_{m+1}}^{\epsilon_{m+1} \ldots g_{i n}}}^{\epsilon_{n}} & =P_{+}^{\prime} U\left(g_{i_{m+1}}^{\epsilon_{m+1}} \ldots g_{i_{n}}^{\epsilon_{n}}\right) P_{+}^{\prime} \\
& =\left(P_{+}^{\prime} U\left(g_{i_{n}}^{-1}\right) P_{+}^{\prime}\right)^{-\epsilon_{n}} \ldots\left(P_{+}^{\prime} U\left(g_{i_{m+1}}^{-1}\right) P_{+}^{\prime}\right)^{-\epsilon_{m+1}} \\
& =T_{g_{i_{n}}^{-1}}^{-\epsilon_{n}} \ldots T_{g_{i_{m+1}}^{-1}}^{-\epsilon_{m+1}} \\
& =T_{g_{i_{n}}^{*}}^{*-\epsilon_{n}} T_{g_{n-1}}^{*-\epsilon_{n-1}} \ldots T_{g_{i_{m+1}}}^{*-\epsilon_{m+1}} .
\end{aligned}
$$

Therefore, we have the equality

$$
T_{g}=T_{g_{i_{n}}}^{*-\epsilon_{n}} T_{g_{i_{n-1}}}^{*-\epsilon_{n-1}} \ldots T_{g_{i_{m+1}}}^{*-\epsilon_{m+1}} T_{g_{i_{m}}}^{\epsilon_{m}} T_{g_{i_{m-1}}}^{\epsilon_{m-1}} \ldots T_{g_{i_{1}}}^{\epsilon_{1}}
$$

2.5. Proof of Theorem 2.1. (i) By definition the C^{*}-algebra \mathcal{T}_{+}^{\prime} is generated by $\left\{T_{g}: g \in \Gamma_{+}^{\prime}\right\}$, i.e., \mathcal{T}_{+}^{\prime} is the norm closure of the linear span of all possible words of elements in $\left\{T_{h}^{*} ; h \in \Gamma_{+}^{\prime}\right\} \cup\left\{T_{h^{\prime}}: h, h^{\prime} \in \Gamma_{+}^{\prime}\right\}$. From Lemmas 2.2 and 2.4 one sees that \mathcal{T}_{+}^{\prime} coincides with the corner algebra $\mathcal{A}_{P_{+}^{\prime}}$ that is generated by the apparently larger set $\left\{T_{g}: g \in \Gamma\right\}$.
(ii) By a result from [7] one has the *-isomorphism

$$
\mathcal{T}_{+}^{\prime} / \mathcal{K}\left(l^{2}\left(\Gamma_{+}^{\prime}\right)\right) \cong \mathcal{O}_{n}
$$

via by the exact sequence $0 \longrightarrow \mathcal{K}\left(l^{2}\left(\Gamma_{+}^{\prime}\right)\right) \longrightarrow \mathcal{T}_{+}^{\prime} \longrightarrow \mathcal{O}_{n} \longrightarrow 0$. Since $\mathcal{A}_{P_{+}^{\prime}}=$ \mathcal{T}_{+}^{\prime}, we have therefore $\mathcal{A}_{P_{+}^{\prime}} / \mathcal{K}\left(l^{2}\left(\Gamma_{+}^{\prime}\right)\right) \cong \mathcal{O}_{n}$, and the following sequence is also exact:

$$
0 \longrightarrow \mathcal{K}\left(l^{2}\left(\Gamma_{+}^{\prime}\right)\right) \longrightarrow \mathcal{A}_{P_{+}^{\prime}} \longrightarrow \mathcal{O}_{n} \longrightarrow 0
$$

(iii) Since $K_{1}\left(\mathcal{K}\left(l^{2}\left(\Gamma_{+}^{\prime}\right)\right)=0, R R\left(\mathcal{K}\left(l^{2}\left(\Gamma_{+}^{\prime}\right)\right)\right)=0\right.$, and $R R\left(\mathcal{O}_{n}\right)=0$ (see [13] or [15]), it follows from [2, 3.14] or [15, 2.4] that $R R\left(\mathcal{A}_{P_{+}^{\prime}}\right)=0$. Thus, $R R\left(\mathcal{A}_{P_{+}^{\prime}} \otimes \mathcal{K}\right)=0($ see $[2,2.5])$. Since $\mathcal{A}_{P_{+}^{\prime}}$ is a full corner of $\mathcal{I}_{P_{+}^{\prime}}$ (i.e., $\mathcal{A}_{P_{+}^{\prime}}$ generates $\mathcal{I}_{P_{+}^{\prime}}$ as a closed ideal), by $[1,2.8]$ one has

$$
\mathcal{I}_{P_{+}^{\prime}} \otimes \mathcal{K} \cong \mathcal{A}_{P_{+}^{\prime}} \otimes \mathcal{K}
$$

Therefore, $R R\left(\mathcal{I}_{P_{+}^{\prime}} \otimes \mathcal{K}\right)=0$, and hence $R R\left(\mathcal{I}_{P_{+}^{\prime}}\right)=0$.
The following is a necessary condition for the product $T_{h_{1}} T_{h_{2}} \ldots T_{h_{k}}$ to be a nonzero operator.
2.6. Proposition. Assume that $h_{1}, h_{2}, \ldots, h_{k} \in \Gamma$ and $T_{h_{1}}, T_{h_{2}}, \ldots, T_{h_{k}}$ satisfy

$$
T_{h_{1}} T_{h_{2}} \ldots T_{h_{k}} \neq 0
$$

Then, after canceling all factors of the forms $g g^{-1}$ or $g^{-1} g$, the element $h_{k} h_{k-1} \ldots h_{2} h_{1}$ can be simplified to either e or to the form $g_{i_{1}}^{\epsilon_{1}} g_{i_{2}}^{\epsilon_{2}} \ldots g_{i_{l}}^{\epsilon_{l}}$, where $\epsilon_{i}>0$ for $0 \leq i \leq m$ and $\epsilon_{i}<0$ for $m+1 \leq i \leq l$ (for some $m \leq l$ as in Lemma 2.2).

Proof. By induction we only need to prove the lemma for $k=2$. Because $T_{e}=P_{+}^{\prime}$ is the identity of \mathcal{T}_{+}, we can assume that $h_{i} \neq e$ for $1 \leq i \leq k$.

