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TOPOLOGICAL VECTOR SPACES OF BOCHNER
MEASURABLE FUNCTIONS

LECH DREWNOWSKI AND IWO LABUDA

Abstract. The notion of a topological vector space of Bochner mea-
surable functions is introduced and studied. Among the main results

obtained are characterizations of completeness and of containment of
copies of c0 or `∞.

1. Introduction

Recall two classical results characterizing Banach lattices (in the terminol-
ogy of [AB]) that have both the Lebesgue and the Levi property (also called
KB-spaces), or the Lebesgue property alone (which is the same as the order
continuity of norm), in terms of containment of copies of c0 or `∞.

Theorem 1.0. Let E be a Banach lattice.

(i) E is Lebesgue and Levi iff E contains no lattice (or Riesz homeo-
morphic) copy of c0 iff E contains no (linearly homeomorphic) copy
of c0.

(ii) Assume that E is σ-Dedekind complete. Then E is Lebesgue iff E
contains no lattice copy of `∞ iff E contains no copy of `∞.

In [DL2, Prop. 2.1, Thm. 2.4, Thm. 2.7], we refined the existing extensions
of the ‘lattice copy part’ of (i) and (ii) to general topological Riesz spaces by
proving the following result.

Theorem 1.1. Let L be a topological Riesz space.

(i) L is σ-Lebesgue and σ-Levi iff it has the σ-monotone completeness
property and contains no lattice copy of c0.

(ii) A disjointly σ-Dedekind complete L is pre-Lebesgue iff it contains no
lattice copy of `∞.
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We then focused on the case of topological Riesz spaces L of measurable
functions over a locally finite measure and were able to show that, for such
spaces, the other parts of both (i) and (ii) remain also valid (see Thms. 5.5
and 5.8 in [DL2]):

Theorem 1.2. Let L be a topological Riesz space of λ-measurable func-
tions.

(i) L with the monotone completeness property is σ-Lebesgue and σ-Levi
iff L contains no lattice copy of c0 iff L contains no copy of c0 iff L
has the Property (O) of Orlicz.

(ii) L having the σ-monotone completeness property is σ-Lebesgue iff L
contains no lattice copy of `∞ iff L contains no copy of `∞.

Moreover, with the help of a representation theorem, we translated these
results back to general topological Riesz spaces with separating dual.

In the present research, we pursue the natural question to what degree the
results mentioned above can be extended to spaces of comparable generality
but consisting of vector-valued functions.

Accordingly, we develop a theory of topological vector spaces of Bochner
measurable functions. The theory is sufficiently general to include topological
Riesz spaces of measurable functions as a particular case, and to cover – via a
representation theorem – at least those abstract topological Riesz spaces that
have the Lebesgue property. This allows applications (see [DL3] and [DL1])
and explains why we adopted the setting of submeasure spaces rather than
measure spaces.

Topological vector spaces of Bochner measurable functions are introduced
in Section 3. We investigate their Lebesgue type and Levi type properties
in Sections 4 and 5. Their topological completeness is studied in Section 6,
where, in particular, sequentially complete and complete L0(µ,E) spaces are
characterized.

A major subclass of topological vector spaces of Bochner measurable func-
tions is formed by the ‘mixtures’ L(E) of a topological Riesz space of scalar
measurable functions L with a Banach space E. If E is a Banach lattice, then
L0(µ,E) as well as the ‘mixtures’ L(E) are topological Riesz spaces. We ex-
amine this case thoroughly in Section 7. There, we are concerned with special
kinds of completeness such as the interval or monotone completeness which
often can successfully be used in the absence of ‘full’ completeness. Then
we characterize the spaces L(E) that have the (σ-)Lebesgue and/or (σ-)Levi
properties, or which contain no lattice copy of c0 or `∞.

In Section 8 we prove an Orlicz-Pettis type theorem for our class of spaces.
It is worth noting that this result is strong enough to imply the coincidence of
subseries convergence for all Hausdorff Lebesgue topologies on a Riesz space
[DL1].
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In Section 9, using the Orlicz-Pettis theorem as main tool, we study the (iso-
morphic) embeddings of c0 and `∞ into topological vector spaces of Bochner
measurable functions. Most of the results about copies of c0 and `∞ obtained
in [DL2] for topological Riesz spaces of measurable functions carry over to
this setting.

Finally, in Section 10, we specialize and somewhat improve these results
for the particular case of spaces of type L(E). For example, we show that if
E contains no copy of c0 and L(E) is quasi-complete, then L(E) contains no
copy of c0 iff L is σ-Lebesgue and σ-Levi. We conclude this paper by proving
that if L is complete and has separating dual space, then L(E) contains a
copy of `∞ iff either L or E does.

This paper is, to some extent, a continuation of [DL2]. Our terminology and
notation is rather standard and mostly follows that of [AB]; all unexplained
terms and facts that will occur below can also be found in [DL2].

We use the abbreviations TVS and TRS for Hausdorff topological vector
space and Hausdorff locally solid topological Riesz space, respectively. It is
worth noting that for topological Riesz spaces the notions of completeness
and quasi-completeness coincide (see [We, Prop. 2.8] and [Wn, Prop. 1.4]).

We denote by N the set of positive integers, and let P(N) stand for its
power set.

2. Scalar measurable functions

Except in Sections 9 and 10, we will usually deal with spaces of measurable
functions over submeasure spaces. In what follows, (S,Σ, µ) is a submeasure
space with a locally order continuous submeasure µ which, for the sake of
convenience (though not of necessity), will be assumed to be null-complete
(i.e., whenever B ⊂ A ∈ Σ and µ(A) = 0, then B ∈ Σ and µ(B) = 0).

Thus S is a set, Σ a σ-algebra of subsets of S, and µ : Σ→ R+ a submeasure
(i.e., µ is nondecreasing, subadditive, and µ(∅) = 0). The assumption that µ
is locally order continuous means that each A ∈ Σ with µ(A) > 0 contains
a B ∈ Σ with µ(B) > 0 on which µ is order continuous (o.c.). That is,
µ(Bn)→ 0 whenever Bn ∈ Σ, Bn ⊂ B and Bn ↓ ∅. From this it follows easily
that the class N (µ) of µ-null sets is a σ-ideal in Σ.

We set

Σoc(µ) = all sets A ∈ Σ such that µ is o.c. on A,

Σ+
oc(µ) = {A ∈ Σoc(µ) : µ(A) > 0},

Σσoc(µ) = all countable unions of sets in Σoc(µ).

Clearly, Σoc(µ) is an ideal, and Σσoc(µ) is a σ-ideal in Σ; in particular, both
are directed upward by inclusion. Also note that if A ∈ Σ and A∩B ∈ N (µ)
for each B ∈ Σ+

oc(µ), then A ∈ N (µ). If S itself is in Σσoc(µ), then µ is said to
be countably o.c.-decomposable.
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If A ∈ Σ and (Ai : i ∈ I) is a net in Σ, then we write Ai ↑ A provided
that the net (Ai) is increasing and A = supiAi. Strictly speaking, these
requirements are to be satisfied for the corresponding elements in the quotient
Boolean algebra Σ/N (µ). Thus, in particular, the equality A = supiAi means
that µ(Ai rA) = 0 for all i, and whenever B ∈ Σ is such that µ(Ai rB) = 0
for all i, then µ(ArB) = 0. Note that if A ∈ Σσoc(µ) and Ai ↑ A, then there
exists a subsequence (Ain) of (Ai) such that Ain ↑ A; this fact will be used
freely throughout the paper without explicitly mentioning it.

We denote by L0(µ) = L0(S,Σ, µ) the vector lattice (or Riesz space) of all
(µ-equivalence classes of) measurable scalar functions on S. It is equipped
with the locally solid vector topology τµ of convergence in submeasure µ on
all sets in Σoc(µ). A base of solid neighborhoods at zero for τµ consists of the
sets

U(A, ε) =
{
f ∈ L0(µ) : µ{s ∈ A : |f(s)| > ε} < ε

}
, A ∈ Σoc(µ), ε > 0.

Of course, if (fi) is a net in L0(µ) and f ∈ L0(µ), then

fi → f (τµ) iff lim
i
µ({s ∈ A : |f(s)− fi(s)| > ε}) = 0 for all A ∈ Σoc(µ).

Proposition 2.1. L0(µ) is a Hausdorff σ-universally complete TRS hav-
ing the σ-Lebesgue and σ-Levi properties. It is metrizable iff µ is countably
o.c.-decomposable.

We shall say that the submeasure space (S,Σ, µ), or the submeasure µ itself,
is of type (C) (resp. (SC)) if the corresponding TRS L0(µ) is complete (resp.
sequentially complete). Note that a countably o.c.-decomposable submeasure
is of type (C).

The following result corresponds to a characterization of measures of type
(C) in [F1] (called there Maharam measures) with a slight addition, viz.,
condition (b).

Theorem 2.2. For the submeasure space (S,Σ, µ), let Σµ denote the as-
sociated submeasure Boolean algebra Σ/N (µ). Then the following statements
are equivalent.

(a) µ is of type (C).
(b) The algebra Σµ is complete as a topological abelian group with the

topology induced from L0(µ) via the map A→ 1A.
(c) The algebra Σµ is Dedekind complete.
(d) L0(µ) is a universally complete Lebesgue Levi TRS.

