ON THE DERIVATIVE OF INFINITE BLASCHKE PRODUCTS

DANIEL GIRELA AND JOSÉ ÁNGEL PELÁEZ

ABSTRACT. A well known result of Privalov shows that if f is a function that is analytic in the unit disc $\Delta=\{z\in\mathbb{C}:|z|<1\}$, then the condition $f'\in H^1$ implies that f has a continuous extension to the closed unit disc. Consequently, if B is an infinite Blaschke product, then $B'\notin H^1$. This has been proved to be sharp in a very strong sense. Indeed, for any given positive and continuous function ϕ defined on [0,1) with $\phi(r)\to\infty$ as $r\to 1$, one can construct an infinite Blaschke product B having the property that

(*)
$$M_1(r, B') \stackrel{\text{def}}{=} \frac{1}{2\pi} \int_{-\pi}^{\pi} |B'(re^{it})| dt = O(\phi(r)), \text{ as } r \to 1.$$

All examples of Blaschke products constructed so far to prove this result have their zeros located on a ray. Thus it is natural to ask whether an infinite Blaschke product B such that the integral means $M_1(r,B')$ grow very slowly must satisfy a condition "close" to that of having its zeros located on a ray. More generally, we may formulate the following question: Let B be an infinite Blaschke product and let $\{a_n\}_{n=1}^{\infty}$ be the sequence of its zeros. Do restrictions on the growth of the integral means $M_1(r,B')$ imply some restrictions on the sequence $\{Arg(a_n)\}_{n=1}^{\infty}$?

In this paper we prove that the answer to these questions is negative in a very strong sense. Indeed, for any function ϕ as above we shall construct two new and quite different classes of examples of infinite Blaschke products B satisfying (*) with the property that every point of $\partial \Delta$ is an accumulation point of the sequence of zeros of B.

Received February 24, 2003; received in final form May 15, 2003.

²⁰⁰⁰ Mathematics Subject Classification. 30D50, 30D55.

This research has been supported in part by a grant from "El Ministerio de Ciencia y Tecnología, Spain" (BFM2001-1736) and by a grant from La Junta de Andalucía" (FQM-210).

1. Introduction and main results

Let Δ denote the unit disc $\{z \in \mathbb{C} : |z| < 1\}$. For 0 < r < 1 and g analytic in Δ we set

$$M_p(r,g) = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| g(re^{i\theta}) \right|^p d\theta \right)^{1/p}, \quad 0
$$M_{\infty}(r,g) = \max_{|z|=r} |g(z)|.$$$$

For $0 the Hardy space <math>H^p$ consists of those functions g that are analytic in Δ and satisfy

$$||g||_{H^p} = \sup_{0 < r < 1} M_p(r, g) < \infty.$$

We refer to [2] for the theory of Hardy spaces. We recall that if a sequence $\{a_n\} \subset \Delta \setminus \{0\}$ satisfies the "Blaschke condition"

$$\sum (1 - |a_n|) < \infty,$$

then the product

$$B(z) = \prod_{n} \frac{\overline{a}_n}{|a_n|} \frac{a_n - z}{1 - \overline{a}_n z}$$

defines an H^{∞} function, called the Blaschke product with zeros $\{a_n\}$.

A classical result of Privalov [2, Th. 3.11] asserts that a function f that is analytic in Δ has a continuous extension to the closed unit disc $\overline{\Delta}$, whose boundary values are absolutely continuous on $\partial \Delta$ if and only if $f' \in H^1$. In particular,

$$f' \in H^1 \implies f \in \mathcal{A},$$

where, as usual, \mathcal{A} denotes the disc algebra, that is, the space of all functions f that are analytic in Δ and have a continuous extension to the closed unit disc $\overline{\Delta}$.

Since the boundary values of a Blaschke product have modulus 1 almost everywhere [2], it is clear that if B is an infinite Blaschke product, then $B \notin \mathcal{A}$ and, hence, $B' \notin H^1$. This is best-possible, as the following theorem shows.