Since $T_{h_{1}} \neq 0$ and $T_{h_{2}} \neq 0$, by Lemma 2.2 one can write

$$
\begin{aligned}
h_{1} & =g_{j_{1}}^{n_{1}} g_{j_{2}}^{n_{2}} \ldots g_{j_{t}}^{n_{t}} g_{j_{t+1}}^{-n_{t+1}} g_{j_{t+2}}^{-n_{t+2}} \ldots g_{j_{t_{0}}}^{-n_{t_{0}}} \\
h_{2} & =g_{k_{1}}^{m_{1}} g_{k_{2}}^{m_{2}} \ldots g_{k_{s}}^{m_{s}} g_{k_{s+1}}^{-m_{s+1}} g_{k_{s+2}}^{-m_{s+2}} \ldots g_{k_{s_{0}}}^{-m_{s_{0}}}
\end{aligned}
$$

where $n_{1}, n_{2}, \ldots, n_{t_{0}}, m_{1}, m_{2}, \ldots, m_{s_{0}}$ are all positive integers. By definition, for the range projection $R_{2}:=T_{h_{2}} T_{h_{2}}^{*}$ of $T_{h_{2}}$ there are three possibilities:
(1) When $s=0, R_{2}$ is the projection onto the subspace associated with the subset

$$
\left\{h \in \Gamma_{+}^{\prime}: h \text { starts with } g_{k_{s_{0}}}^{m_{s_{0}}} \ldots g_{k_{2}}^{m_{2}} g_{k_{1}}^{m_{1}}\right\}
$$

(2) When $s=s_{0}, R_{2}=P_{+}^{\prime}$.
(3) When $1 \leq s<s_{0}, R_{2}$ is the projection onto the subspace associated with the subset

$$
\left\{h \in \Gamma_{+}^{\prime}: h \text { starts with } g_{k_{s_{0}}}^{m_{s_{0}}} \ldots g_{k_{s+1}}^{m_{s+1}}\right\} .
$$

Notice that $T_{h_{1}} T_{h_{2}}=P_{+}^{\prime} U\left(h_{1}\right) T_{h_{2}}$. In case (1) the range projection of $U\left(h_{1}\right) T_{h_{2}}$ is onto the subspace associated with the subset

$$
\left\{h \in \Gamma_{+}^{\prime}: h \text { starts with the reduced form of } h_{1}^{-1} h_{2}^{-1}\right\} .
$$

If $P_{+}^{\prime} U\left(h_{1}\right) T_{h_{2}} \neq 0$, then, by Lemma 2.2, $h_{1}^{-1} h_{2}^{-1}$ can be simplified to the required form (after canceling all factors of the form $g_{j} g_{j}^{-1}$ or $g_{j}^{-1} g_{j}$); equivalently, $h_{2} h_{1}$ can be simplified to the required form. In case (2) we always have $T_{h_{1}} T_{h_{2}} \neq 0$, since $h_{2} h_{1}$ is of the required form for any $T_{h_{1}} \neq 0$. In case (3) the range projection of $U\left(h_{1}\right) T_{h_{2}}$ is onto the subspace associated with the subset

$$
\left\{h \in \Gamma_{+}^{\prime}: h \text { starts with the reduced form of } h_{1}^{-1} g_{k_{s_{0}}}^{m_{s_{0}}} \ldots g_{k_{s+1}}^{m_{s+1}}\right\} .
$$

If $T_{h_{1}} T_{h_{2}} \neq 0$, then, by applying Lemma 2.2 again, $h_{1}^{-1} g_{k_{s_{0}}}^{m_{s_{0}}} \ldots g_{k_{s+1}}^{m_{s+1}}$ can be simplified to the required form; this happens if and only if $h_{1}^{-1} h_{2}^{-1}$ can be simplified to the required form, which in turn holds if and only if $h_{2} h_{1}$ can be reduced to the required form.
2.7. Corollary. Assume that the final projection of $T_{h_{i}}$ is a subprojection of the initial projection of $T_{h_{i-1}}$ for $2 \leq i \leq k$, and that $h_{k} h_{k-1} \ldots h_{2} h_{1}$ can be simplified to a reduced word $g_{j_{1}}^{n_{1}} g_{j_{2}}^{n_{2}} \ldots g_{j_{m}}^{n_{m}} g_{j_{m+1}}^{-n_{m+1}} \ldots g_{j_{l}}^{-n_{l}}$, where $0 \leq$ $m \leq l$ and $n_{1}, n_{2}, \ldots, n_{l}$ are all non-negative integers. Then

$$
\begin{aligned}
T_{h_{1}} T_{h_{2}} \ldots T_{h_{k}} & =T_{g_{j_{l}}}^{* n} T_{g_{j_{l-1}}}^{* n_{l-1}} \ldots T_{g_{j_{m+1}}}^{* n_{m+1}} T_{g_{j_{m}}}^{n_{m}} T_{g_{j_{m-1}}}^{n_{m-1}} \ldots T_{g_{j_{1}}}^{n_{1}} \\
& =T_{g_{j_{m+1}} \overbrace{m+1} g_{j_{m+2}} \ldots g_{j_{l}}}^{n_{j_{m+2}}} T_{g_{j_{1}} g_{j_{2}}^{n_{2} \ldots g_{j_{m}}} .}^{n_{m}}
\end{aligned}
$$

Proof. This follows by combining Lemma 2.4 and Proposition 2.6.
2.8. Remark. Assume that $h_{1}, h_{2}, \ldots, h_{k} \in \Gamma$ are such that $T_{h_{1}} T_{h_{2}} \ldots T_{h_{k}}$ $\neq 0$. The reader is reminded that the relation $T_{h_{1}} T_{h_{2}} \ldots T_{h_{k}}=T_{h_{k} h_{k-1} \ldots h_{2} h_{1}}$ is not valid in general; thus, the condition in Proposition 2.6 is necessary, but not sufficient.

An immediate counterexample is given by $h_{1}=g_{1}^{-3}, h_{2}=g_{1}^{3}$, and $h_{3}=g_{1}$; in this case,

$$
T_{h_{1}} T_{h_{2}} T_{h_{3}}=T_{g_{1}^{3}}^{*} T_{g_{1}^{3}} T_{g_{1}}=P_{g_{1}^{3}} T_{g_{1}} \neq T_{g_{1}},
$$

where $P_{g_{1}^{3}}$ is the projection onto the subspace $l^{2}\left(g_{1}^{3} \Gamma_{+}^{\prime}\right)$. In fact, the initial projection of $T_{g_{1}}$ is the projection $P_{g_{1}}$ onto the subspace $l^{2}\left(g_{1} \Gamma_{+}^{\prime}\right)$, while the initial projection of $P_{g_{1}^{3}} T_{g_{1}}$ is $P_{g_{1}^{4}}$, the projection onto $l^{2}\left(g_{1}^{4} \Gamma_{+}^{\prime}\right)$.

3. Ideal structure of $\mathbf{C}_{\mathbf{r}}^{*}\left(\Gamma, \mathbf{P}_{+}^{\prime}\right)$

In this section we will determine all non-trivial closed ideals of $C_{r}^{*}\left(\Gamma, P_{+}^{\prime}\right)$ and the structure of $\mathcal{I}_{P_{+}^{\prime}}$. The main result is the following theorem.
3.1. THEOREM.
(i) The only nontrivial closed ideals of $C_{r}^{*}\left(\Gamma, P_{+}^{\prime}\right)$ are $\mathcal{K}\left(l^{2}(\Gamma)\right)$ and $\mathcal{I}_{P_{+}^{\prime}}$.
(ii) $\mathcal{I}_{P_{+}^{\prime}} \cong \mathcal{I}_{P_{+}^{\prime}} \otimes \mathcal{K}$ and $\mathcal{I}_{P_{+}^{\prime}} / \mathcal{K}\left(l^{2}(\Gamma)\right) \cong \mathcal{O}_{n} \otimes \mathcal{K}$.