Extending the terminology from [DL2], by a TRS of µ-measurable func-
tions we shall mean an ideal (or solid subspace) L of L0(µ) equipped with
a Hausdorff locally solid topology τ = τL. Note that all such TRS’s are
automatically σ-Dedekind complete.
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Proposition 2.3. Let the submeasure µ be countably o.c.-decomposable.
Then L0(µ) has the countable sup property. Consequently, if a TRS L of µ-
measurable functions is σ-Lebesgue, or σ-Levi, or σ-Fatou, then it is Lebesgue,
or Levi, or Fatou, respectively.

The inclusion L ⊂ L0(µ) is often automatically continuous. The following
result is given in [D2, Prop. 3.6] or [KA, Thm. IV.3.1] for the metrizable case,
and in [DL2, Prop. 3.4] for the σ-Fatou case.

Proposition 2.4. If a TRS L of µ-measurable functions is metrizable or
has the σ-Fatou property, then it is continuously included in L0(µ).

The next result explains our insistence on working with submeasure spaces
rather than just measure spaces. It is a form of Theorem 2.7 in [L4].

Theorem 2.5. If a TRS X is Lebesgue (and Dedekind complete), then
there exists a submeasure space (S,Σ, µ) of type (C) such that X is continu-
ously included as an order dense (and solid) sublattice in L0(µ).

Example 2.6. The following distinguishes between type (SC) and (C)
measures. Let S be any uncountable set, C the class of its countable subsets
together with their complements to S, and γ the counting measure on C.
That is, γ(A) is the number of elements of A if A is finite, and γ(A) = ∞
otherwise. Then L0(γ) consists of all functions f : S → R that are constant
outside a countable subset of S, and τγ is simply the topology of pointwise
convergence on S. Clearly, L0(γ) is sequentially complete, but not complete:
its completion is the product space RS . Thus (S, C, γ) is of type (SC), but
not (C).

3. Spaces of vector valued measurable functions

Let E be an F-space (i.e., a complete metrizable TVS), and thus, in par-
ticular, a Banach space.

By a countably Σ-simple function from S to E we mean one that assumes
at most countably many values, each on a set from Σ. A function f : S → E
will be called Bochner measurable if it satisfies any of the following equivalent
conditions.

(a) There is a sequence of countably Σ-simple functions fn : S → E such
that

f(s) = lim
n
fn(s) uniformly for a.e. s ∈ S;

(b) there is a sequence of countably Σ-simple functions fn : S → E such
that

f(s) = lim
n
fn(s) for a.e. s ∈ S;



292 LECH DREWNOWSKI AND IWO LABUDA

(c) there is a µ-null set A such that f(S rA) is a separable subset of E,
and f is Σ-Borel measurable; that is,

f−1(B) ∈ Σ for every Borel set B ⊂ E.
Below, we refer to such functions f as µ-measurable. If the submeasure µ is
countably o.c.-decomposable, or if E = R, then the conditions stated above
are also equivalent to

(b) there is a sequence of (finitely) Σ-simple functions fn : S → E such
that

f(s) = lim
n
fn(s) for a.e. s ∈ S,

which is the usual definition of Bochner measurability. The main reason for
our departure from this common usage is that with the definition adopted here
one can easily prove for general submeasure (or measure) spaces (S,Σ, µ) that
a.e. limits of sequences of µ-measurable functions are µ-measurable. (Note also
that, for the modified definition of measurability, the latter fact follows solely
from the property that N (µ) is a σ-ideal, without any additional requirements
on µ.) Evidently, the above definition coincides with the standard (inverse
image) definition of measurability in the case of scalar functions.

We denote by L0(µ,E) = L0(S,Σ, µ;E) the space of all (µ-equivalence
classes of) E-valued µ-measurable functions on S, with its Hausdorff vector
topology τµ defined, similarly as in the scalar case, as the topology of conver-
gence in submeasure µ on sets in Σoc(µ). Note that the familiar convergence
properties of sequences of measurable functions, such as the Egoroff theorem,
remain valid in the submeasure setting provided the sets of finite measure are
replaced by sets in Σoc(µ).

We let τu stand for the group topology in L0(µ,E) of (µ-a.e.) uniform
convergence on S. For A ∈ Σ, we denote by PA the linear projection in
L0(µ,E) defined by PA(f) = 1Af . We say that a subset V of L0(µ,E) is
Σ-solid if PA(V ) ⊂ V for every A ∈ Σ.

Let X be a Σ-solid subspace of L0(µ,E), and let (P) be a property which
any particular subspace

XA = PA(X), where A ∈ Σ,

may or may not have. Then we shall say that property (P) holds piecewise,
or that X is piecewise (P), if every A ∈ Σ+

oc(µ) contains a B ∈ Σ+
oc(µ) such

that XB has property (P).
For example, if τ and ρ are two topologies on X, then τ is said to be

piecewise weaker than ρ if every A ∈ Σ+
oc(µ) contains a B ∈ Σ+

oc(µ) such that
τ |XB 6 ρ|XB .

Properties (P) encountered below will also be hereditary, i.e., whenever
XA has (P), so does XB for B ⊂ A. Evidently, if properties (P) and (Q) are
hereditary, and X is piecewise (P) and piecewise (Q), then X is piecewise (P)
and (Q).
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Proposition 3.1. For any property (P) as above, if X is piecewise (P),
then every A in Σσoc(µ) admits a countable partition (An) such that each XAn

has property (P).

By a TVS of E-valued µ-measurable functions we shall mean a Σ-solid
subspace X of L0(µ,E) equipped with a Hausdorff vector topology τ = τX
such that

• the projections PA (A ∈ Σ) are equicontinuous on X; equivalently,
the topology τ has a base of Σ-solid neighborhoods of zero;
• the topology τ is piecewise weaker than the topology τu.

Note that the inclusion X ⊂ L0(µ,E) is not assumed to be continuous. The
subspaces of X of the form XA, where A ∈ Σσoc(µ), will be called fundamental.

Proposition 3.2. A TRS L of µ-measurable functions is also a TVS of
scalar-valued µ-measurable functions.

Proof. The first condition of the definition above is obviously satisfied. To
check the second, pick an A ∈ Σ+

oc(µ) and observe that either LA = 0 or there
exists B ∈ Σ+

oc(µ), B ⊂ A, with 1B ∈ L. Hence, given any solid neighborhood
V of zero in L, there is ε > 0 such that ε[−1B , 1B ] ⊂ V , and the needed
condition follows. �

The most common types of TVS’s of Bochner measurable functions arise
in the literature as special cases of the following construction (see, e.g., [KPS,
Ch. 4] and [FN]).

Let (S,Σ, λ) be a measure space (usually assumed to be finite or σ-finite),
L = (L, ‖·‖L) a Banach (or Köthe) function space over (S,Σ, λ), and E =
(E, ‖·‖E) an arbitrary Banach space. For every function f : S → E, let ‖f‖E
denote the scalar function s → ‖f(s)‖E . Then define the subspace L(E) of
L0(λ,E) by L(E) = {f ∈ L0(λ,E) : ‖f‖E ∈ L}, and equip it with the norm
‖f‖L(E) := ‖‖f‖E‖L. The spaces Lp(λ,E) or Orlicz spaces Lϕ(λ,E) are just
particular instances of this construction.

In this paper we will consider an analogous ‘mixture’ L(E) of a general
TRS L = (L, τL) of µ-measurable functions with a Banach space E. Thus
L(E), as a vector space, is again defined as above, that is,

L(E) = {f ∈ L0(µ,E) : ‖f‖E ∈ L},

and we equip it with the vector topology τL(E) determined by the neighbor-
hoods of zero

VE = {f ∈ L(E) : ‖f‖E ∈ V }, V ∈ V,

where V is any base of τL-neighborhoods of zero in L (e.g., the base of solid
neighborhoods of zero). It is evident that L(E) =

(
L(E), τL(E)

)
is a TVS of

E-valued µ-measurable functions (which does not change when the norm ‖·‖E
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of E is replaced by an equivalent norm). Moreover, if E is a Banach lattice,
then L(E), with its natural order, is also a TRS, and an ideal (solid subspace)
of the TRS L0(µ,E).

Note the following two obvious facts.
(a) For any 0 6= u ∈ E, we have L = {f ∈ L0(µ) : f · u ∈ L(E)}, and the

map f → f · u is an isomorphic embedding of L into L(E).
(b) For any A ∈ Σ with 0 6= 1A ∈ L, the map z → 1A · z is an isomorphic

embedding of E into L(E).
Moreover, if E is a Banach lattice, and 0 < u ∈ E, then the maps in (a)
and (b) are both Riesz homeomorphic embeddings.

The spaces L(E) will serve as our basic ‘testing ground’ for the theory of
TVS’s of Bochner measurable functions. Of course, additional assumptions
on L or E will be imposed whenever needed.

Note. In what follows, we often write Σ′ for Σσoc(µ), and consider Σ′

to be directed upward by inclusion. Furthermore, unless stated otherwise,
L = (L, τ) stands for a TRS of scalar µ-measurable functions, E for an F-
space, and X = (X, τ) for a TVS of E-valued µ-measurable functions.

Remark 3.3.

(a) The ‘mixtures’ L(E) may also be considered when E = (E, ‖·‖E) is an
F-space, with a slightly modified definition to ensure continuity of multipli-
cation by scalars: L(E) is defined as the set of all f ∈ L0(µ,E) such that
‖αf‖E ∈ L for some α > 0 and τ - limα→0 ‖αf‖E = 0. The topology in L(E)
is defined as before. This time, however, L(E) depends heavily on which of
the equivalent F-norms in E is used in the construction, and fact (a) above is
no longer valid.