THEOREM A. Let ϕ be a positive and continuous function defined on [0,1) with $\phi(r) \to \infty$ as $r \to 1$. Then there exists an infinite Blaschke product B with positive zeros having the property that

(1)
$$M_1(r, B') = \mathcal{O}(\phi(r)), \quad as \ r \to 1.$$

Different proofs of this result have been given in [3], [4] and [5]. It is natural to ask whether an infinite Blaschke product B such that the integral means $M_1(r, B')$ grow very slowly must satisfy a condition "close" to that of having its zeros located on a ray. More generally, we may formulate the following question:

Let B be an infinite Blaschke product and let $\{a_n\}_{n=1}^{\infty}$ be the sequence of its zeros. Do restrictions on the growth of the integral means $M_1(r, B')$ imply some restrictions on the sequence $\{Arg(a_n)\}_{n=1}^{\infty}$?

We shall prove that the answer to these questions is negative in a very strong sense. Indeed, for any function ϕ as in Theorem A we shall construct two new and quite different classes of examples of infinite Blaschke products B satisfying (1) with the property that every point of $\partial \Delta$ is an accumulation point of the sequence of zeros of B. Our first construction is given in Theorem 1.

THEOREM 1. Let ϕ be a positive and continuous function defined on [0,1) with $\phi(r) \to \infty$ as $r \to 1$. Then there exists an increasing sequence $\{r_k\}_{k=1}^{\infty} \subset (0,1)$ with $\sum_{k=1}^{\infty} (1-r_k) < \infty$ such that if, for every k, a_k is a complex number with $|a_k| = r_k$ and B is the Blaschke product whose sequence of zeros is $\{a_k\}_{k=1}^{\infty}$, then B satisfies (1).

Notice that if $\{r_k\}_{k=1}^{\infty}$ is the sequence constructed in Theorem 1, $\{\theta_k\}_{k=1}^{\infty}$ is any sequence of real numbers that is dense in \mathbb{R} and we set $a_k = r_k e^{i\theta_k}$ $(k \geq 1)$, then every point of $\partial \Delta$ is an accumulation point of the sequence $\{a_k\}$ and the Blaschke product with zeros $\{a_k\}$ satisfies (1).

Our second class of examples is given in Theorem 2. The Blaschke products B constructed in Theorem 1 have the property that for any $r \in (0,1)$ at most one zero of B lies on the circle $\{|z|=r\}$. The Blaschke products that we construct in Theorem 2 are quite different: If B is any of these products, then there exist a sequence $\{r_k\} \uparrow 1$ and a sequence of natural numbers $\{n_k\} \uparrow \infty$ such that, for all k, n_k of the zeros of B lie on the circle $\{|z|=r_k\}$.

THEOREM 2. Let ϕ be a positive and continuous function defined on [0,1) with $\phi(r) \to \infty$ as $r \to 1$. Then there exist an increasing sequence $\{r_k\}_{k=1}^{\infty} \subset (0,1)$ and a sequence of natural numbers $\{n_k\}_{k=1}^{\infty}$ with $\lim_{k\to\infty} n_k = \infty$ satisfying

$$\sum_{k=1}^{\infty} n_k (1 - r_k) < \infty,$$

such that if B is the Blaschke product whose zeros are

$$\left\{ r_k e^{2\pi i j/n_k} : j = 0, 1, \dots, n_k - 1, \ k = 1, 2, \dots \right\},\,$$

that is,

(2)
$$B(z) = \prod_{k=1}^{\infty} \frac{r_k^{n_k} - z^{n_k}}{1 - r_k^{n_k} z^{n_k}}, \quad z \in \Delta,$$

then $M_1(r, B') = O(\phi(r))$ as $r \to 1$.

We mention that Blaschke products like those constructed in Theorem 2 were used by Lohwater and Piranian [6] (see also Theorem 2.22 on p. 43 of [1]) to show that Fatou's theorem is best possible and by Piranian [11] to construct a Blaschke product B with $\iint_{\Delta} |B'(z)| dx dy = \infty$.