Clearly, $C_{r}^{*}\left(\Gamma, P_{+}^{\prime}\right)$ contains $\mathcal{K}\left(l^{2}(\Gamma)\right)$ as a closed ideal, since \mathcal{T}_{+}^{\prime} contains a rank one projection onto the subspace spanned by f_{e}. We prove the remaining assertions with the following lemmas.
3.2. Lemma. The following short sequence is exact:

$$
0 \longrightarrow \mathcal{I}_{P_{+}^{\prime}} \longrightarrow C_{r}^{*}\left(\Gamma, P_{+}^{\prime}\right) \longrightarrow C_{r}^{*} \Gamma \longrightarrow 0 .
$$

Proof. To prove the exactness of the above short sequence, one only needs to show that the canonical map from $C_{r}^{*}\left(\Gamma, P_{+}^{\prime}\right)$ to the quotient

$$
C_{r}^{*}\left(\Gamma, P_{+}^{\prime}\right) / \mathcal{I}_{P_{+}^{\prime}}
$$

is injective. In fact, since $C_{r}^{*} \Gamma$ is simple [10], each nonzero element of $C_{r}^{*} \Gamma$ generates $C_{r}^{*} \Gamma$ as a closed ideal. If a nonzero element Y of $C_{r}^{*} \Gamma$ is in $\mathcal{I}_{P_{+}^{\prime}}$, then the closed ideal generated by Y, that is, $C_{r}^{*} \Gamma$, would be in $\mathcal{I}_{P_{+}^{\prime}}$. This contradicts the fact that $\mathcal{I}_{P_{+}^{\prime}}$ is a non-trivial closed ideal of $C_{r}^{*} \Gamma$.

$$
\text { 3.3. Lemma. } \quad \mathcal{I}_{P_{+}^{\prime}} / \mathcal{K}\left(l^{2}(\Gamma)\right) \cong \mathcal{O}_{n} \otimes \mathcal{K} \text {. }
$$

Proof. Consider the exact sequence

$$
0 \longrightarrow \mathcal{K}\left(l^{2}(\Gamma)\right) \longrightarrow \mathcal{I}_{P_{+}^{\prime}} \longrightarrow \mathcal{I}_{P_{+}^{\prime}} / \mathcal{K}\left(l^{2}(\Gamma)\right) \longrightarrow 0 .
$$

Since $P_{+}^{\prime} \mathcal{I}_{P_{+}^{\prime}} P_{+}^{\prime}=\mathcal{A}_{P_{+}^{\prime}}$, by $[1,2.8]$ it follows that

$$
\mathcal{A}_{P_{+}^{\prime}} \otimes \mathcal{K} \cong \mathcal{I}_{P_{+}^{\prime}} \otimes \mathcal{K} .
$$

By Theorem 2.1, $\mathcal{A}_{P_{+}^{\prime}} / \mathcal{K}\left(l^{2}\left(\Gamma_{+}^{\prime}\right)\right) \cong \mathcal{O}_{n}$. Since \mathcal{O}_{n} is simple [4], it is clear that $\mathcal{K}\left(l^{2}(\Gamma)\right)$ is the only non-trivial closed ideal of $\mathcal{I}_{P_{+}^{\prime}}$. Let π be the Calkin map from $\mathcal{L}\left(l^{2}(\Gamma)\right)$ to $\mathcal{L}\left(l^{2}(\Gamma)\right) / \mathcal{K}\left(l^{2}(\Gamma)\right)$. Then it is obvious that

$$
\pi\left(P_{+}^{\prime}\right)\left\{\mathcal{I}_{P_{+}^{\prime}} / \mathcal{K}\left(l^{2}(\Gamma)\right)\right\} \pi\left(P_{+}^{\prime}\right)=\mathcal{A}_{P_{+}^{\prime}} / \mathcal{K}\left(l^{2}\left(\Gamma_{+}^{\prime}\right)\right) .
$$

It follows from $[1,2.8]$ again (or by a direct proof) that

$$
\left\{\mathcal{I}_{P_{+}^{\prime}} / \mathcal{K}\left(l^{2}(\Gamma)\right)\right\} \otimes \mathcal{K} \cong \mathcal{O}_{n} \otimes \mathcal{K} .
$$

Thus, $\mathcal{I}_{P_{+}^{\prime}} / \mathcal{K}\left(l^{2}(\Gamma)\right)$ is a purely infinite, simple C^{*}-algebra (see [4] and [15, 1.4]). By using a structural result in [15, 1.2] stating that a σ-unital (in
particular, separable), purely infinite, simple C^{*}-algebra is either unital or stable, we see that $\mathcal{I}_{P_{+}^{\prime}} / \mathcal{K}\left(l^{2}(\Gamma)\right)$ is stable; i.e., we have

$$
\mathcal{I}_{P_{+}^{\prime}} / \mathcal{K}\left(l^{2}(\Gamma)\right) \cong\left\{\mathcal{I}_{P_{+}^{\prime}} / \mathcal{K}\left(l^{2}(\Gamma)\right)\right\} \otimes \mathcal{K}
$$

since $\mathcal{I}_{P_{+}^{\prime}} / \mathcal{K}\left(l^{2}(\Gamma)\right)$ is non-unital (by Proposition 2.0) and separable. Finally,

$$
\mathcal{I}_{P_{+}^{\prime}} / \mathcal{K}\left(l^{2}(\Gamma)\right) \cong \mathcal{O}_{n} \otimes \mathcal{K}
$$

3.4. Corollary. The ${ }^{*}$-isomorphism of Lemma 3.3 between $\mathcal{I}_{P_{+}^{\prime}} / \mathcal{K}\left(l^{2}(\Gamma)\right)$ and $\mathcal{O}_{n} \otimes \mathcal{K}$ induces the following exact sequence:

$$
0 \longrightarrow \mathcal{K}\left(l^{2}(\Gamma)\right) \longrightarrow \mathcal{I}_{P_{+}^{\prime}} \longrightarrow \mathcal{O}_{n} \otimes \mathcal{K} \longrightarrow 0
$$

Proof. This is obvious.
3.5. Lemma. $\mathcal{I}_{P_{+}^{\prime}}$ and $\mathcal{K}\left(l^{2}(\Gamma)\right)$ are the only non-trivial closed ideals of $C_{r}^{*}\left(\Gamma, P_{+}^{\prime}\right)$.

Proof. Using the fact that $C_{r}^{*} \Gamma$ is simple [10] and Lemma 3.2, one concludes that there is no closed ideal between $\mathcal{I}_{P_{+}^{\prime}}$ and $C_{r}^{*}\left(\Gamma, P_{+}^{\prime}\right)$. There is also no closed ideal between $\mathcal{K}\left(l^{2}(\Gamma)\right)$ and $\mathcal{I}_{P_{+}^{\prime}}$, since $\mathcal{I}_{P_{+}^{\prime}} / \mathcal{K}\left(l^{2}(\Gamma)\right) \cong \mathcal{O}_{n} \otimes \mathcal{K}$ is simple. There is obviously no other closed ideal in $C_{r}^{*}\left(\Gamma, P_{+}^{\prime}\right)$.