(b) Let (S,Σ, λ) be a locally finite measure space. Assume that λ is nontriv-
ial, i.e., dimL0(λ) =∞, and that the Banach space E is infinite dimensional.
Then a natural example of a TVS of E-valued λ-measurable functions which
is not of type L(E) is provided by the space X of Pettis integrable functions
f ∈ L0(λ,E), with its usual norm ‖f‖ = sup{

∫
S
|x′f | dλ : ‖x′‖ 6 1}. For,

suppose that X = L(E) for some TRS L ⊂ L0(λ). Then, by fact (a) above,
choosing u ∈ E with ‖u‖ = 1, we have L = {f ∈ L0(λ) : f · u ∈ X} = L1(λ).
Moreover, the map f → f · u is an isomorphic embedding of L into X, and
since ‖f ·u‖ =

∫
S
|f | dλ, we conclude that L and L1(λ) are identical as TVS’s.

It follows that X is equal to L1(λ)(E) = L1(λ,E), the space of Bochner
integrable functions. However, as a consequence of the Dvoretzky–Rogers
theorem, L1(λ,E) is a proper subspace of X, and we have thus arrived at a
contradiction.

It is also worth noting that if, in addition, the measure λ is not purely
atomic, then X is not continuously included in L0(λ,E). To justify this
statement assume, as we may, that λ is finite and nonatomic, and that E is
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separable. Then X = P(λ,E) is an incomplete normed space (see [DLi, p. 8]
for more information). However, by a result of Heiliö [H, Thm. 4.4.2] (see
also [DLi, Lemma 5.3]), if X is considered with the topology γ defined as the
supremum of its normed topology and the topology induced from L0(λ,E),
then it becomes an F-space (i.e., a complete metrizable TVS). Hence the
inclusion X ⊂ L0(λ,E) cannot be continuous. Actually, it can be shown that
(X, γ) is always sequentially complete.

(c) There exist also ‘weak’ type spaces L(E), which can be defined by (see
[DFP, Example 5.2])

(wL)(E) = {f ∈ L0(µ,E) : x′f ∈ L for each x′ ∈ E′},

with the topology determined by the neighborhoods of zero

V wE =
{
f ∈ (wL)(E) : {x′f : ‖x′‖ 6 1} ⊂ V

}
,

where V runs through solid neighborhoods of zero in L.
(d) A still more general definition of Bochner measurability than the one

adopted here, in which a function f : S → E is declared measurable if its
restriction to each set in Σoc(µ) is measurable in the usual sense, is also
used quite frequently when the underlying (sub)measure space (S,Σ, µ) is
decomposable (see [F1], [F2], and [L4]). In that case the new space L0(µ,E)
can be identified with a product of L0-spaces of E-valued functions over order
continuous (sub)measure spaces (and thus, in particular, is complete).

4. Lebesgue type properties

Recall that a general TRS X, or its topology τ , is said to be Lebesgue
(resp. σ-Lebesgue) if fi → 0 (τ) for every net (resp. sequence) fi ↓ 0 in X.

We shall say that a TVS X of E-valued µ-measurable functions, or its
topology τ , is

• µ-continuous (resp. sequentially µ-continuous) if f = τ -limi 1Aif for
every f ∈ X and every net (resp. sequence) (Ai) in Σ such that Ai ↑ S.

As is easily seen, a fundamental subspace of X is µ-continuous iff it is sequen-
tially µ-continuous (see Proposition 2.3).

Proposition 4.1. Let L be a TRS of µ-measurable functions. Then L is
Lebesgue (resp. σ-Lebesgue) if and only if it is µ-continuous (resp. sequentially
µ-continuous).

Proof. The ‘only if’ part is obvious.
‘If’: Consider a net (resp. sequence) fi ↓ 0 in L. We may assume that

fi 6 f ∈ L for all i. Let V be a solid neighborhood of zero in L, and choose
ε > 0 so that εf ∈ V . For each i let Ai = {s ∈ S : fi(s) 6 εf(s)}. Then
Ai ↑ and, in fact, Ai ↑ S. For otherwise there would exist B ∈ Σ+

oc(µ) such
that for each i, Ai ⊂ S r B µ-a.e., or εf(s) < fi(s) for µ-a.e. s ∈ B. As
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f > fi, εf(s) > 0 µ-a.e. on B, and we would have a contradiction with the
assumption that fi ↓ 0. By the µ-continuity (resp. sequential µ-continuity) of
L, there is k such that 1SrAkf ∈ V . Then fk 6 1SrAkf + ε1Af ∈ V + V so
that fi ∈ V + V for all i > k. �

By a projective net in X we shall mean a net (fA : A ∈ Σ′) in X such that
fA = 1AfB whenever A,B ∈ Σ′ and A ⊂ B.

Proposition 4.2.

(a) If a projective net (fA) has a limit f in X, then fA = 1Af for every
A ∈ Σ′.

(b) Every projective net in X is bounded.
(c) If every fundamental subspace of X is sequentially µ-continuous, then

every projective net in X is Cauchy.

Proof. (a) follows from the continuity of the projections PA, while (b)
and (c) are easily justified using the fact that Σ′ is a σ-ideal. �

Proposition 4.3. Let (fn) be a sequence in X satisfying the condition

(∗) lim
A∈Σ′

1Afn = fn for n = 1, 2, . . .

(a) If, for every A ∈ Σ′, the sequence (1Afn) is Cauchy, then the sequence
(fn) is Cauchy in X.

(b) If, for some f ∈ X and every A ∈ Σ′, the sequence (1Afn) converges
to 1Af , then the sequence (fn) converges to f .

(c) If, for every A ∈ Σ′, the sequence (1Afn) is bounded, then the sequence
(fn) itself is bounded.

Proof. (a): Since Σ′ is a σ-ideal, it is easy to see that the sequences (1Afn)
are equi-Cauchy for A ∈ Σ′. That is, given a neighborhood V of zero in X,
there is n0 such that 1Afn − 1Afm ∈ V for all A ∈ Σ′ and n,m > n0. From
this, assuming as we may that V is closed and using (∗), we get fn − fm ∈ V
for all n,m > n0.

(b) and (c) can be verified by a similar argument. �

We shall say that X is
• fundamentally µ-continuous if every fundamental subspace of X is

sequentially µ-continuous;
• projectively µ-continuous if for every f ∈ X the associated projective

net (1Af) converges to f ;
• projectively complete if every Cauchy projective net in X is conver-

gent.

Proposition 4.4. The space X is µ-continuous iff it is fundamentally
and projectively µ-continuous.
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Proof. Let f ∈ X and Ai ↑ S. Let V be a Σ-solid neighborhood of zero in
X. Since X is projectively µ-continuous, there is A ∈ Σ′ such that f − 1Af ∈
V . Next, since A ∈ Σ′, we can select an increasing sequence (in) of indices
so that A ∩ Ain ↑ A. Hence, as XA is sequentially µ-continuous, there is an
index j such that 1Af − 1A∩Aif ∈ V for all i > j. Finally, if i > j, then

f − 1Aif = (f − 1Af) + (1Af − 1A∩Aif) + 1Ai(1Af − f) ∈ V + V + V,

which completes the argument. �

Corollary 4.5. If X is fundamentally µ-continuous and projectively
complete, then X is µ-continuous.

Proposition 4.6. Let X be µ-continuous. Then every closed Σ-solid
neighborhood V of zero in X is also closed for the topology induced from
L0(µ,E).

Proof. Let (fi) ⊂ V , f ∈ X, and fi → f (τµ). Let A ∈ Σ′. Since the
subspace PA

(
L0(µ,E)

)
is metrizable, there exists a sequence i1 < i2 < . . . of

indices such that 1Afin → 1Af (τµ), and we may also assume that 1Afin →
1Af µ-a.e. Then, by the Egoroff theorem and Proposition 3.1, we find Ak ↑ A,
such that, for every k, τ |XAk 6 τu|XAk and 1Akfin → 1Akf uniformly. Then
also 1Akfin → 1Akf (τ). Since V is Σ-solid, all the functions 1Akfin are in
V , and since V is also τ -closed, we see that 1Akf ∈ V for every k. Now,
as τ is µ-continuous, we have 1Akf → 1Af (τ) whence 1Af ∈ V , and next
1Af → f (τ), and we conclude that f ∈ V . �

Corollary 4.7. Let X = (X, τ) be µ-continuous. If a net (fi) in X is
Cauchy, f ∈ X and fi → f (τµ), then also fi → f (τ).

5. Levi type properties

Recall that a general TRS X = (X, τ), or its topology, is said to be Levi
(resp. σ-Levi) if every increasing τ -bounded net (resp. sequence) in X has a
supremum in X.

We now reformulate these Levi properties in a purely topological form that
is adequate for spaces of vector-valued functions. We shall say that a TVS X
of E-valued µ-measurable functions, or its topology τ , is

• boundedly closed (resp. boundedly sequentially closed) in L0(µ,E) if,
for every bounded subset of X, its closure (resp. sequential closure)
in L0(µ,E) is a subset of X.

Note that a fundamental subspace of X is boundedly closed iff it is boundedly
sequentially closed.

The same proof as for Proposition 3.6 in [DL2] gives the following.

