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ON THE DERIVATIVE OF INFINITE BLASCHKE
PRODUCTS

DANIEL GIRELA AND JOSE ANGEL PELAEZ

ABSTRACT. A well known result of Privalov shows that if f is a function
that is analytic in the unit disc A = {z € C : |z| < 1}, then the condition
f' € H! implies that f has a continuous extension to the closed unit
disc. Consequently, if B is an infinite Blaschke product, then B’ ¢ H?.
This has been proved to be sharp in a very strong sense. Indeed, for any
given positive and continuous function ¢ defined on [0, 1) with ¢(r) — oo
as r — 1, one can construct an infinite Blaschke product B having the
property that
def 1
T oor
All examples of Blaschke products constructed so far to prove this result
have their zeros located on a ray. Thus it is natural to ask whether
an infinite Blaschke product B such that the integral means M; (r, B")
grow very slowly must satisfy a condition “close” to that of having its
zeros located on a ray. More generally, we may formulate the following
question: Let B be an infinite Blaschke product and let {a,}22 ; be the
sequence of its zeros. Do restrictions on the growth of the integral means
M (r, B') imply some restrictions on the sequence {Arg(an)}S2 7

In this paper we prove that the answer to these questions is negative
in a very strong sense. Indeed, for any function ¢ as above we shall
construct two new and quite different classes of examples of infinite
Blaschke products B satisfying (*) with the property that every point
of A is an accumulation point of the sequence of zeros of B.

(*)  Mi(r,B') /_ﬁ B/ (ret!)| dt = O (¢(r)), asr — 1.
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1. Introduction and main results

Let A denote the unit disc {z € C: |z| < 1}. For 0 < r < 1 and g analytic
in A we set

1 ™ ) » 1/P
MP(T’ g) = (%/ ’g(?“ew)’ dG) , 0<p<oo,
Moo(r, 9) = maxg(2)].

For 0 < p < oo the Hardy space HP consists of those functions g that are
analytic in A and satisfy
gl z» = sup My(r, g) < oo
0<r<1

We refer to [2] for the theory of Hardy spaces. We recall that if a sequence
{an} C A\ {0} satisfies the “Blaschke condition”

Y (1= lan]) < oo,

II an an'_
lan| 1 —apz
defines an H*° function, called the Blaschke product with zeros {a}.
A classical result of Privalov [2, Th. 3.11] asserts that a function f that
is analytic in A has a continuous extension to the closed unit disc A, whose

boundary values are absolutely continuous on dA if and only if f/ € H'. In
particular,

then the product

fle H' = [feA,
where, as usual, A denotes the disc algebra, that is, the space of all functions
f that are analytic in A and have a continuous extension to the closed unit
disc A.
Since the boundary values of a Blaschke product have modulus 1 almost
everywhere [2], it is clear that if B is an infinite Blaschke product, then B ¢ A
and, hence, B’ ¢ H'. This is best-possible, as the following theorem shows.

THEOREM A. Let ¢ be a positive and continuous function defined on [0, 1)
with ¢(r) — oo as r — 1. Then there exists an infinite Blaschke product B
with positive zeros having the property that

(1) Mi(r,B") = O(é(r)), asr—1.

Different proofs of this result have been given in [3], [4] and [5]. It is natural
to ask whether an infinite Blaschke product B such that the integral means
M (r, B') grow very slowly must satisfy a condition “close” to that of having
its zeros located on a ray. More generally, we may formulate the following
question:
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Let B be an infinite Blaschke product and let {a,}32, be the sequence of
its zeros. Do restrictions on the growth of the integral means My (r, B') imply
some restrictions on the sequence {Arg(a,)}2,?

We shall prove that the answer to these questions is negative in a very
strong sense. Indeed, for any function ¢ as in Theorem A we shall construct
two new and quite different classes of examples of infinite Blaschke products
B satisfying (1) with the property that every point of A is an accumula-
tion point of the sequence of zeros of B. Our first construction is given in
Theorem 1.