To finish the proof of Theorem 3.1, it remains to show that $\mathcal{I}_{P_{+}^{\prime}}$ is a stable C*-algebra. The following is an auxiliary lemma with a standard proof (see [14, 2.5] for similar results).
3.6. Lemma (cf. [14, 2.5]). Assume that \mathcal{I} is a stable closed ideal of a C^{*}-algebra \mathcal{A} with $R R(\mathcal{I})=0$, and assume that every projection in $\mathcal{A} / \mathcal{I}$ lifts to a projection in \mathcal{A}. If a projection $\bar{R}_{1} \in \mathcal{A} / \mathcal{I}$ lifts to a projection $R_{1} \in \mathcal{A}$ and a projection $\bar{R}_{2} \in\left(\bar{I}-\bar{R}_{1}\right) \mathcal{A} / \mathcal{I}\left(\bar{I}-\bar{R}_{1}\right)$ is equivalent to \bar{R}_{1}, then \bar{R}_{2} lifts to a projection $R_{2} \in\left(I-R_{1}\right) \mathcal{A}\left(I-R_{1}\right)$ such that $R_{1} \sim R_{2}$.

Proof. Let \bar{V} be a partial isometry in $\mathcal{A} / \mathcal{I}$ such that $\bar{V}^{*} \bar{V}=\bar{R}_{1}$ and $\bar{V} \bar{V}^{*}=$ \bar{R}_{2}. Let $V \in \mathcal{A}$ be such that \bar{V} is the image of V in $\mathcal{A} / \mathcal{I}$. Set $W=(I-$ $\left.R_{1}\right) V R_{1}$. Then $W-V \in \mathcal{I}$, since $\bar{R}_{1} \bar{R}_{2}=\overline{0}$. Since the real rank of $R_{1} \mathcal{I} R_{1}$ is again zero, one can take a projection $R \in R_{1} \mathcal{I} R_{1}$ such that

$$
\left\|\left(R_{1}-R\right)\left(R_{1}-W^{*} W\right)\left(R_{1}-R\right)\right\|<1
$$

Set

$$
U=\left\{\left(R_{1}-R\right) W^{*} W\left(R_{1}-R\right)\right\}^{-1 / 2} W^{*}
$$

Then $U U^{*}=R_{1}-R$ and $U^{*} U \leq I-R_{1}$. Furthermore, from the construction it is easy to see that the image of $U^{*} U$ in $\mathcal{A} / \mathcal{I}$ is \bar{R}_{2}. Since \mathcal{I} is stable, one can find a projection $R^{\prime} \in\left(I-R_{1}-U^{*} U\right) \mathcal{I}\left(I-R_{1}-U^{*} U\right)$ such that $R \sim R^{\prime}$. Let V_{1} be a partial isometry in \mathcal{I} such that $V_{1}^{*} V_{1}=R^{\prime}$ and $V_{1} V_{1}^{*}=R$.

Set $W_{0}=U+V_{1}$. Then $W_{0} W_{0}^{*}=R_{1}$ and $W_{0}^{*} W_{0}=U^{*} U \oplus R^{\prime}:=R_{2}$, as desired.

3.7. LEMMA. $\mathcal{I}_{P_{+}^{\prime}} \cong \mathcal{I}_{P_{+}^{\prime}} \otimes \mathcal{K}$.

Proof. Consider $\mathcal{I}_{P_{+}^{\prime}} / \mathcal{K}\left(l^{2}(\Gamma)\right) \cong \mathcal{O}_{n} \otimes \mathcal{K}$. Let 1 denote the identity of \mathcal{O}_{n}, and let $\left\{e_{i j}\right\}$ be the set of matrix units of \mathcal{K}. By repatedly applying Lemma 3.6 , one can lift the projections $1 \otimes e_{i i}$ of $\mathcal{O}_{n} \otimes \mathcal{K}$ to mutually orthogonal projections $P_{1}, P_{2}, \ldots P_{n}, \ldots$ of $\mathcal{I}_{P_{+}^{\prime}}$ that are all equivalent in $\mathcal{I}_{P_{+}^{\prime}}$. Then $\left(I-\sum_{i=1}^{\infty} P_{i}\right) \mathcal{I}_{P_{+}^{\prime}}\left(I-\sum_{i=1}^{\infty} P_{i}\right) \subset \mathcal{K}\left(l^{2}(\Gamma)\right)$, where the reader is reminded that the infinite sums above and below are taken in the corresponding multiplier algebras instead of the underlying C^{*}-algebras. Take mutually orthogonal, one-dimensional projections $\left\{Q_{k}\right\}$ in $\mathcal{I}_{P_{+}^{\prime}}$ such that

$$
I-\sum_{i=1}^{\infty} P_{i}=\sum_{k} Q_{k}
$$

(where the sum $\sum_{k} Q_{k}$ may contain a finite or infinite number of terms). Take a one-dimensional subprojection R_{i} of P_{i} for each $i \geq 1$ such that all $P_{i}-R_{i}(i \geq 1)$ are still equivalent in $\mathcal{I}_{P_{+}^{\prime}}$; this can be done by taking a one-dimensional subprojection R_{1} of P_{1}, and letting $R_{i}(i \geq 2)$ be the onedimensional subprojection of P_{i} under the equivalence of P_{1} and P_{i}. Write $I-\sum_{i=1}^{\infty}\left(P_{i}-R_{i}\right)=\sum_{j=1}^{\infty} R_{j}^{\prime}$, where

$$
\left\{R_{j}^{\prime}: j \in \mathbb{N}\right\}=\left\{Q_{k}: k\right\} \cup\left\{R_{i}: i \in \mathbb{N}\right\}
$$

Set $P_{i}^{\prime}=\left(P_{i}-R_{i}\right) \oplus R_{i}^{\prime}$ for $i \geq 1$. Then all P_{i}^{\prime} are mutually orthogonal projections in $\mathcal{I}_{P_{+}^{\prime}}$ and they are still mutually equivalent in $\mathcal{I}_{P_{+}^{\prime}}$. Also,

$$
\sum_{i=1}^{\infty} P_{i}^{\prime}=I
$$

Then it is clear that

$$
\mathcal{I}_{P_{+}^{\prime}} \cong\left(P_{1}^{\prime} \mathcal{I}_{P_{+}^{\prime}} P_{1}^{\prime}\right) \otimes \mathcal{K}
$$

Since P_{1} generates $\mathcal{I}_{P_{+}^{\prime}}$ as a closed ideal, one sees from $[1,2.8]$ that

$$
\mathcal{I}_{P_{+}^{\prime}} \cong \mathcal{I}_{P_{+}^{\prime}} \otimes \mathcal{K}
$$

We have completed the proof of Theorem 3.1.
3.8 Remark-Proposition. Using exactly the same arguments in the proofs of Lemma 3.6 and Lemma 3.7, one reaches the following general conclusion:

Proposition. Assume that \mathcal{H} is any separable infinite-dimensional Hilbert space. If \mathcal{A} is a separable C^{*}-subalgebra of $\mathcal{L}(\mathcal{H})$ such that $\mathcal{K}(\mathcal{H}) \subset \mathcal{A}$ and
$\mathcal{A} / \mathcal{K}(\mathcal{H})$ is a non-unital, purely infinite, simple C^{*}-algebra, then \mathcal{A} is a stable C^{*}-algebra.