Proposition 5.1. Let L be a TRS of µ-measurable functions.
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(a) If L is σ-Levi, then every fundamental band of L is boundedly closed
in L0(µ).

(b) If L ⊂ L0(µ) continuously and L is boundedly sequentially closed in
L0(µ), then L is σ-Levi.

(c) If L is Levi, then L is boundedly closed in L0(µ).
(d) If µ is of type (C), X ⊂ L0(µ) continuously, and L is boundedly closed

in L0(µ), then L is Levi.

A series in X is said to be disjoint if its terms have pairwise disjoint sup-
ports. Clearly, such a series converges in L0(µ,E) to its pointwise sum. In
general, a series in a TVS is called bounded if the sequence of its partial sums
is bounded.

We shall say that X is
• disjointly boundedly closed in L0(µ,E) if, for each bounded disjoint

series in X, its L0(µ,E)-sum belongs to X;
• projectively closed in L0(µ,E) if, whenever a projective net in X has

a limit in L0(µ,E), the limit belongs to X;
• piecewise uniformly closed in L0(µ,E) if every A ∈ Σ+

oc(µ) contains a
B ∈ Σ+

oc(µ) such that XB is closed in (L0(µ,E), τu); that is, whenever
(fn) is a sequence in XB and fn → f uniformly, then f ∈ XB .

The qualifier ‘in L0(µ,E)’ will sometimes be omitted.
Our main purpose below is to show that X is boundedly closed iff each of its

fundamental subspaces is piecewise uniformly closed and disjointly boundedly
closed, and X itself is projectively closed (Corollary 5.7).

We shall say that X has
• the disjoint Property (O) if every bounded disjoint series in X is

(subseries) convergent in X.
Note that L0(µ,E) has always the disjoint Property (O). We omit the easy
proofs of the next two propositions.

Proposition 5.2. The following conditions are equivalent.
(a) X is boundedly closed in L0(µ,E).
(b) Every fundamental subspace of X is boundedly closed in L0(µ,E), and

X is projectively closed in L0(µ,E).

Proposition 5.3. The following conditions are equivalent.
(a) X is both sequentially µ-continuous and disjointly boundedly closed in

L0(µ,E).
(b) X has the disjoint property (O).

Proposition 5.4. If X = (X, τ) ⊂ L0(µ,E) continuously and X is piece-
wise sequentially complete, then it is piecewise uniformly closed in L0(µ,E).
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Proof. Given A ∈ Σ+
oc(µ), choose B ⊂ A with µ(B) > 0 so that τ |XB 6

τu|XB and XB is τ -sequentially complete. Let (fn) be a sequence in XB which
converges uniformly to a function f . Then (fn) is τ -Cauchy whence, by the
τ -sequential completeness, it has a τ -limit g ∈ XB . Since X ⊂ L0(µ,E)
continuously, g = f . �

Let us say that a function f ∈ L0(µ,E) is piecewise in X if every A ∈
Σ+

oc(µ) contains a B ∈ Σ+
oc(µ) such that 1Bf ∈ X.

Proposition 5.5. Let X be piecewise uniformly closed in L0(µ,E).
(a) If a function f ∈ L0(µ,E) is the τµ-limit of a sequence from X, then

f is piecewise in X.
(b) For every f ∈ X and every A ∈ Σ+

oc(µ) there exists a B ∈ Σ+
oc(µ)

contained in A and such that 1Bϕf ∈ X for all ϕ ∈ L∞(µ).

Proof. (a): Let (fn) be a sequence in X converging in L0(µ,E) to f , and
let A ∈ Σ+

oc(µ). By passing to a subsequence, we may assume that fn → f
µ-a.e.

Combining the assumption that X is piecewise uniformly closed with the
Egoroff theorem, we find B ⊂ A with µ(B) > 0 such that XB is uniformly
closed in L0(µ,E) and limn 1Bfn = 1Bf uniformly. Since each 1Bfn is in X,
so is 1Bf .

(b): Choose a B ⊂ A with B ∈ Σ+
oc(µ) so that XB is uniformly closed

in L0(µ,E) and the range of 1Bf is bounded in E. Let ϕ ∈ L∞(µ), and
pick a sequence (ϕn) of simple functions such that ϕn → ϕ uniformly. Then
all 1Bϕnf are in X, and 1Bϕnf → 1Bϕf uniformly. Consequently, 1Bϕf ∈
X. �

Remark. A TRS L ⊂ L0(µ) is always piecewise uniformly closed in L0(µ)
(and even relatively uniformly complete; see the Remark at the end of Sec-
tion 2 of [DL2]). It is so because, by definition, L is solid in L0(µ).

Proposition 5.6. The following conditions are equivalent.
(a) X is piecewise uniformly closed and every fundamental subspace of X

is disjointly boundedly closed in L0(µ,E).
(b) Every fundamental subspace of X is boundedly closed in L0(µ,E).

Proof. (a) =⇒ (b): Let A ∈ Σσoc(µ), and let (fn) be a bounded sequence in
XA converging in L0(µ,E) to some f . By passing to a subsequence, we may
assume that fn → f µ-a.e.

Next, by combining Proposition 5.5 (a) with the Egoroff theorem, and tak-
ing also Proposition 3.1 into account, we find a Σoc(µ)-partition {Ak : k ∈ N}
of A such that, for every k,

(1) τu- lim
n

1Akfn = 1Akf =: gk; (2) τ |XAk 6 τu|XAk ; (3) gk ∈ X.



300 LECH DREWNOWSKI AND IWO LABUDA

Consequently, (gk) is a disjoint sequence in XA. As XA is Σ-solid, each
1Akfn is in XA, and from (1) and (2) it follows that τ - limn 1Akfn = gk. Now,
it is easily seen that the sequence hn =

∑n
k=1 gk is bounded in X and hn → f

in L0(µ,E). Since XA is disjointly boundedly closed, we conclude that f is
in XA.

(b) =⇒ (a): It is enough to show that if B ∈ Σoc(µ) and τ |XB 6 τu|XB ,
then XB is uniformly closed in L0(µ,E). Let a sequence (fn) from XB con-
verge uniformly to a function f . Then it is τ -Cauchy and a fortiori τ -bounded.
Since, obviously, fn → f (τµ), it follows that f ∈ X. �

Remark. It is also not hard to verify that X is piecewise uniformly closed
provided that (i) every fundamental subspace of X is disjointly boundedly
closed, and (ii) whenever a function f is the limit in L0(µ,E) of a bounded
sequence from X, then f is piecewise in X.

Combining Propositions 5.2 and 5.6, we derive the following.

Corollary 5.7. The space X is boundedly closed in L0(µ,E) iff X is
piecewise uniformly closed, each of its fundamental subspaces is disjointly
boundedly closed, and X is projectively closed in L0(µ,E).

If L is a TRS of µ-measurable functions then, clearly, L is disjointly σ-Levi
iff L is disjointly boundedly closed in L0(µ). This along with the Remark made
after Proposition 5.5 yield the following consequence of the above corollary.

Corollary 5.8. If a TRS L of µ-measurable functions has the disjoint
σ-Levi property and is projectively closed in L0(µ), then it is boundedly closed
in L0(µ).

Remark. The corollary can also be obtained in a more direct way: In
the proof of Proposition 5.1 (a) (modeled on that of [DL2, Prop. 3.6]) it is,
in fact, the disjoint σ-Levi property that is used to show that fundamental
bands of L are boundedly closed in L0(µ). To finish, proceed as in the proof
of Proposition 5.1 (c) (loc. cit.), or apply Proposition 5.2.

Recall that a general TRS X is said to have the (σ-)monotone complete-
ness property, (σ-)MCP, if every increasing positive Cauchy net (sequence)
in X converges (see [AB, Def. 7.4]). If X is metrizable, then the σ-MCP is
equivalent to the completeness of X (see [AB, Thm. 16.1]).

Proposition 5.9. Let a TRS L of µ-measurable functions be Lebesgue
and have the σ-MCP. Then L is σ-Levi iff every fundamental band of L is
σ-Levi.

Proof. ‘If’: Let (fn) be a bounded increasing positive sequence in L. For
each A ∈ Σ′, as LA is both σ-Lebesgue and σ-Levi, the sequence (1Afn)
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converges in LA ⊂ L. Hence, by Proposition 4.3 (a), the sequence (fn) is
Cauchy. By the σ-MCP, it converges in L. �

6. Completeness

It is well known that if µ is countably o.c.-decomposable, then L0(µ) and,
more generally, by the same argument, L0(µ,E) is metrizable and complete,
i.e., is an F-space. It is, however, not clear that if we merely know L0(µ)
to be sequentially complete or complete, then so must be L0(µ,E). In this
respect there is a sharp distinction between these two kinds of completeness.
We assume that the F-space E = (E, ‖·‖) is nonzero.

Theorem 6.1. The space L0(µ,E) is sequentially complete iff µ is of type
(SC).

Proof. The ‘only if’ direction is obvious.
‘If’: Let (fn) be a Cauchy sequence in L0(µ,E). Then there is a closed

separable subspace F of E such that each fn is µ-a.e. F -valued. Clearly, we
expect our sequence to have a limit in the space L0(µ, F ). Now, as every
separable metric space is isometric with a subset of G = C[0, 1], we may
assume that F ⊂ G. Since the set of µ-measurable F -valued functions is easily
seen to be sequentially closed in L0(µ,G), it suffices to show that L0(µ,G)
is sequentially complete. Let (bk) be a Schauder basis of G and (b∗k) the
associated coefficient functionals.