THEOREM 1. Let ¢ be a positive and continuous function defined on [0, 1)
with ¢(r) — oo as r — 1. Then there exists an increasing sequence {ry 7>, C
(0,1) with Y72 (1 — r) < oo such that if, for every k, aj is a complex
number with |ai| = r, and B is the Blaschke product whose sequence of zeros
is {ax}32,, then B satisfies (1).

Notice that if {r}72, is the sequence constructed in Theorem 1, {0}7°,
is any sequence of real numbers that is dense in R and we set aj = rpe'’*
(k > 1), then every point of A is an accumulation point of the sequence {ay}
and the Blaschke product with zeros {ay} satisfies (1).

Our second class of examples is given in Theorem 2. The Blaschke products
B constructed in Theorem 1 have the property that for any 7 € (0,1) at most
one zero of B lies on the circle {|z| = r}. The Blaschke products that we
construct in Theorem 2 are quite different: If B is any of these products, then
there exist a sequence {r;} T 1 and a sequence of natural numbers {n;} T oo
such that, for all k, ny of the zeros of B lie on the circle {|z| = 74 }.

THEOREM 2. Let ¢ be a positive and continuous function defined on [0, 1)
with ¢(r) — oo as r — 1. Then there exist an increasing sequence {ry}3>, C
(0,1) and a sequence of natural numbers {ny}7>, with limy_.o ni = 0o sat-

isfying
o]
an(l — 1) < 00,
k=1
such that if B is the Blaschke product whose zeros are
{Tke%ij/"’“ :j=0,1,....np— 1, k= 1,2,...},

that is,

0o n nk

(2) B(z) = [[ =—r

Mk omy
k:ll (Al

then My (r, B") = O(¢(r)) as r — 1.

z €A,
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We mention that Blaschke products like those constructed in Theorem 2
were used by Lohwater and Piranian [6] (see also Theorem 2.22 on p. 43 of
[1]) to show that Fatou’s theorem is best possible and by Piranian [11] to
construct a Blaschke product B with [[, |B'(z)|dzdy = co.

2. Proof of Theorem 1

If f is an analytic function in A, we let n(r, f) (0 < r < 1) denote the
number of zeros of f in the disc {z : |z| < r}. Our proof of Theorem 1 will be
based on the following result, which is an extension of Theorem 1 on p. 3 of
[5].

THEOREM 3. Given o € (0,1) there exist two positive constants Cy (o)
and Ca(av) such that if {a,}52; is any sequence in A\ {0} satisfying
(3) (1 =lanu]) < a(l —lan|), n>1,

and B is the Blaschke product whose sequence of zeros is {an}52 4, then, for
all v sufficiently close to 1,

(4) Ci(a)n(r, B) < My(r, B') < Ca(a)n(r, B).
Proof. Take a € (0,1) and let {a,}52; be a sequence in A\ {0} satisfying

(3). Let B be the Blaschke product whose sequence of zeros is {an}52 ;.
Define

(5) Tok—1 = |ag|, k=1,2,3,...

rok—1+ Tkt |ak| +[akq
2 2 ’
Set § = %(1 + a). Then 0 < 8 < 1 and it is easy to see that we have

1 =711 < B —rg), forallk.

(6) Tok =

k=1,2,3,....

Using Theorem 9.2 of [2], we see that the sequence {7y} is uniformly separated,
that is, there exists a constant § > 0 such that

ad Tj*?’k
——— | >§, forallk.
(7) H 1—7“ka = 0, or a
J=1
j#k

Actually, an examination of the proof of Theorem 9.2 on pp. 155-156 of [2]
shows that the constant § depends only on 5 (or, equivalently, on «). Using

the lemma on p. 154 of [2], we see that
min aj —z laj| =

., 0<r<l1, j=1,2...