4. The \mathbf{C}^{*}-algebra $\mathbf{C}_{\mathbf{r}}^{*}\left(\boldsymbol{\Gamma}, \mathbf{P}_{+}\right)$

After investigating the structure of $C_{r}^{*}\left(\Gamma, P_{+}^{\prime}\right)$ in the last two sections, we now consider the relation between $C_{r}^{*}\left(\Gamma, P_{+}^{\prime}\right)$ and $C_{r}^{*}\left(\Gamma, P_{+}\right)$, where P_{+}is the projection onto the subspace $l^{2}\left(\Gamma_{+}\right)$. The following are the conclusions:

4.1. Theorem.

(i) $C_{r}^{*}\left(\Gamma, P_{+}^{\prime}\right)=C_{r}^{*}\left(\Gamma, P_{+}\right)$, and $\mathcal{I}_{P_{+}^{\prime}}=\mathcal{I}_{P_{+}}$.
(ii) The Toeplitz algebra \mathcal{T}_{+}associated with P_{+}coincides with the corner $\mathcal{A}_{P_{+}}:=P_{+} C_{r}^{*}\left(\Gamma, P_{+}\right) P_{+} ;$and $\mathcal{A}_{P_{+}} / \mathcal{K}\left(l^{2}\left(\Gamma_{+}\right)\right) \cong \mathcal{O}_{n}$.

Proof. (i) The projection $P_{1}=P_{+} U\left(g_{1} g_{2}^{-1}\right)^{*} P_{+} U\left(g_{1} g_{2}^{-1}\right) P_{+}$is onto the subspace $l^{2}\left(g_{1} g_{2}^{-1} \Gamma_{+} \cap \Gamma_{+}\right)$. Clearly, P_{1} is the projection onto the subspace $l^{2}\left(\Gamma_{+}\left(g_{1}\right)\right)$, since

$$
g_{1} g_{2}^{-1} \Gamma_{+} \cap \Gamma_{+}=g_{1} g_{2}^{-1} \Gamma_{+}\left(g_{2}\right)=\Gamma_{+}\left(g_{1}\right)
$$

where $\Gamma_{+}\left(g_{i}\right)$ is the set of all reduced words in Γ_{+}with initial word g_{i}. The projection $P_{2}:=P_{+} U\left(g_{1}\right)^{*} P_{+} U\left(g_{1}\right) P_{+}$is onto the subspace $l^{2}\left(g_{1} \Gamma_{+} \cap \Gamma_{+}\right)$. Since $g_{1} \Gamma_{+} \cap \Gamma_{+}=g_{1} \Gamma_{+}=\Gamma_{+}\left(g_{1}\right) \backslash\left\{g_{1}\right\}, P_{1}-P_{2}$ is the one-dimensional projection P_{1} onto the subspace spanned by $f_{g_{1}}$. Consequently, $\mathcal{K}\left(l^{2}(\Gamma)\right)$ is a subalgebra of $C_{r}^{*}\left(\Gamma, P_{+}\right)$.

Let P_{e} be the one-dimensional projection onto the subspace spanned by f_{e}. The relation $P_{+}^{\prime}=P_{+}+P_{e}$ implies that

$$
P_{+} \in C_{r}^{*}\left(\Gamma, P_{+}^{\prime}\right) \quad \text { and } \quad P_{+}^{\prime} \in C_{r}^{*}\left(\Gamma, P_{+}\right)
$$

Therefore, $C_{r}^{*}\left(\Gamma, P_{+}\right)=C_{r}^{*}\left(\Gamma, P_{+}^{\prime}\right)$.
(ii) First, all conclusions of Lemmas 2.2, 2.3 and 2.4 remain valid if Γ_{+}^{\prime} is replaced by Γ_{+}; the details are left to the reader. Then $\mathcal{A}_{P_{+}}=\mathcal{T}_{+}$, the algebra generated by all Toeplitz operators

$$
\left\{T_{h}:=P_{+} U(h) P_{+}: h \in \Gamma_{+}^{\prime}\right\} .
$$

Obviously, $\sum_{i=1}^{n} T_{g_{i}}^{*} T_{g_{i}}=P_{+}$, since Γ_{+}is the disjoint union

$$
\bigcup_{i=1}^{n}\left\{h \in \Gamma_{+}: h \text { starts with } g_{i}\right\}
$$

Thus, the same arguments as in [7] show that the following sequence is exact:

$$
0 \longrightarrow \mathcal{K}\left(l^{2}\left(\Gamma_{+}\right)\right) \longrightarrow \mathcal{T}_{+} \longrightarrow \mathcal{O}_{n} \longrightarrow 0
$$

Therefore, $\mathcal{T}_{+} / \mathcal{K}\left(l^{2}\left(\Gamma_{+}\right)\right) \cong \mathcal{O}_{n}$.

5. $\mathbf{C}_{\mathbf{r}}^{*}(\boldsymbol{\Gamma}, \mathbf{R})$ and the Cuntz-Krieger algebras

Assume from now on that A is not a permutation matrix. An $n \times n$ matrix $A=\left[t_{i j}\right]$ with all entries either 0 or 1 is said to be irreducible if for any pair (i, j) there is $k_{i j} \in \mathbb{N}$ such that the (i, j)-entry of $A^{k_{i j}}$ is nonzero. The Cuntz-Krieger algebra \mathcal{O}_{A} is generated by nonzero partial isometries $\left\{S_{i}: i=1,2, \ldots, n\right\}$ on a separable Hilbert space such that

$$
S_{i}^{*} S_{i}=\sum_{j=1}^{n} t_{i, j} S_{j} S_{j}^{*}, \quad S_{l}^{*} S_{k}=0 \quad(l \neq k)
$$

In particular, if A is an $n \times n$ matrix with all entries 1 , then $\mathcal{O}_{A}=\mathcal{O}_{n}$. The reader can find more information about \mathcal{O}_{A} in [6], [4], and some of the subsequent references.

Let Ω_{A} be the subset of Γ_{+}consisting of the generators $\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$, the identity e, and all admissible reduced words with respect to A, where a reduced word $g_{i_{1}} g_{i_{2}} \ldots g_{i_{m}}\left(i_{j}=i_{k}\right.$ for $j \neq k$ is allowed) is said to be admissible with respect to A if $\left\{i_{1}, i_{2}, \ldots, i_{m}\right\} \subset\{1,2, \ldots, n\}$ and $t_{i_{1}, i_{2}}=$ $t_{i_{2}, i_{3}}=\cdots=t_{i_{m-1}, i_{m}}=1$ ([8]).

Let R be the projection onto the subspace $l^{2}\left(\Omega_{A}\right)$. The Toeplitz algebra \mathcal{T}_{A} generated by $\left\{T_{h}:=R U(h) R: h \in \Omega_{A}\right\}$ has been studied in [8]. The following short sequence is exact (see [8]):

$$
0 \longrightarrow \mathcal{K}\left(l^{2}\left(\Omega_{A}\right)\right) \longrightarrow \mathcal{T}_{A} \longrightarrow \mathcal{O}_{A} \longrightarrow 0
$$

Here we are interested in studying the structure of $C_{r}^{*}(\Gamma, R)$ and the corner algebra $\mathcal{A}_{R}:=R C_{r}^{*}(\Gamma, R) R$. As in [8] we assume that the number of generators of Γ is precisely the matrix size n.
5.1. Theorem. Assume that \mathcal{A} is an irreducible $n \times n$ matrix with entries in $\{0,1\}$ and Γ is the free group on n generators. Then:
(i) $\mathcal{A}_{R}=\mathcal{T}_{A}$.
(ii) $C_{r}^{*}(\Gamma, R)$ has two nontrivial closed ideals, $\mathcal{K}\left(l^{2}(\Gamma)\right)$ and the closed ideal \mathcal{I}_{R} generated by R.
(iii) $\mathcal{I}_{R} \cong \mathcal{I}_{R} \otimes \mathcal{K}, \mathcal{I}_{R} / \mathcal{K}\left(l^{2}(\Gamma)\right) \cong \mathcal{O}_{A} \otimes \mathcal{K}$.
(iv) $R R\left(\mathcal{A}_{R}\right)=R R\left(\mathcal{I}_{R}\right)=0$.