For every k, the sequence (b∗kfn)∞n=1 in L0(µ) is Cauchy and, by assumption,
has a limit ϕk ∈ L0(µ).

If A ∈ Σoc(µ), then L0(A,µ,G) is complete. Hence there exists a function
fA in L0(µ,G) such that 1Afn → fA (τµ). Choose nj ↑ ∞ so that fnj → fA
µ-a.e. on A. Then, for each k, we have on the one hand limj b

∗
kfnj = b∗kfA

µ-a.e. on A, while on the other hand limj b
∗
kfnj = ϕk in submeasure µ on A.

Therefore, b∗kfA = ϕk µ-a.e. on A. In consequence, fA =
∑
k ϕk bk µ-a.e. on

A. Now, since the series
∑
k ϕk bk converges µ-a.e. on every set A ∈ Σoc(µ), it

has to converge µ-a.e. on S to a function f ∈ L0(µ,G). By what we have seen
above, fA = 1Af µ-a.e. for every A ∈ Σoc(µ). Thus fn → f in L0(µ,G). �

Theorem 6.2.

(a) If E is nonseparable, then L0(µ,E) is complete iff µ is countably o.c.-
decomposable.

(b) If E is separable, then L0(µ,E) is complete iff µ is of type (C).

Proof. (a): The ‘if’ part is obvious.
‘Only if’: Suppose Σ+

oc(µ) contains an uncountable disjoint subfamily {Ai :
i ∈ I}. Since E is nonseparable, for some ε > 0 there exists an uncountable
family {xj : j ∈ J} such that ‖xj − xk‖ > ε if j, k ∈ J and j 6= k. We may
assume that I = J . For every finite subset K of I, let fK =

∑
i∈K 1Aixi.
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Clearly, the net (fK) is Cauchy in L0(µ,E). If L0(µ,E) were complete, this
net would converge to some f ∈ L0(µ,E). However, since 1Aif = 1Aixi
µ-a.e., f would not be µ-almost separably valued, contradicting its Bochner
measurability.

Thus if L0(µ,E) is complete, and A is a maximal disjoint subfamily in
Σ+

oc(µ), then A is countable. Since then µ(S r
⋃
A) = 0, the submeasure µ

has to be countably o.c.-decomposable.
(b): We have to prove that if µ is of type (C) and E is separable, then

L0(µ,E) is complete. Let {xi : i ∈ N} be a countable dense subset of E. For
i, n ∈ N, let Kn(xi) denote the open ball centered at xi and having radius
1/n.

Let (fα) be a Cauchy net in L0(µ,E). For every A ∈ Σ+
oc(µ), the net (1Afα)

has a limit fA in L0(µ,E). We must show that there exists g ∈ L0(µ,E) such
that 1Ag = fA for every A ∈ Σ+

oc(µ).
Fix i, n ∈ N. For every A ∈ Σ+

oc(µ), let

An,i := A ∩ f−1
A

(
Kn(xi)

)
.

Since µ is of type (C), the (increasing) net
(
An,i : A ∈ Σ+

oc(µ)
)

has a supre-
mum Sn,i in Σ (see Theorem 2.2 (c)). Set

Rn,1 = Sn,1 and Rn,i = Sn,i r (Sn,1 ∪ · · · ∪ Sn,i−1) for i > 1,

and define a function gn : S → E by

gn =
∞∑
i=1

1Rn,ixi (pointwise sum).

Also, for every A ∈ Σ+
oc(µ), let

A′n,1 = An,1 and A′n,i = An,i r (An,1 ∪ · · · ∪An,i−1) for i > 1,

Note that A′n,i and A ∩Rn,i are µ-equal for all A ∈ Σ+
oc(µ) and i, n ∈ N.

Let m < n and A ∈ Σ+
oc(µ). Let i, j ∈ N and suppose the set A∩Rm,i∩Rn,j

is of positive µ submeasure. Since this set is µ-equal to A′m,i ∩ A′n,j , taking
any point t in the latter set, we have

‖gm(s)− gn(s)‖ = ‖xi − xj‖ 6 ‖xi − fA(t)‖+ ‖fA(t)− xj‖ 6
1
m

+
1
n

for s ∈ A ∩Rm,i ∩Rn,j .

Hence

‖gm(s)− gn(s)‖ 6 1
m

+
1
n

for µ-a.e. s ∈ A.

Consequently, as µ is locally o.c., the above estimate holds µ-a.e. on S.
Thus the sequence (gn) satisfies the Cauchy condition for µ-a.e. uniform

convergence on S and hence converges in this sense to a Bochner measurable
function g. It is not hard to see that g is as required. �
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Remark. In both parts of Theorem 6.2, the condition ‘L0(µ,E) is quasi-
complete’ could be included as a third condition that is equivalent to each of
the other two conditions.

Proposition 6.3. Let X be µ-continuous and projectively complete. If
each fundamental subspace of X is complete, or quasi-complete, or sequentially
complete, then so is, respectively, X.

Proof. Consider, for instance, the case of quasi-completeness. Let (fi) be
a bounded Cauchy net in X. Let A ∈ Σσoc(µ). Since XA is quasi-complete,
there is fA ∈ XA such that 1Afi → fA (τ). Clearly, the net (fA) is projective
and, by Proposition 4.2, it is Cauchy in X. Since X is projectively complete,
it converges to some f ∈ X.

We now show that fi → f (τ). Let V be a Σ-solid balanced neighborhood
of zero in X. Choose an index k so that fi − fk ∈ V for i > k. Next, as X
is µ-continuous, there is a set A ∈ Σ′ such that 1SrAfk ∈ V and 1SrAf ∈ V .
Since 1Afi → 1Af (τ), there is j > k such that 1Af − 1Afi ∈ V for i > j.
Finally, if i > j, then

f − fi = 1SrAf + (1Af − 1Afi)− 1SrA(fi − fk)− 1SrAfk ∈ V + V + V + V,

which concludes the proof. �

Proposition 6.4. Let X be µ-continuous, and assume that L0(µ,E) is
(sequentially) complete. If X ⊂ L0(µ,E) continuously and X is boundedly
(sequentially) closed in L0(µ,E), then X is (sequentially complete) quasi-
complete.

Proof. Let (fi) be a bounded Cauchy net (sequence) in X. It is also
Cauchy in L0(µ,E), and since the latter space is (sequentially) complete,
it τµ-converges to some f . As X is boundedly (sequentially) closed, f ∈ X.
By Corollary 4.7, we have fi → f in X. �

Questions concerning the (topological) completeness of spaces L0(µ,E), as
defined in this paper, are answered in a rather satisfactory manner by Theo-
rems 6.1 and 6.2. However, condition (SC) itself is not yet well understood.
Furthermore, as we pointed out in Remark 3.3 (d), also other notions of mea-
surability of vector valued functions could conceivably be considered. The
next theorem stresses the importance of a ‘good’ choice of L0(µ,E) in this
type of research.

Theorem 6.5. Let L = (L, τ) be a TRS of µ-measurable functions con-
tinuously included in L0(µ), and E = (E, ‖·‖E) a Banach space. Assume that
both L and L0(µ,E) are sequentially complete, or quasi-complete, or complete.
Then so is, respectively, L(E).
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Proof. As is easily seen, L(E) is continuously included in L0(µ,E).
We give a proof for the case of quasi-completeness. Let (fi) be a bounded

Cauchy net in L(E). Denote ϕi = ‖fi‖E . Then the net (ϕi) in L is bounded,
and since |ϕi(s) − ϕj(s)| 6 ‖fi(s) − fj(s)‖E , it is also Cauchy. Hence it has
a τ -limit ϕ ∈ L. As L ⊂ L0(µ) continuously, ϕi → ϕ in L0(µ).

Since L(E) ⊂ L0(µ,E) continuously, and the latter is quasi-complete, the
net (fi) is Cauchy in L0(µ,E) and so converges there to a function f . But then
ϕi = ‖fi‖E → ‖f‖E in L0(µ) and, consequently, ‖f‖E = ϕ ∈ L. Therefore,
f ∈ L(E).

Take any closed zero-neighborhood V in L. As (fi) is Cauchy in L(E),
there is k such that ‖fi − fj‖E ∈ V for all i, j > k. Fix i > k and consider
the net

(
‖fi − fj‖E : j > k

)
in V ⊂ L. It is bounded and Cauchy, and hence

has a τ -limit in L. Evidently, that limit is nothing but ‖fi − f‖E . Since V is
τ -closed, ‖fi−f‖E ∈ V , and this holds for all i > k. Thus fi → f in L(E). �

7. The topological Riesz spaces L(E)

Throughout this section L = (L, τ) is a TRS of µ-measurable functions
continuously included in L0(µ) and E = (E, ‖·‖E) is a Banach lattice. Note,
however, that Propositions 7.1–7.4 and 7.6 below are also valid when E is an
F -lattice.

Recall that a general TRS X is said to be (sequentially) intervally com-
plete if each of its order intervals is (sequentially) complete. We shall say that
X has the (σ-)MCP for intervals if every Cauchy monotone, or just increas-
ing, net (sequence) contained in an order interval in X is convergent. It is
known (see [V] and [L3, Prop. 6.2]) that a metrizable Riesz space is intervally
complete iff it has the σ-MCP for intervals. Also note that the (σ-)MCP
for intervals implies the pseudo (σ-)Lebesgue property (see [AB, Def. 17.1]):
xi → x whenever the net (sequence) (xi) is Cauchy and 0 6 xi ↑ x. The last
two properties obviously coincide for a (σ-)Dedekind complete TRS.