1-ajz 1—|ajlr
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and, hence,
e e 2], oc

min T

|z|=r is1 1-— |aj|r i 1-— Toj—17T ’
Taking r = ro, and using (7), we obtain

r r =
(8) min |B(z |>H J2mL T2k J 2k >4, k=1,2,
|z|=rar, 1 —roj_ 179 e 1—rjro
J#2k

Once (8) has been established, the argument used on pp. 56 of [5] gives that
there exists o1 € (0,1) such that

M(r,B") > =n(r,B), p1 <7<l

N

This gives the first inequality of (4) for all r € (p1, 1) with C1(a) = §/2.
The second inequality with C(«) = 5 follows from the argument on pp. 67
of [5]. O

Proof of Theorem 1. With Theorem 3 established, the proof of Theorem 1
follows the lines of the proof of Theorem A in [5]. Let ¢ be as in Theorem 1.
We may assume without loss of generality that ¢(0) < 1. Define

9) b, =max{r € (0,1): ¢(r) =n}, n=1,2,3,....

It is clear that the sequence {b,}52; is well defined, increasing, and that
b, — 1 asn — oo.
Given r € (0,1), let N(r) denote the number of elements of the sequence
which are smaller than or equal to r. It is clear that
n>¢r) = b,>r,

and thus

(10) N(r) < ¢(r).

Since b, T 1, we can extract a subsequence {by, } of {b,} such that
1
5(1 —by,), k>1
Set ry = by, (k> 1) and let {ax}32,; be a sequence of complex numbers with
lax| = ri for all k. Notice that (11) implies that {a;} satisfies the Blaschke
condition. Let B be the Blaschke product whose sequence of zeros is {ax}72 ;.
Since {|a|} is a subsequence of {b,}, it is clear that

n(r,B) < N(r), forallre (0,1).

Then (10) shows that

(11) (1_bnk+1) <

n(r,B) < ¢(r), 0<r<1,
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which, using Theorem 3 with o = 1/2, gives
Mi(r, B') = O(6(r), asr— 1.
This finishes the proof. O

3. Proof of Theorem 2

The proofs of Theorem A in [3] and [4] make essential use of certain se-
quences introduced by K. I. Oskolkov in several contexts (see [7], [8], [9] and
[10]). The proof given in [5] is simpler and independent of the Oskolkov’s
sequences. However, for the proof of Theorem 2 we shall again need to make
use of Oskolkov’s sequences.

DEFINITION 1. Let w : [0,1] — [0,00) be a continuous function with
w(0) =0 and

(12) @ﬁoo, as 6 — 0.

Take a fixed number A with 0 < A < 1 and consider the sequence of numbers
{01520, defined inductively by

50 == 1,
13 v
(13) {(5j+1 = min {6 €10,1) : max [ww((éi)), ‘(;J(if(;ﬂ = )\} , j>0.

Then {,}72, is called the “A\-Oskolkov sequence associated with w”.

It is clear that the definition of {4;} makes sense. The main properties of
the sequence {d,} that will be used in the sequel are stated and proved in
Lemma 2 of [4]. We state them here for the sake of completeness.

LEMMA 1. Letw: [0,1] — [0,00) be a continuous function with w(0) =0
satisfying (12). Let 0 < A < 1 and let {6;}32, be the “\-Oskolkov sequence
assoctated with w”. Then {d;} is a decreasing sequence of positive numbers
with §; — 0 as j — oo. Moreover, for all j > 0, we have

(14) w(dj+1) < Aw(dy),
(15) 0j+1 < )\25]'7
(16) w(841)8541 < XNw(5;)6;
w(5) _ \k—jw(0k) .
< \k—i <i<
(17) 5 <A 5, 0<j<k,

(18) w(d;) < N Fw(d), j§>k.
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In the following lemma we obtain an upper bound for the integral means
M (r, B’) of Blaschke products B of the type considered in Theorem 2. It is
similar to an inequality proved by D. Protas on p. 394 of [12].