2. Proof of Theorem 1

If f is an analytic function in Δ , we let n(r, f) (0 < r < 1) denote the number of zeros of f in the disc $\{z : |z| \le r\}$. Our proof of Theorem 1 will be based on the following result, which is an extension of Theorem 1 on p. 3 of [5].

THEOREM 3. Given $\alpha \in (0,1)$ there exist two positive constants $C_1(\alpha)$ and $C_2(\alpha)$ such that if $\{a_n\}_{n=1}^{\infty}$ is any sequence in $\Delta \setminus \{0\}$ satisfying

(3)
$$(1 - |a_{n+1}|) \le \alpha (1 - |a_n|), \quad n \ge 1,$$

and B is the Blaschke product whose sequence of zeros is $\{a_n\}_{n=1}^{\infty}$, then, for all r sufficiently close to 1,

(4)
$$C_1(\alpha)n(r,B) \le M_1(r,B') \le C_2(\alpha)n(r,B).$$

Proof. Take $\alpha \in (0,1)$ and let $\{a_n\}_{n=1}^{\infty}$ be a sequence in $\Delta \setminus \{0\}$ satisfying (3). Let B be the Blaschke product whose sequence of zeros is $\{a_n\}_{n=1}^{\infty}$. Define

(5)
$$r_{2k-1} = |a_k|, \quad k = 1, 2, 3, \dots$$

and

(6)
$$r_{2k} = \frac{r_{2k-1} + r_{2k+1}}{2} = \frac{|a_k| + |a_{k+1}|}{2}, \quad k = 1, 2, 3, \dots$$

Set $\beta = \frac{1}{2}(1+\alpha)$. Then $0 < \beta < 1$ and it is easy to see that we have

$$1 - r_{k+1} \le \beta(1 - r_k), \quad \text{for all } k.$$

Using Theorem 9.2 of [2], we see that the sequence $\{r_k\}$ is uniformly separated, that is, there exists a constant $\delta > 0$ such that

(7)
$$\prod_{\substack{j=1\\j\neq k}}^{\infty} \left| \frac{r_j - r_k}{1 - r_j r_k} \right| \ge \delta, \quad \text{for all } k.$$

Actually, an examination of the proof of Theorem 9.2 on pp. 155–156 of [2] shows that the constant δ depends only on β (or, equivalently, on α). Using the lemma on p. 154 of [2], we see that

$$\min_{|z|=r} \left| \frac{a_j - z}{1 - \overline{a_j} z} \right| \ge \left| \frac{|a_j| - r}{1 - |a_j| r} \right|, \quad 0 < r < 1, \quad j = 1, 2, \dots$$

and, hence,

$$\min_{|z|=r} |B(z)| \ge \prod_{j=1}^{\infty} \left| \frac{|a_j| - r}{1 - |a_j|r} \right| = \prod_{j=1}^{\infty} \left| \frac{r_{2j-1} - r}{1 - r_{2j-1}r} \right|, \quad 0 < r < 1.$$

Taking $r = r_{2k}$ and using (7), we obtain

(8)
$$\min_{|z|=r_{2k}} |B(z)| \ge \prod_{j=1}^{\infty} \left| \frac{r_{2j-1} - r_{2k}}{1 - r_{2j-1} r_{2k}} \right| \ge \prod_{\substack{j=1 \ j \ne 2k}}^{\infty} \left| \frac{r_j - r_{2k}}{1 - r_j r_{2k}} \right| \ge \delta, \quad k = 1, 2, \dots$$

Once (8) has been established, the argument used on pp. 5–6 of [5] gives that there exists $\varrho_1 \in (0,1)$ such that

$$M_1(r, B') \ge \frac{\delta}{2}n(r, B), \quad \rho_1 < r < 1.$$

This gives the first inequality of (4) for all $r \in (\rho_1, 1)$ with $C_1(\alpha) = \delta/2$.