Proposition 7.1. L0(µ,E) has the σ-MCP.

Proof. Let an increasing and positive sequence (fn) in L0(µ,E) be Cauchy.
Then it is τµ-convergent, and hence also µ-a.e. convergent, on each set from
Σoc(µ). As is well known, the set C of all points s ∈ S, where the sequence(
fn(s)

)
is convergent, is in Σ. In fact,

C =
⋂
r

⋃
k

⋂
n>k

{s ∈ S : ‖fn(s)− fk(s)‖ 6 r−1}.

From what was said above it follows that S rC is a µ-null set. Hence the
sequence (fn) is µ-a.e. convergent, and a fortiori τµ-convergent, to a function
f ∈ L0(µ,E). �
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The σ-MCP seems to be the only property of completeness that L0(µ,E)
has without any additional assumption on (S,Σ, µ). Other types of complete-
ness may or may not hold and, as we show below, fall into three categories.

Proposition 7.2. The following statements are equivalent.
(a) L0(µ,E) is sequentially complete.
(b) L0(µ,E) is sequentially intervally complete.
(c) (S,Σ, µ) is of type (SC).

Proof. In view of Theorem 6.1, and since (a) implies (b) is trivial, we only
have to verify that (b) implies (c). Evidently, (b) implies that L0(µ) is also
sequentially intervally complete.

Now, to prove that L0(µ) is actually sequentially complete, it suffices to
show that every positive Cauchy sequence (fn) in L0(µ) is convergent. In view
of Proposition 7.1, this is a consequence of [AB, Sec. 7, Exerc. 9]. For the
reader’s convenience, we provide a direct argument. For each k ∈ N consider
the sequence fn ∧ k = fn ∧ k1S (n = 1, 2, . . . ). It is Cauchy and contained in
the order interval [0, k1S ], and hence (τµ-)convergent to some gk ∈ [0, k1S ].
Note that if k < m, then gk = gm ∧ k 6 gm.

We verify that the sequence (gk) is Cauchy. Fix A ∈ Σoc(µ) and ε > 0.
Since the sequence (fn) is Cauchy, and hence bounded, there is N > 0 such
that

αn = µ({s ∈ A : fn(s) > N}) < ε/4.
Let m > k > N and choose n so that

βj = µ({s ∈ A : |gj − fn ∧ j|(s) > ε/4}) < ε/4 for j = k,m.

Since gm−gk = (gm−fn∧m)+(fn∧m−fn)+(fn−fn∧k)+(fn∧k−gk),
from the above it follows easily that µ({s ∈ A : |gm − gk|(s) > ε}) 6 βm +
αn + αn + βk < ε. Thus (gk) is Cauchy.

By Proposition 7.1, the sequence (gk) converges to some f ∈ L0(µ). Note
that f − fn = (f − gk) + (gk − fn ∧ k) + (fn ∧ k− fn) for any n and k. Using
this representation and a similar reasoning as above, it is not hard to see that
fn → f(τµ). �

Proposition 7.3. Suppose E has a nonseparable order interval. Then
the following statements are equivalent.

(a) L0(µ,E) is complete.
(b) L0(µ,E) has the MCP for intervals,
(c) (S,Σ, µ) is countably o.c.-decomposable.

Consequently, in this case quasi-completeness, MCP, and interval complete-
ness are all equivalent to completeness.

Proof. Only the implication (b) =⇒ (c) needs a proof. Let u ∈ E+ be such
that the interval [0, u] is nonseparable. We proceed as in the first part of the
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proof of Theorem 6.2 (a) choosing the xi’s in [0, u]. Note that the net (fK) is
increasing, Cauchy, and contained in the interval [0, 1Su]. By (b), it converges,
and we conclude as in 6.2 that µ has to be countably o.c.-decomposable. �

Proposition 7.4. Suppose E has separable order intervals. Then the
following statements are equivalent.

(a) The closure of every ideal in L0(µ,E) generated by a singleton is
complete.

(b) L0(µ,E) is intervally complete.
(c) L0(µ,E) has the MCP for intervals.
(d) (S,Σ, µ) is of type (C).

Proof. The implications (a) =⇒ (b) =⇒ (c) are obvious.
(c) =⇒ (d): If (c) holds, then L0(µ) also has the MCP for intervals, and

in particular for the interval [0, 1S ]. From this it follows that µ is of type (C)
(cf. Theorem 2.2).

(d) =⇒ (a): For z ∈ E, denote by Ez the ideal in E generated by z.
Since the interval [−|z|, |z|] is separable, so is Ez, and also its closure Ez. By
Theorem 6.2 (b), the space L0(µ,Ez) is complete. Now, take any g ∈ L0(µ,E),
and consider the closure Ig of the ideal Ig ⊂ L0(µ,E) generated by g. We
may assume that the range of g is separable. Let (zn) be a sequence dense
in g(S). As is well known, one can find a z ∈ E such that (zn) ⊂ Ez. (For
example, z =

∑
n αn|zn|, where αn > 0 and

∑
n ‖αnzn‖ < ∞, will work.)

Then, obviously, g(S) ⊂ Ez. Hence g is in L0(µ,Ez), and since the latter is
an ideal in L0(µ,E), it follows that Ig ⊂ L0(µ,Ez). But we already know
that L0(µ,Ez) is complete. Hence so must be Ig. �

Remark. There are here two possibilities. If E is nonseparable and µ
is of type (C) but not countably o.c.-decomposable then, in view of Theo-
rem 6.2 (a) and Proposition 7.4, the interval completeness of L0(µ,E) is all
we can expect. If E happens to be separable, then L0(µ,E) is actually com-
plete by Theorem 6.2 (b).

Proposition 7.5. Suppose L has the σ-MCP (resp. the σ-MCP for inter-
vals). Then the TRS L(E) has the σ-MCP (resp. the σ-MCP for intervals).

Proof. The proof is, with obvious changes, the same as that of Theorem 6.5
above, noting that the σ-MCP of L0(µ,E) is automatic by Proposition 7.1. �

Also, by the same type of reasoning, we have:

Proposition 7.6.

(a) Suppose L0(µ,E) is sequentially complete. If L is sequentially in-
tervally complete or sequentially complete, then these properties are
inherited by the space L(E).
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(b) Suppose L0(µ,E) is intervally complete. If L is intervally complete
or has the MCP for intervals, then these properties are inherited by
the space L(E).

(c) Suppose L0(µ,E) is complete. If L is complete or has the MCP, then
these properties are inherited by the space L(E).

Proposition 7.7. The TRS L(E) is σ-Lebesgue and σ-Dedekind com-
plete iff both L and E are σ-Lebesgue, and E is σ-Dedekind complete.

Proof. The ‘only if’ part is obvious.
‘If’: Let 0 6 fn ↑6 g in L(E). We have to show that there is f ∈ L(E)

such that fn → f . Obviously, 0 6 fn(s) ↑6 g(s) a.e. in S. Hence, as E is
σ-Dedekind complete and σ-Lebesgue, there is a function f : S → E such that
fn(s) ↑ f(s) a.e. in S and ‖f(s)− fn(s)‖E → 0 a.e. Hence f ∈ L0(µ,E), and
as 0 6 f 6 g ∈ L(E), we conclude that f ∈ L(E). Moreover, ‖f − fn‖E ↓ 0
in L so that, by the σ-Lebesgue property of L, ‖f − fn‖E → 0 (τ). That is,
fn → f in L(E). �

Proposition 7.8. The TRS L(E) is Lebesgue if and only if both L and
E are Lebesgue.

Proof. The ‘only if’ part is obvious.
‘If’: Let 0 6 fi ↑ f in L(E). Since E, being Lebesgue, is also Dedekind

complete, it follows from Proposition 7.7 that every (increasing) subsequence
of the net (fi) converges in L(E). Hence the net (fi) is Cauchy. We want
to show that fi → f in L(E). Take any τ -neighborhood V of zero in L.
By Proposition 4.1, there is A ∈ Σoc(µ) such that 1SrAf ∈ VE , and hence
also 1SrA(f − fi) ∈ VE for all i. Now, the net (1Afi) in the TRS LA(E) is
Cauchy and contained in the order interval [0, 1Af ]. Since LA is Lebesgue
and Dedekind complete, it trivially has the MCP for intervals. Hence LA(E)
also has this property, by Proposition 7.6 (b). [Alternatively, since LA is
Lebesgue (hence Fatou) and Dedekind complete, it is intervally complete (see
[AB, Thms. 11.6 and 13.1]). Then LA(E) is also intervally complete, by
Proposition 7.6 (b).] Therefore, the net (1Afi) converges, and it should be
clear that its limit in LA(E) is 1Af . Hence there is i0 such that for i > i0 we
have 1A(f − fi) ∈ VE and, consequently, f − fi ∈ VE + VE . �

Proposition 7.9. Let L = (L, τ) be pseudo σ-Lebesgue and E σ-Dedekind
complete. Then L(E) contains a lattice copy of `∞ iff either L or E does.