LEMMA 2.  Let {r}72, be an increasing sequence of numbers in (0,1) and
let {nk}72, be a sequence of natural numbers with limy,_, o 1y, = 0o satisfying

(19) an(l—rk) < 0
k=1

Let B be the Blaschke product whose zeros are

{rkemﬂ'/"k i=0,1,.. . -1, k:1,2,...},

that 1is,
Lk gk
2 B(z)= || £+—=— A
(20) A=l =
Then
e ni(1—r7
(21) My(r,B') <4) A 0<r<l1

Proof. We have

O _pamiml(1 = p2Y) 2 e oy
220 IB() =Y — ( Ry

Jj=1

0o ZnJ n] )
A.
_Z‘l_r an|2_ Z Zn]|2 z e
Now, a simple calculation shows that

1 [ dt 1T dt
27 Jo |1—7“;-”7“"Jei"jt\2727r 0 |1—r;ljr”je”|2

1 2
2n; < i j
L—r5"p2ns = (L=rm) + (1 —rj7)
2
< N
(1=r)+ 1 —r;7)

which together with (22) gives (21). This finishes the proof. O
>

O0<r<li,

Proof of Theorem 2. We may assume without loss of generality that ¢(r)
1, 0 < r < 1. Define

¢1(r) = min <¢(r), ﬁ) , 0<r<l1,
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and let ¢o denote the highest increasing minorant of ¢q, that is,
pa(r) = r§i2£1¢1(8), 0<r<1.
Then it is clear that ¢o is a positive, continuous and increasing function on
[0,1) with ¢o(r) > 1 for all r € [0,1). Also,
¢a(r) > 00 and (1 —r)pa(r) =0, asr— 1.
Let w : [0,1] — R be defined by

w(0) =0,
(23) {w(é) =dpa(1—9), 0<d<1.

Hence,
w(l—r)
(24) po(r) = ——, O0<r<Ll
1—7r
Clearly, w is positive and continuous on [0, 1] and satisfies

— 00 as 0 — 0.

w(d) > d for all § € [0,1] and @

Take and fix a real number A with 0 < A < 1 and let {J;}32, be the “A-
Oskolkov sequence associated with w”. Set

(25) n;=E {min (ng)’%ﬂ . i1,

where, for > 0, F[z] denotes the greatest integer which is < z. It is clear
that n; — oo, as j — oo, and that there exists a positive integer N such that
w(d;) < 1 for all j > N. Define

(26) rj=(1-dw®;)™, j=N
Using (25) and (18), we easily obtain that

Z nj(l — T’j) < o0.

j=N

Consequently, the infinite product

[ee] T'T-’Ljfznj
_ J
B(z) = I I P e
1—r72m
j=N J

is in fact a Blaschke product of the type considered in Lemma 2.
Using Lemma 2, we have

(27) My(r,B') < 4 i
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Define now
(28) Qj:1—§j, jZN
Then g; T1 as j T co. From now on we shall use the convention that C' will
denote a constant which may be different at distinct occurrences. From (28),
(27) and (26) we obtain
n;0;jw(
29 M y<Ccy —2—2__  k>N.
( ) l(gk+17 Z 5k =

Using (17) and (25) we deduce that for k > N,

(30) i n;0jw( < w(0k) Z Nk n;0;
Op41 + 9, w(6 ) - 0 A w(éj)

Jj=N

<

Using (18), (15) and (25), we obtain

n;;w(d; = ndw(d;)
(31) Z 5,€+1+5w(5)S 2

)
j=k+1 j=k+1 Okl

5 Z )\72j>\2(j7k71))\j7k5k
k

j*k+1

— j— k:)\ k+1)6
j=k+1

< A2 g ik o A*W?’“) DY
L s} k=0

<o) sy
<= >

which, together with (28), (30), (29) and (24), gives

(32) Mi(0k+1,B") < C¢a(ok), k> N.

Since M (r, B') and ¢2(r) are increasing functions of r and ¢o(r) < ¢(r)
for all r, (32) yields M;(r, B") < C¢(r) if r > on. This finishes the proof. O
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