The second inequality with $C_2(\alpha) = 5$ follows from the argument on pp. 6–7 of [5].

Proof of Theorem 1. With Theorem 3 established, the proof of Theorem 1 follows the lines of the proof of Theorem A in [5]. Let ϕ be as in Theorem 1. We may assume without loss of generality that $\phi(0) < 1$. Define

(9)
$$b_n = \max\{r \in (0,1) : \phi(r) = n\}, \quad n = 1, 2, 3, \dots$$

It is clear that the sequence $\{b_n\}_{n=1}^{\infty}$ is well defined, increasing, and that $b_n \to 1$ as $n \to \infty$.

Given $r \in (0,1)$, let N(r) denote the number of elements of the sequence which are smaller than or equal to r. It is clear that

$$n > \phi(r) \implies b_n > r$$

and thus

$$(10) N(r) \le \phi(r).$$

Since $b_n \uparrow 1$, we can extract a subsequence $\{b_{n_k}\}$ of $\{b_n\}$ such that

(11)
$$(1 - b_{n_{k+1}}) \le \frac{1}{2} (1 - b_{n_k}), \quad k \ge 1.$$

Set $r_k = b_{n_k}$ $(k \ge 1)$ and let $\{a_k\}_{k=1}^{\infty}$ be a sequence of complex numbers with $|a_k| = r_k$ for all k. Notice that (11) implies that $\{a_k\}$ satisfies the Blaschke condition. Let B be the Blaschke product whose sequence of zeros is $\{a_k\}_{k=1}^{\infty}$. Since $\{|a_k|\}$ is a subsequence of $\{b_n\}$, it is clear that

$$n(r, B) \le N(r)$$
, for all $r \in (0, 1)$.

Then (10) shows that

$$n(r, B) < \phi(r), \quad 0 < r < 1,$$

which, using Theorem 3 with $\alpha = 1/2$, gives

$$M_1(r, B') = \mathcal{O}(\phi(r)), \quad \text{as } r \to 1.$$

This finishes the proof.

3. Proof of Theorem 2

The proofs of Theorem A in [3] and [4] make essential use of certain sequences introduced by K. I. Oskolkov in several contexts (see [7], [8], [9] and [10]). The proof given in [5] is simpler and independent of the Oskolkov's sequences. However, for the proof of Theorem 2 we shall again need to make use of Oskolkov's sequences.

Definition 1. Let $\omega:[0,1]\to[0,\infty)$ be a continuous function with $\omega(0)=0$ and

(12)
$$\frac{\omega(\delta)}{\delta} \to \infty, \quad \text{as } \delta \to 0.$$

Take a fixed number λ with $0 < \lambda < 1$ and consider the sequence of numbers $\{\delta_j\}_{j=0}^{\infty}$, defined inductively by

(13)
$$\begin{cases} \delta_0 = 1, \\ \delta_{j+1} = \min \left\{ \delta \in [0, 1) : \max \left[\frac{\omega(\delta)}{\omega(\delta_j)}, \frac{\omega(\delta_j)\delta}{\delta_j \omega(\delta)} \right] = \lambda \right\}, \quad j \ge 0. \end{cases}$$

Then $\{\delta_j\}_{j=0}^{\infty}$ is called the " λ -Oskolkov sequence associated with ω ".

It is clear that the definition of $\{\delta_j\}$ makes sense. The main properties of the sequence $\{\delta_j\}$ that will be used in the sequel are stated and proved in Lemma 2 of [4]. We state them here for the sake of completeness.