Proof. Suppose that neither L nor E contains a lattice copy of `∞. Then
E is σ-Lebesgue by Theorem 1.0 (ii). It follows that L is also σ-Lebesgue.
Indeed, let 0 6 fn ↑ f in L. By Theorem 1.2, (fn) is a Cauchy sequence
and so fn → f (τ) by the pseudo σ-Lebesgue property of L. In view of
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Proposition 7.7, L(E) is σ-Lebesgue and σ-Dedekind complete, and hence
cannot contain a lattice copy of `∞. �

Proposition 7.10. The TRS L(E) is σ-Lebesgue and σ-Levi iff both L
and E are.

Proof. The ‘only if’ part is clear.
‘If’: Take a bounded sequence 0 6 fn ↑ in L(E). We have to show that (fn)

converges in L(E). As the sequence (‖fn‖E) in L is increasing and bounded,
by the σ-Levi property of L it has a supremum ϕ in L. It follows that for a.e.
s ∈ S the sequence

(
fn(s)

)
is bounded in E. Therefore, by the σ-Lebesgue

σ-Levi property of E, f(s) := limn fn(s) exists in E for a.e. s. The function
f thus obtained is Bochner measurable and ϕ = ‖f‖E . Thus f ∈ L(E) and
f = supn fn. Then ‖f − fn‖E ↓ 0 in L and, therefore, ‖f − fn‖E → 0 (τ) by
the σ-Lebesgue property of L. This means that fn → f in L(E). �

Corollary 7.11. Let L have the σ-MCP. Then L(E) contains a lattice
copy of c0 iff either L or E does.

Proof. ‘Only if’: Suppose neither L nor E contains a lattice copy of c0.
Then, by Theorem 1.1, both L and E are σ-Lebesgue and σ-Levi. Hence so is
L(E), by Proposition 7.10. It follows that L(E) cannot contain a lattice copy
of c0. �

Proposition 7.12. The following are equivalent.
(a) L(E) is Lebesgue Levi.
(b) Both L and E are Lebesgue Levi and L(E) is projectively complete.

Proof. (b) =⇒ (a): We first show that L(E) is complete. As L is Lebesgue
Levi, it is complete (see [AB, Thms. 11.6 and 13.9]). Therefore, by Theo-
rem 6.5, for each A in Σ′ the (fundamental) band LA(E) of L(E) is com-
plete. Moreover, by Proposition 7.8, L(E) is Lebesgue. Therefore, by Propo-
sition 6.3, L(E) is complete.

Now, consider a bounded net 0 6 fi ↑ in L(E). As in the proof of Proposi-
tion 7.10 above, there is ϕ ∈ L such that ‖fi‖E 6 ϕ for all i. Hence, again as
above, every increasing subsequence of the net converges in L(E). It follows
that the net (fi) is Cauchy, and hence convergent, in L(E).

(a) =⇒ (b): Obvious. �

8. An Orlicz-Pettis theorem

Let R be a ring of sets. Given a finitely additive measure m : R → X ⊂
L0(µ,E), we define Σca(m) and Σexh(m) to be the classes of sets A ∈ Σ
such that the measure PA◦m : R → X is countably additive or exhaustive,
respectively.
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Proposition 8.1. Let m : R → X be a finitely additive measure.
(a) If R is a σ-ring and X is sequentially µ-continuous, then Σca(m) and

Σexh(m) are σ-ideals in Σ.
(b) If the net (PA◦m : A ∈ Σ′) converges to m pointwise on R (in par-

ticular, if X is µ-continuous), then m is countably additive (resp.
exhaustive, or bounded) if (and only if ) for each A ∈ Σ′ the measure
PA◦m is countably additive (resp. exhaustive, or bounded).

Proof. (a): Clearly, both Σca(m) and Σexh(m) are ideals. Let (An) be an
increasing sequence in Σca(m) (resp. Σexh(m)) with union A. Then for each
N ∈ R, PAn◦m(N) → PA◦m(N) in X. By the Nikodym theorem (resp. the
Brooks-Jewett theorem; see [D1]), PA◦m is countably additive (resp. exhaus-
tive). Thus A ∈ Σca(m) (resp. A ∈ Σexh(m)).

(b): This follows easily from Proposition 4.3 (b). �

Corollary 8.2. Let X be µ-continuous and projectively complete. Sup-
pose the net (mA : A ∈ Σ′) of finitely additive measures from R to X is
projective pointwise on R; that is, for each N ∈ R, (mA(N) : A ∈ Σ′) is
a projective net. Then the pointwise limit measure m : R → X of the net
(mA : A ∈ Σ′) exists and is countably additive (resp. exhaustive, or bounded)
provided the measures mA, A ∈ Σ′, have these properties.

Proof. As X is µ-continuous, the nets (mA(N) : A ∈ Σ′) are Cauchy by
Proposition 4.2 (c). Further, the limits m(N) = limA∈Σ′ mA(N) exist in X
by its projective completeness. Clearly, PA◦m = mA for each A ∈ Σ′. To
finish, apply Proposition 8.1 (b). �

The next result is a direct consequence of Proposition 4.3 (a).

Proposition 8.3. Suppose X is sequentially complete and projectively
µ-continuous. If

∑
n fn is a series in X such that for every A ∈ Σ′ the series∑

n 1Afn is subseries convergent, then
∑
n fn is subseries convergent in X.

The following result is a common generalization of [D2, Thm. 2.2] and the
theorem proved in [DL1]. However, it does not cover the Orlicz-Pettis theorem
in [DL2] which was established for σ-Lebesgue TRS’s of measurable functions
over measure spaces.

Theorem 8.4. Let (X, τ) be a µ-continuous TVS of E-valued µ-measu-
rable functions, R a σ-ring of sets, and m : R → X a finitely additive measure.

(a) If m is τµ-countably additive, then it is τ -countably additive.
(b) If m is τµ-exhaustive, then it is τ -exhaustive.

Proof of (a). The proof will be split into three cases.
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Case 1. µ is o.c., τ is weaker than the topology of uniform convergence
on S.

In this case the assertion is a particular case of Thm. 2.2 in [D2] noting that,
as is easily seen by inspecting the arguments, the assumption of metrizability
of τ = t in [D2] was unnecessary.

Case 2. µ is countably o.c.-decomposable.
Using Proposition 3.1, we can find an increasing sequence (Sk) in Σoc(µ)

such that Sk ↑ S and τ |XSk 6 τu|XSk for every k. Then, by Case 1,
Sk ∈ Σca(m) for every k. By Proposition 8.1 (a), S ∈ Σca(m); that is, m
is countably additive.

Case 3. µ is locally o.c.
From Case 2 it follows that Σ′ ⊂ Σca(m) so that each of the measures PA◦m

(A ∈ Σ′) is countably additive. As X is µ-continuous, m is the pointwise limit
in X of the net (PA◦m : A ∈ Σ′). Now apply Proposition 8.1 (b). �

Proof of (b). We consider here the same three cases as in the proof of (a).
Case 1. As τµ is metrizable, the τ -exhaustivity of m follows easily from

Case 1 in (a) using Proposition 1.1 of [DL2].
Case 2. The proof is the same as in (a) replacing Σca(m) by Σexh(m), and

appealing to the ‘exhaustive’ part of Proposition 8.1 (a).
Case 3. Again, the proof is the same as in part (a). �

Remark. Note that if part (b) is proved first, then one can deduce (a)
from (b) using Corollary 4.7.

Corollary 8.5. Let τ1 and τ2 be two Hausdorff Lebesgue topologies on a
Riesz space L, R a σ-ring of sets, and m : R → L a finitely additive measure.

(a) m is τ1-countably additive iff it is τ2-countably additive.
(b) m is τ1-exhaustive iff it is τ2-exhaustive.

In particular, subseries convergence coincides for all Hausdorff Lebesgue topo-
logies on a Riesz space.

Proof. In view of [AB, Thm. 11.10] (or [L4, Prop. 8]), both τ1 and τ2 admit
a Hausdorff Lebesgue extension to the Dedekind completion of L. Thus we
may assume that L is Dedekind complete. Furthermore, the infimum τ of τ1
and τ2 is a Hausdorff Lebesgue topology on L (see, e.g., [L4, Lemma 3.4]).
Now, by Theorem 2.5, we may embed (L, τ) continuously as a solid subspace
in L0(µ) for some submeasure µ of type (C). It now suffices to apply Theo-
rem 8.4. �

9. Property (O) and copies of c0 and `∞

We first recall a few definitions from [DL2, Sec. 1].
A series in a TVS X is perfectly bounded if the set of all its finite sums is

bounded, and convexly bounded if the convex hull of the set of all its finite
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sums is bounded. Likewise, a finitely additive measure with values in X is
convexly bounded if the convex hull of its range is bounded.

A TVS X has Property (O) if every perfectly bounded series in X is (sub-
series) convergent, and contains a copy of c0 (resp. `∞) if there exists an
isomorphism from the Banach space c0 (resp. `∞) onto a subspace of X. Ev-
idently, if X has Property (O), then X contains no copy of c0.

In all of the present (and most of the next) section, (S,Σ, λ) is a measure
space, with a locally order continuous σ-additive measure λ, and E is a Ba-
nach space. Furthermore, X is a TVS of E-valued λ-measurable functions
continuously included in L0(λ,E).