To prove this result, we again proceed in several steps as follows.
5.2. LEMMA. We have $T_{h} \neq 0$ if and only if $h=g_{i_{1}} g_{i_{2}} \ldots g_{i_{l}}$, or $h=$ $g_{j_{k}}^{-1} g_{j_{k-1}}^{-1} \ldots g_{j_{2}}^{-1} g_{j_{1}}^{-1}$, or $h=g_{i_{1}} g_{i_{2}} \ldots g_{i_{l}} g_{j_{k}}^{-1} g_{j_{k-1}}^{-1} \ldots g_{j_{2}}^{-1} g_{j_{1}}^{-1}$ such that $i_{l}>0$ and $t_{i_{l}, j}=t_{j_{k}, j}=1$ for some $j \in\{1,2, \ldots, n\}$, where all of the above words are reduced words such that $g_{i_{1}} g_{i_{2}} \ldots g_{i_{l}}$ and $g_{j_{1}} g_{j_{2}} \ldots g_{j_{k}}$ are elements in Ω_{A}.

Proof. Since, for any $h \in \Gamma, T_{h} T_{h}^{*}$ is the projection onto $l^{2}\left(h^{-1} \Omega_{A} \cap \Omega_{A}\right)$ and $T_{h}^{*} T_{h}$ is the projection onto $l^{2}\left(h \Omega_{A} \cap \Omega_{A}\right)$, one sees that $T_{h} \neq 0$ iff $h \Omega_{A} \cap \Omega_{A}$
is not empty. Thus, in order for $T_{h} \neq 0$, it is necessary that $h=h_{1} h_{2}^{-1}$ for some $h_{1}, h_{2} \in \Omega_{A}$, that is,

$$
h=g_{i_{1}} g_{i_{2}} \ldots g_{i_{l}} g_{j_{k}}^{-1} g_{j_{k-1}}^{-1} \ldots g_{j_{2}}^{-1} g_{j_{1}}^{-1}
$$

where $t_{i_{1}, i_{2}}=t_{i_{2}, i_{3}}=\cdots=t_{i_{l-1}, i_{l}}=1$, and $t_{j_{1}, j_{2}}=t_{j_{2}, j_{3}}=\cdots=t_{j_{k-1}, j_{k}}=1$. Two extreme cases here are when either $h_{1}=e$ or $h_{2}=e$.

The above condition is also sufficient. In fact, if $h=g_{j_{k}}^{-1} g_{j_{k-1}}^{-1} \ldots g_{j_{2}}^{-1} g_{j_{1}}^{-1}$ (when $h_{1}=e$), then $h \Omega_{A} \cap \Omega_{A}$ is the set of those reduced words in Ω_{A} that start with g_{j} and satisfy $t_{j_{k}, j}=1$ and e. Thus $T_{h} \neq 0$. If $h=g_{i_{1}} g_{i_{2}} \ldots g_{i_{l}}$ (when $h_{2}=e$), then

$$
T_{h}=T_{g_{i_{l}}^{-1} g_{i_{l-1}}^{-1} \ldots g_{i_{2}}^{-1} g_{i_{1}}^{-1}}^{*}
$$

Thus $T_{h} \neq 0$.
If $h=g_{i_{1}} g_{i_{2}} \ldots g_{i_{l}} g_{j_{k}}^{-1} g_{j_{k-1}}^{-1} \ldots g_{j_{2}}^{-1} g_{j_{1}}^{-1}$ with $i_{l}>0$, then $h \Omega_{A} \cap \Omega_{A}$ is the set of those reduced words in Ω_{A} that start with $g_{i_{1}} g_{i_{2}} \ldots g_{i_{l}} g_{j}$, where $t_{j_{k}, j}=1$; furthermore, $t_{i_{l}, j}=1$ is also necessary for $g_{i_{1}} g_{i_{2}} \ldots g_{i_{l}} g_{j} \in \Omega_{A}$. Therefore, the existence of such a j with $t_{i_{l}, j}=t_{j_{k}, j}=1$ is a necessary and sufficient condition in order for $h \Omega_{A} \cap \Omega_{A} \neq \emptyset$.
5.3. Lemma. Assume that $h=g_{i_{1}} g_{i_{2}} \ldots g_{i_{l}} g_{j_{k}}^{-1} g_{j_{k-1}}^{-1} \ldots g_{j_{2}}^{-1} g_{j_{1}}^{-1}$ with $i_{l} \geq$ 1 and that $t_{i_{l}, j}=t_{j_{k}, j}=1$ for some $j \in\{1,2, \ldots, n\}$. Then $T_{h}=$ $T_{g_{j_{1}} g_{j_{2}} \ldots g_{j_{k}}}^{*} T_{g_{i_{1}} g_{i_{2}} \ldots g_{i_{l}}}$.

Proof. Let $h_{1}=g_{i_{1}} g_{i_{2}} \ldots g_{i_{l}}$ and $h_{2}=g_{j_{1}} g_{j_{2}} \ldots g_{j_{k}}$. Then

$$
T_{h}=T_{h_{1} h_{2}^{-1}}=R U\left(h_{1} h_{2}^{-1}\right) R=R U\left(h_{2}\right)^{*} U\left(h_{1}\right) R .
$$

To show $T_{h_{1} h_{2}^{-1}}=T_{h_{2}}^{*} T_{h_{1}}$, it suffices to show that

$$
R U\left(h_{2}\right)^{*}(I-R) U\left(h_{1}\right) R=0
$$

The range of $(I-R) U\left(h_{1}\right) R$ is the subspace

$$
l^{2}\left(g_{i_{l}}^{-1} \ldots g_{i_{2}}^{-1} g_{i_{1}}^{-1} \Omega_{A} \cap\left(\Gamma \backslash \Omega_{A}\right)\right)
$$

Clearly, each reduced word in $g_{i_{l}}^{-1} \ldots g_{i_{2}}^{-1} g_{i_{1}}^{-1} \Omega_{A} \cap\left(\Gamma \backslash \Omega_{A}\right)$ starts with $g_{i_{l}}^{-1}$ $\ldots g_{i_{k}}^{-1}$ for some $1 \leq k \leq l-1$. It follows that the range of $U\left(h_{2}\right)^{*}(I-$ $R) U\left(h_{1}\right) R$ is associated with the subset of Γ in which each reduced word starts with the reduced word $h_{2} g_{i_{l}}^{-1} \ldots g_{i_{k}}^{-1}$ for some $1 \leq k \leq l-1$. Thus the range projection of $U\left(h_{2}\right)^{*}(I-R) U\left(h_{1}\right) R$ is a subprojection of $I-R$. Therefore, $R U\left(h_{2}\right)^{*}(I-R) U\left(h_{1}\right) R=0$.
5.4 Proof of Theorem 5.1. From Lemma 5.2 and Lemma 5.3 one sees that the two sets $\left\{T_{h}: h \in \Omega_{A}\right\}$ and $\left\{T_{h}: h \in \Gamma\right\}$ generate the same C^{*} algebra. Equivalently, the Toeplitz algebra \mathcal{T}_{A} is exactly the corner $\mathcal{A}_{R}:=$ $R C_{r}^{*}(\Gamma, R) R$.