LEMMA 1. Let $\omega: [0,1] \to [0,\infty)$ be a continuous function with $\omega(0) = 0$ satisfying (12). Let $0 < \lambda < 1$ and let $\{\delta_j\}_{j=0}^{\infty}$ be the " λ -Oskolkov sequence associated with ω ". Then $\{\delta_j\}$ is a decreasing sequence of positive numbers with $\delta_j \to 0$ as $j \to \infty$. Moreover, for all $j \geq 0$, we have

(14)
$$\omega(\delta_{j+1}) \le \lambda \omega(\delta_j),$$

$$\delta_{i+1} \le \lambda^2 \delta_i,$$

(16)
$$\omega(\delta_{j+1})\delta_{j+1} \le \lambda^3 \omega(\delta_j)\delta_j,$$

(17)
$$\frac{\omega(\delta_j)}{\delta_j} \le \lambda^{k-j} \frac{\omega(\delta_k)}{\delta_k}, \quad 0 \le j \le k,$$

(18)
$$\omega(\delta_j) \le \lambda^{j-k} \omega(\delta_k), \quad j \ge k.$$

In the following lemma we obtain an upper bound for the integral means $M_1(r, B')$ of Blaschke products B of the type considered in Theorem 2. It is similar to an inequality proved by D. Protas on p. 394 of [12].

LEMMA 2. Let $\{r_k\}_{k=1}^{\infty}$ be an increasing sequence of numbers in (0,1) and let $\{n_k\}_{k=1}^{\infty}$ be a sequence of natural numbers with $\lim_{k\to\infty} n_k = \infty$ satisfying

(19)
$$\sum_{k=1}^{\infty} n_k (1 - r_k) < \infty.$$

Let B be the Blaschke product whose zeros are

$$\left\{ r_k e^{2\pi i j/n_k} : j = 0, 1, \dots, n_k - 1, \ k = 1, 2, \dots \right\},\,$$

that is,

(20)
$$B(z) = \prod_{k=1}^{\infty} \frac{r_k^{n_k} - z^{n_k}}{1 - r_k^{n_k} z^{n_k}}, \quad z \in \Delta.$$

Then

(21)
$$M_1(r, B') \le 4 \sum_{j=1}^{\infty} \frac{n_j (1 - r_j^{n_j})}{(1 - r) + (1 - r_j^{n_j})}, \quad 0 < r < 1.$$

Proof. We have

$$(22) |B'(z)| = \left| \sum_{j=1}^{\infty} \frac{-n_j z^{n_j - 1} (1 - r_j^{2n_j})}{(1 - r_j^{n_j} z^{n_j})^2} \prod_{\substack{k=1 \ k \neq j}}^{\infty} \frac{r_k^{n_k} - z^{n_k}}{1 - r_k^{n_k} z^{n_k}} \right|$$

$$\leq \sum_{j=1}^{\infty} \frac{n_j (1 - r_j^{2n_j})}{|1 - r_j^{n_j} z^{n_j}|^2} \leq 2 \sum_{j=1}^{\infty} \frac{n_j (1 - r_j^{n_j})}{|1 - r_j^{n_j} z^{n_j}|^2}, \quad z \in \Delta.$$

Now, a simple calculation shows that

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{dt}{|1 - r_j^{n_j} r^{n_j} e^{in_j t}|^2} = \frac{1}{2\pi} \int_0^{2\pi} \frac{dt}{|1 - r_j^{n_j} r^{n_j} e^{it}|^2} \\
= \frac{1}{1 - r_j^{2n_j} r^{2n_j}} \le \frac{2}{(1 - r^{n_j}) + (1 - r_j^{n_j})} \\
\le \frac{2}{(1 - r) + (1 - r_j^{n_j})}, \quad 0 < r < 1,$$

which together with (22) gives (21). This finishes the proof.

Proof of Theorem 2. We may assume without loss of generality that $\phi(r) \ge 1$, $0 \le r < 1$. Define

$$\phi_1(r) = \min\left(\phi(r), \frac{2}{(1-r)^{1/2}}\right), \quad 0 < r < 1,$$

and let ϕ_2 denote the highest increasing minorant of ϕ_1 , that is,

$$\phi_2(r) = \inf_{r \le s < 1} \phi_1(s), \quad 0 \le r < 1.$$

Then it is clear that ϕ_2 is a positive, continuous and increasing function on [0,1) with $\phi_2(r) \geq 1$ for all $r \in [0,1)$. Also,

$$\phi_2(r) \to \infty$$
 and $(1-r)\phi_2(r) \to 0$, as $r \to 1$.

Let $\omega:[0,1]\to\mathbb{R}$ be defined by

(23)
$$\begin{cases} \omega(0) = 0, \\ \omega(\delta) = \delta \phi_2 (1 - \delta), \quad 0 < \delta \le 1. \end{cases}$$

Hence,

(24)
$$\phi_2(r) = \frac{\omega(1-r)}{1-r}, \quad 0 < r < 1.$$

Clearly, ω is positive and continuous on [0,1] and satisfies

$$\omega(\delta) \geq \delta \text{ for all } \delta \in [0,1] \quad \text{and} \quad \frac{\omega(\delta)}{\delta} \to \infty \text{ as } \delta \to 0.$$

Take and fix a real number λ with $0 < \lambda < 1$ and let $\{\delta_j\}_{j=0}^{\infty}$ be the " λ -Oskolkov sequence associated with ω ". Set

(25)
$$n_j = E\left[\min\left(\frac{\omega(\delta_j)}{\delta_j}, \frac{1}{\lambda^{2j}}\right)\right], \quad j \ge 1,$$

where, for $x \geq 0$, E[x] denotes the greatest integer which is $\leq x$. It is clear that $n_j \to \infty$, as $j \to \infty$, and that there exists a positive integer N such that $\omega(\delta_j) < 1$ for all $j \geq N$. Define

(26)
$$r_j = (1 - \delta_j \omega(\delta_j))^{1/n_j}, \quad j \ge N.$$

Using (25) and (18), we easily obtain that

$$\sum_{j=N}^{\infty} n_j (1 - r_j) < \infty.$$

Consequently, the infinite product

$$B(z) = \prod_{j=N}^{\infty} \frac{r_j^{n_j} - z^{n_j}}{1 - r_j^{n_j} z^{n_j}}$$

is in fact a Blaschke product of the type considered in Lemma 2. Using Lemma 2, we have

(27)
$$M_1(r, B') \le 4 \sum_{j=N}^{\infty} \frac{n_j (1 - r_j^{n_j})}{(1 - r) + (1 - r_j^{n_j})}.$$

Define now

(28)
$$\varrho_j = 1 - \delta_j, \quad j \ge N.$$

Then $\varrho_j \uparrow 1$ as $j \uparrow \infty$. From now on we shall use the convention that C will denote a constant which may be different at distinct occurrences. From (28), (27) and (26) we obtain

(29)
$$M_1(\varrho_{k+1}, B') \le C \sum_{j=N}^{\infty} \frac{n_j \delta_j \omega(\delta_j)}{\delta_{k+1} + \delta_j \omega(\delta_j)}, \quad k \ge N.$$

Using (17) and (25) we deduce that, for $k \geq N$,

$$(30) \qquad \sum_{j=N}^{k} \frac{n_{j} \delta_{j} \omega(\delta_{j})}{\delta_{k+1} + \delta_{j} \omega(\delta_{j})} \leq \frac{\omega(\delta_{k})}{\delta_{k}} \sum_{j=N}^{k} \lambda^{k-j} \frac{n_{j} \delta_{j}}{\omega(\delta_{j})}$$
$$\leq \frac{\omega(\delta_{k})}{\delta_{k}} \sum_{j=N}^{k} \lambda^{k-j} \leq \frac{\omega(\delta_{k})}{\delta_{k}} \sum_{j=0}^{\infty} \lambda^{j} \leq C \frac{\omega(\delta_{k})}{\delta_{k}}.$$