It follows from Theorem 1.1 that the projection R generates a nontrivial closed ideal \mathcal{I}_{R} of $C_{r}^{*}(\Gamma, R)$. The same argument as for Lemma 3.2 shows that the natural short sequence

$$
0 \longrightarrow \mathcal{I}_{R} \longrightarrow C_{r}^{*}(\Gamma, R) \longrightarrow C_{r}^{*} \Gamma \longrightarrow 0
$$

is exact. Using the short exact sequence (see [8])

$$
0 \longrightarrow \mathcal{K}\left(l^{2}\left(\Omega_{A}\right)\right) \longrightarrow \mathcal{T}_{A} \longrightarrow \mathcal{O}_{A} \longrightarrow 0
$$

and the fact that $\mathcal{T}_{A}=\mathcal{A}_{R}$, one obtains the exact sequence

$$
0 \longrightarrow \mathcal{K}\left(l^{2}\left(\Omega_{A}\right)\right) \longrightarrow \mathcal{A}_{R} \longrightarrow \mathcal{O}_{A} \longrightarrow 0
$$

Since A is irreducible, the C^{*}-algebra \mathcal{O}_{A} is purely infinite and simple [4]. Since \mathcal{A}_{R} generates \mathcal{I}_{R} as a closed ideal, $\mathcal{I}_{R} / \mathcal{K}\left(l^{2}(\Gamma)\right)$ is stably isomorphic to $\mathcal{A}_{R} / \mathcal{K}\left(l^{2}\left(\Omega_{A}\right)\right)$, and hence $\mathcal{I}_{R} / \mathcal{K}\left(l^{2}(\Gamma)\right)$ is stably isomorphic to \mathcal{O}_{A}. Thus, $\mathcal{I}_{R} / \mathcal{K}\left(l^{2}(\Gamma)\right)$ is purely infinite and simple; furthermore, $\mathcal{I}_{R} / \mathcal{K}\left(l^{2}(\Gamma)\right)$ is nonunital and separable. From the general result [15, 1.2] that every non-unital, σ-unital, purely infinite simple C^{*}-algebra is stable it follows that

$$
\mathcal{I}_{R} / \mathcal{K}\left(l^{2}(\Gamma)\right) \cong \mathcal{O}_{A} \otimes \mathcal{K}
$$

Hence the following short sequence is exact:

$$
0 \longrightarrow \mathcal{K}\left(l^{2}(\Gamma)\right) \longrightarrow \mathcal{I}_{R} \longrightarrow \mathcal{O}_{A} \otimes \mathcal{K} \longrightarrow 0
$$

Using exactly the same proof as for Lemma 3.7, one shows that \mathcal{I}_{R} is a stable C^{*}-algebra, that is, $\mathcal{I}_{R} \cong \mathcal{I}_{R} \otimes \mathcal{K}$.

The above two exact sequences imply that $C_{r}^{*}(\Gamma, R)$ has only two nontrivial closed ideals, $\mathcal{K}\left(l^{2}(\Gamma)\right)$ and \mathcal{I}_{R}.

Finally, we obtain $R R\left(\mathcal{A}_{R}\right)=0$ by combining the results of [4] and [13] provided A is irreducible. Also, $R R\left(\mathcal{I}_{R}\right)=0$, since \mathcal{I}_{R} and \mathcal{A}_{R} are stably *-isomorphic (by [1, 2.8]).
5.5. REMARK. In contrast to the cases Γ_{+}^{\prime} and Γ_{+}we discussed earlier, it seems that \mathcal{T}_{A} is not the closed linear span of Toeplitz operators associated with R.

6. $\mathrm{C}_{\mathbf{r}}^{*}(\boldsymbol{\Gamma}, \mathbf{P})$ associated with subgroups of Γ

Let Γ_{0} be a non-trivial subgroup of Γ (i.e., $\Gamma_{0} \neq \Gamma,\{e\}$). Then Γ_{0} is also a free group, and, of course, Γ_{0} as well as $\Gamma \backslash \Gamma_{0}$ are infinite sets. Let P_{0} be the projection onto the subspace $l^{2}\left(\Gamma_{0}\right)$. Consider the C^{*}-algebra $C_{r}^{*}\left(\Gamma, P_{0}\right)$ generated by $C_{r}^{*} \Gamma$ and P_{0}. In this situation, $T_{h}:=P_{0} U(h) P_{0}$ for each $h \in \Gamma$, and the Toeplitz algebra is denoted by \mathcal{T}_{0}.

6.1. Theorem.

(i) $P_{0} C_{r}^{*}\left(\Gamma, P_{0}\right) P_{0}=\mathcal{T}_{0} \cong C_{r}^{*} \Gamma_{0}$.
(ii) The closed ideal \mathcal{I}_{0} of $C_{r}^{*}\left(\Gamma, P_{0}\right)$ generated by the projection P_{0} is isomorphic to $C_{r}^{*} \Gamma_{0} \otimes \mathcal{K}$ (of course, $\mathcal{I}_{0} \neq C_{r}^{*}\left(\Gamma, P_{0}\right)$).
(iii) The following short sequence is exact:

$$
0 \longrightarrow C_{r}^{*} \Gamma_{0} \otimes \mathcal{K} \longrightarrow C_{r}^{*}\left(\Gamma, P_{0}\right) \longrightarrow C_{r}^{*} \Gamma \longrightarrow 0
$$

Proof. The result follows from the following claims.
Claim 1. $\quad T_{h} \neq 0$ if and only if $h \in \Gamma_{0}$.
In fact, $T_{h} \neq 0$ iff $h \Gamma_{0} \cap \Gamma_{0} \neq \emptyset$. Since Γ_{0} is a subgroup of Γ, we have $h \Gamma_{0} \cap \Gamma_{0} \neq \emptyset$ iff $h \in \Gamma_{0}$.

Claim 2. $\quad P_{0} C_{r}^{*}\left(\Gamma, P_{0}\right) P_{0}=C_{r}^{*} \Gamma_{0}$.
In fact, one needs only to observe that $T_{h}=U(h) P_{0}$ is a unitary operator onto $l^{2}\left(\Gamma_{0}\right)$ for each $h \in \Gamma_{0}$, and that $P_{0} U(h) P_{0}=0$ for all $h \notin \Gamma_{0}$.

Claim 3. The closed ideal $\mathcal{I}_{P_{0}}$ of $C_{r}^{*}\left(\Gamma, P_{0}\right)$ generated by P_{0} is nontrivial (cf. Corollary 1.4).

CLAIM 4. $\mathcal{I}_{P_{0}} \cong C_{r}^{*} \Gamma_{0} \otimes \mathcal{K}$.
In fact, since Γ_{0} is a subgroup of Γ, it is clear that $h_{1} \Gamma_{0} \cap h_{2} \Gamma_{0} \neq \emptyset$ if and only if $h_{1} \Gamma_{0}=h_{2} \Gamma_{0}$. One can choose recursively a sequence $h_{1}=$ $e, h_{2}, \ldots, h_{n}, \ldots$ in Γ such that

$$
h_{i} \Gamma_{0} \cap h_{j} \Gamma_{0}=\emptyset \quad(i \neq j) \quad \text { and } \quad \Gamma=\bigcup_{i=1}^{\infty} h_{i} \Gamma_{0}
$$

On the other hand, $U\left(h_{i}\right)^{*} P_{0} U\left(h_{i}\right)$ is the projection onto the subspace $l^{2}\left(h_{i} \Gamma_{0}\right)$ for $i \geq 1$. Since $P_{0} \sim U\left(h_{1}\right)^{*} P_{0} U\left(h_{i}\right)$ for $i \geq 1$ and $\sum_{i=1}^{\infty} U\left(h_{i}\right)^{*} P_{0} U\left(h_{i}\right)=I$, it is clear that

$$
P_{0} C_{r}^{*}\left(\Gamma, P_{0}\right) P_{0} \otimes \mathcal{K}=\mathcal{I}_{0}
$$

Hence it follows from Claim 2 above that $\mathcal{I}_{0} \cong C_{r}^{*} \Gamma_{0} \otimes \mathcal{K}$.
CLAIM 5. The natural short sequence $0 \longrightarrow C_{r}^{*} \Gamma_{0} \otimes \mathcal{K} \longrightarrow C^{*}\left(\Gamma, P_{0}\right) \longrightarrow$ $C_{r}^{*} \Gamma \longrightarrow 0$ is exact.

In fact, the same argument as in the proof of Lemma 3.2 applies.
Combining the claims yields a complete proof of Theorem 6.1.
6.2 Example. Let us look at the following particular case. First, take any element $g \in \Gamma \backslash\{e\}$ and let $\Gamma_{1}:=\left\{g^{n}: n \in \mathbb{Z}\right\}$. Then Γ_{1} is an infinite subgroup of Γ such that $\Gamma \backslash \Gamma_{1}$ is an infinite subset of Γ. Let P_{1} be the projection onto the subspace $l^{2}\left(\Gamma_{1}\right)$. Consider the C^{*}-algebra $C_{r}^{*}\left(\Gamma, P_{1}\right)$ generated by $C_{r}^{*} \Gamma$ and P_{1}. Note that a Toeplitz operator with respect to P_{1} is of the form
$T_{h}:=P_{1} U(h) P_{1}$ for any $h \in \Gamma$. We will denote the corresponding Toeplitz algebra by $\mathcal{I}_{\mathbb{Z}}$. Then we have the following corollary.

Corollary.
(i) $P_{1} C_{r}^{*}\left(\Gamma, P_{1}\right) P_{1}=\mathcal{T}_{\mathbb{Z}} \cong C\left(S^{1}\right)$.
(ii) The closed ideal \mathcal{I}_{0} of $C_{r}^{*}\left(\Gamma, P_{1}\right)$ generated by P_{1} is ${ }^{*}$-isomorphic to $C\left(S^{1}\right) \otimes \mathcal{K}$ (of course, $\mathcal{I}_{0} \neq C_{r}^{*}\left(\Gamma, P_{1}\right)$).
(iii) The following short sequence is exact:

$$
0 \longrightarrow C\left(S^{1}\right) \otimes \mathcal{K} \longrightarrow C_{r}^{*}\left(\Gamma, P_{1}\right) \longrightarrow C_{r}^{*} \Gamma \longrightarrow 0
$$

Proof. (i) The corner algebra $P_{1} C_{r}^{*}\left(\Gamma, P_{1}\right) P_{1}$ is generated by $\left\{T_{h}: h \in \Gamma\right\}$. On the other hand, Claim 1 in the proof of Theorem 6.1 implies that

$$
\left\{T_{h}: h \in \Gamma\right\}=\left\{T_{g_{1}^{n}}: n \in \mathbb{Z}\right\}
$$

Hence $\mathcal{I}_{\mathbb{Z}}$ is the abelian C^{*}-algebra generated by the bilateral shift $U\left(g_{1}\right)$. It is well known that $\mathcal{I}_{\mathbb{Z}} \cong C\left(S^{1}\right)$.
(ii) and (iii) follow from Theorem 6.1 and the trivial fact that $C_{r}^{*} \Gamma_{1}=$ $C\left(S^{1}\right)$.

References

[1] L. G. Brown, Stable isomorphism of hereditary C^{*}-algebras, Pacific J. Math. 71 (1977), 335-348. MR 56\#12894
[2] L. G. Brown and G. K. Pedersen, C^{*}-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131-149. MR 92m:46086
[3] J. Cuntz, Simple C^{*}-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173-185. MR 57\#7189
[4] , K-theory for certain C^{*}-algebras, Ann. of Math. (2) 113 (1981), 181-197. MR 84c:46058
[5] _, K-theoretic amenability for discrete groups, J. Reine Angew. Math. 344 (1983), 180-195. MR 86e:46064
[6] J. Cuntz and W. Krieger, A class of C^{*}-algebras and topological Markov chains, Invent. Math. 56 (1980), 251-268. MR 82f:46073a
[7] M. Enomoto, H. Takehana, and Y. Watatani, C^{*}-algebras on free semigroups as extensions of Cuntz algebras, Math. Japon. 24 (1979/80), 527-531. MR 82b:46070
[8] D. Handelman and H.-S. Yin, Toeplitz extensions and automorphisms affiliated with linear characters of groups, Bull. London Math. Soc. 20 (1988), 54-60. MR 90a:46176
[9] G. J. Murphy, Toeplitz operators and algebras, Math. Z. 208 (1991), 355-362. MR 93e:46072
[10] R. T. Powers, Simplicity of the C^{*}-algebra associated with the free group on two generators, Duke Math. J. 42 (1975), 151-156. MR 51\#10534
[11] J. Spielberg, Free-product groups, Cuntz-Krieger algebras, and covariant maps, Internat. J. Math. 2 (1991), 457-476. MR 92j:46120
[12] W. Szymański and S. Zhang, Infinite simple C^{*}-algebras and reduced cross products of abelian C^{*}-algebras and free groups, Manuscripta Math. 92 (1997), 487-514. MR 98a:46073
[13] S. Zhang, A property of purely infinite simple C^{*}-algebras, Proc. Amer. Math. Soc. 109 (1990), 717-720. MR 90k:46134
[14] _, K1-groups, quasidiagonality, and interpolation by multiplier projections, Trans. Amer. Math. Soc. 325 (1991), 793-818. MR 91j:46069
[15] _, Certain C^{*}-algebras with real rank zero and their corona and multiplier algebras. I, Pacific J. Math. 155 (1992), 169-197. MR 94i:46093
[16] _, Toeplitz algebras and infinite simple C^{*}-algebras associated with reduced group C^{*}-algebras, Math. Scand. 81 (1997), 86-100 (1998). MR 98k:46095
[17] , Purely infinite simple C^{*}-algebras arising from reduced group C^{*}-algebras, Operator algebras and operator theory (Shanghai, 1997), Contemp. Math., vol. 228, Amer. Math. Soc., Providence, RI, 1998, pp. 365-389. MR 2000g:46082

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025, USA

E-mail address: zhangs@math.uc.edu

[^0]: Received March 13, 2003; received in final form September 12, 2003.
 2000 Mathematics Subject Classification. Primary 46L05.
 Partially supported by a Taft Grant for Summer Research in 2002.