Using (18), (15) and (25), we obtain

$$(31) \qquad \sum_{j=k+1}^{\infty} \frac{n_{j}\delta_{j}\omega(\delta_{j})}{\delta_{k+1} + \delta_{j}\omega(\delta_{j})} \leq \sum_{j=k+1}^{\infty} \frac{n_{j}\delta_{j}\omega(\delta_{j})}{\delta_{k+1}}$$

$$\leq \frac{\omega(\delta_{k})}{\delta_{k}} \sum_{j=k+1}^{\infty} \lambda^{-2j} \lambda^{2(j-k-1)} \lambda^{j-k} \delta_{k}$$

$$= \frac{\omega(\delta_{k})}{\delta_{k}} \sum_{j=k+1}^{\infty} \lambda^{j-k} \lambda^{-2(k+1)} \delta_{k}$$

$$\leq \lambda^{-2} \frac{\omega(\delta_{k})}{\delta_{k}} \sum_{j=k+1}^{\infty} \lambda^{j-k} \leq \lambda^{-2} \frac{\omega(\delta_{k})}{\delta_{k}} \sum_{j=0}^{\infty} \lambda^{j}$$

$$\leq C \frac{\omega(\delta_{k})}{\delta_{k}}, \qquad k \geq N,$$

which, together with (28), (30), (29) and (24), gives

(32)
$$M_1(\rho_{k+1}, B') < C\phi_2(\rho_k), \quad k > N.$$

Since $M_1(r, B')$ and $\phi_2(r)$ are increasing functions of r and $\phi_2(r) \leq \phi(r)$ for all r, (32) yields $M_1(r, B') \leq C\phi(r)$ if $r \geq \varrho_N$. This finishes the proof. \square

REFERENCES

- E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Mathematics and Mathematical Physics, no. 56, Cambridge University Press, Cambridge, 1966. MR 38#325
- [2] P. L. Duren, Theory of H^p spaces, Pure and Applied Mathematics, vol. 38, Academic Press, New York, 1970. MR 42#3552

- [3] D. Girela, On a theorem of Privalov and normal functions, Proc. Amer. Math. Soc. 125 (1997), 433–442. MR 97d:30046
- [4] ______, Mean Lipschitz spaces and bounded mean oscillation, Illinois J. Math. 41 (1997), 214–230. MR 98h:46019
- [5] D. Girela and C. González, Mean growth of the derivative of infinite Blaschke products, Complex Variables Theory Appl. 45 (2001), 1–10. MR 2003g:30057
- [6] A. J. Lohwater and G. Piranian, The boundary behavior of functions analytic in a disk, Ann. Acad. Sci. Fenn. Ser. A. I. 1957 (1957), no. 239. MR 19,950c
- [7] K. I. Oskolkov, An estimate of the rate of approximation of a continuous function and its conjugate by Fourier sums on a set of total measure, Izv. Acad. Nauk SSSR Ser. Mat. 38 (1974), 1393–1407; English translation in Math. USSR Izv. 8 (1976), 1372–1386. MR 50#10663
- [8] ______, Uniform modulus of continuity of summable functions on sets of positive measure, Dokl. Akad. Nauk SSSR 229 (1976), 304–306; English translation in Sov. Math. Dokl. 17 (1976), 1028–1030. MR 57#9917
- [9] ______, Approximation properties of summable functions on sets of full measure, Mat.
 Sb. (N.S.) 103(145) (1977), 563-589; English translation in Math. USSR Sbornik 32 (1977), 489-514. MR 57#13343
- [10] ______, Luzin's C-property for a conjugate function, Trudy Mat. Inst. Steklov. 164 (1983), 124–135; English translation in Proc. Steklov Inst. Math. 164 (1985), 141–153. MR 86e:42019
- [11] G. Piranian, Bounded functions with large circular variation, Proc. Amer. Math. Soc. 19 (1968), 1255–1257. MR 37#6464
- [12] D. Protas, Blaschke products with derivative in H^p and B^p, Michigan Math. J. 20 (1973), 393–396. MR 49#9217

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, FACULTAD DE CIENCIAS, UNIVERSIDAD DE MÁLAGA, 29071 MÁLAGA, SPAIN

 $E ext{-}mail\ address,\ D.\ Girela:\ {\tt girela@uma.es}$

E-mail address, J. Peláez: pelaez@anamat.cie.uma.es