Remark. For the sake of conformity with the definitions and results of
the previous sections, we impose on the measure λ the condition of local order
continuity instead of the more familiar (though slightly stronger) condition
that λ be locally finite (or semi-finite). Recall that the latter means that each
A ∈ Σ with λ(A) > 0 contains a B ∈ Σ such that 0 < λ(B) < ∞. If one
prefers to work with locally finite measures λ, the results of the preceding
sections still hold if one replaces Σoc(λ) and Σσoc(λ) by the families of sets of
finite or σ-finite λ measure, respectively.

In [DL2], where we considered TRS’s of scalar λ-measurable functions, we
used a theorem of Orlicz on perfectly bounded series in L0(λ). Here, we will
need a vector-valued extension of this result. In the theorem below, the im-
plication (a) =⇒ (c) is implicit in Hoffmann-Jørgensen [HJ] and Kwapień [K],
and is stated and proven explicitly in [L2, Thm. 2.11]. Other implications can
also be found in [L2, loc. cit.]; the proof is the same as that of Proposition 9.5
below using [L1, Cor. B of Thm. 1].

Theorem 9.1. The following conditions are equivalent.
(a) E contains no copy of c0.
(b) L0(λ,E) contains no copy of c0.
(c) Every perfectly bounded series in L0(λ,E) is unconditionally Cauchy.

Moreover, if λ is of type (SC), the above conditions are also equivalent to
(d) L0(λ,E) has Property (O).

We now generalize Theorem 9.1 to some other spaces of measurable func-
tions.

Theorem 9.2. Assume E contains no copy of c0, X is µ-continuous, and
either

(a) X is sequentially complete and each fundamental subspace of X is
boundedly closed in L0(λ,E), or

(b) λ is of type (SC) and X is boundedly sequentially closed in L0(λ,E).
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Then X has Property (O).

Proof. (a): Let
∑
n fn be a perfectly bounded series in X. Applying The-

orem 9.1, we see that for every A ∈ Σσoc(λ) the series
∑
n 1Afn is subseries

convergent in L0(λ,E). Since XA is boundedly closed in L0(λ,E), the se-
ries

∑
n 1Afn is in fact subseries convergent in X for the topology inherited

from L0(λ,E). It is subseries convergent in the original topology of X by
Theorem 8.4. To complete the proof, apply Proposition 8.3.

(b): This follows from (a) using Proposition 6.4; alternatively, apply The-
orem 9.1 and Theorem 8.4. �

Remark. Applying 8.2 and 8.3, one can easily verify the following: Let X
be µ-continuous and sequentially or projectively complete. If each fundamental
subspace of X has Property (O), so does X.

Corollary 9.3. Let E contain no copy of c0, and let X be piecewise
uniformly closed in L0(λ,E) and projectively complete. If X has the disjoint
Property (O), then it has Property (O).

Proof. By Proposition 5.3 and Corollary 5.7, X is sequentially µ-continuous
and boundedly closed in L0(λ,E). Next, by Corollary 4.5, X is µ-continuous
which, in view of Proposition 6.3, implies that X is quasi-complete. To con-
clude, apply Theorem 9.2 (a). �

We shall say that X contains a disjointly supported copy of c0 (resp. `∞) if
there exists an isomorphic embedding J : c0 → X (resp. J : `∞ → X) which
is disjointness preserving. That is, whenever elements x, y in c0 (or `∞) have
disjoint supports, so do their images J(x), J(y) in X.

The next result corresponds to Theorem 1.3 (i.e., Theorem 5.5 in [DL2]).
It is a culmination of a long line of research including, e.g., [MO, Thm. 3], [S],
[C, Thm. 5].

Theorem 9.4. Assume E contains no copy of c0, and let X be a quasi-
complete TVS of E-valued λ-measurable functions. Also assume that

(s) every bounded disjoint series in X is convexly bounded.
Then the following conditions are equivalent.

(a) X contains no copy of c0.
(b) X contains no disjointly supported copy of c0.
(c) X has the disjoint Property (O).
(d) X has Property (O).

Proof. (c) =⇒ (d): In view of Proposition 5.4, X is piecewise uniformly
closed in L0(λ,E); apply Corollary 9.3. Since the implications (d) =⇒ (a)
and (a) =⇒ (b) are trivial, it remains to show that
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(b) =⇒ (c): If not then, as X is sequentially complete, there exists a
bounded disjoint series

∑
n fn in X with fn 9 0. By condition (s), the

series
∑
n fn is convexly bounded. Then, as in [DL2, proof of Prop. 1.3 or Re-

mark after Thm. 2.4], one arrives at a contradiction with (b) by
producing an isomorphism c0 → X the usual way out of the operator J(an) =∑
n anfn. �

Remark. Condition (s) is often satisfied automatically. It is so, e.g.,
when X is locally convex (or, more generally, locally pseudoconvex) or is a
TRS of measurable functions (cf. Lemma 2.3 in [DL2]); see also Section 10.

Proposition 9.5. The following conditions are equivalent.
(a) L0(λ,E) contains no copy of `∞.
(b) Every bounded finitely additive measure m : P(N) → L0(λ,E) is ex-

haustive.

Proof. Only (a) =⇒ (b) is nontrivial. Suppose m is not exhaustive. Then,
for a set A ∈ Σ+

oc(λ), the measure PA◦m is not exhaustive. By passing to a
subset of A, we may assume that either A is an atom of infinite λ measure, or
λ(A) < ∞. In the first case it is easy to see that E, and a fortiori L0(λ,E),
has to contain a copy of `∞, contradicting (a). In the second case it can
be assumed that λ is finite. Then, as L0(λ,E) has the bounded multiplier
property (see [P, Cor. 3], [RW]), a contradiction with (a) arises using [L1,
Cor. A of Thm. 1]. �

Remark. It is a natural conjecture (already made in [L2, 2.11′, p. 235])
that the two conditions above are equivalent to the noncontainment of `∞ in
E. Only partial results are known. For instance, if E is WCG, then L0(λ,E)
cannot contain `∞.

The following result corresponds to Theorem 1.4 (i.e., Theorem 5.8 in
[DL2]) and generalizes [L2, Thm. 2.12 A]; it can be considered as a vector-
valued Lozanovskii type theorem.

Theorem 9.6. Let L0(λ,E) contain no copy of `∞ and let X be a quasi-
complete TVS of E-valued λ-measurable functions. Also assume that

(t) for every f ∈ X and disjoint sequence of sets (An) in Σ, the measure
m : P(N) → X defined by m(N) = 1A(N)f , A(N) =

⋃
n∈N An, is

convexly bounded.
Then the following conditions are equivalent.

(a) X contains no copy of `∞.
(b) X contains no disjointly supported copy of `∞.
(c) X is sequentially µ-continuous.
(d) Every bounded finitely additive measure m : P(N)→ X is exhaustive.
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Proof. The implications (d) =⇒ (a) =⇒ (b) are obvious.
(b) =⇒ (c): Suppose X is not sequentially µ-continuous. Then there

exist f ∈ X and a disjoint sequence (An) ⊂ Σ with union S such that the
series

∑
n 1Anf is not convergent to f . Since X is sequentially complete and

continuously included in L0(λ,E), this series is not Cauchy. Clearly, we may
assume that all the functions fn = 1Anf are outside a neighborhood V of
zero in X. Now, using the sequential completeness of X and assumption (t),
we may define a continuous linear operator T : `∞ → X by T (a) =

∫
N
a dm,

a = (an) ∈ `∞. By applying the projections PAn it is easily seen that T (a) =∑
n anfn (pointwise sum). Obviously, T is disjointness preserving. Since

T (en) = fn /∈ V for every n, we get a contradiction with (b) by applying the
generalized Rosenthal `∞-theorem proved in [D3] (see [DL2, Thm. 1.2]).

(c) =⇒ (d): By Proposition 9.5, m is exhaustive in the topology induced
from L0(λ,E). Since X is quasi-complete and sequentially µ-continuous, it
is µ-continuous. By Theorem 8.4, m is exhaustive for the original topology
of X. �

Remark. A somewhat stronger form of condition (t) is the following con-
dition:

(t′) For every f ∈ X and every disjoint sequence (An) in Σ, the set of
all pointwise sums

∑
n cn1Anf , where |cn| 6 1, is contained in X and

bounded there.

For sequentially complete spaces, both forms are equivalent. Also note that,
by the closed graph theorem, if X is an F-space, then the phrase ‘and bounded
there’ can be omitted in (t′).

As in the case of (s), condition (t) is automatically satisfied in the presence
of local convexity or in TRS’s. In the latter case, it is the property of solidness
of the space and local solidness of its topology that causes (t) to be satisfied.
For a general TVS X ⊂ L0(µ,E), condition (t) can be achieved by imposing
the following property on X: For each ϕ ∈ L∞(µ), the operator Mϕ defined
by Mϕ(f) = ϕf maps X into itself, and the family Mϕ, where ‖ϕ‖∞ 6 1, is
equicontinuous. Of course, this property is much stronger than that of being
Σ-solid (cf. Proposition 5.5 (b)).

10. Property (O) and copies of c0 and `∞ in the TVS L(E)

Below E = (E, ‖·‖E) is a Banach space and L = (L, τ) is a TRS of λ-
measurable functions continuously included in L0(λ) with the measure space
(S,Σ, λ) as in Section 9.

We first gather together a few facts about spaces L(E) that are easy con-
sequences of the way they were defined and topologized.

Proposition 10.1. Let L be a TRS of µ-measurable functions.
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(a) If L is sequentially µ-continuous, or µ-continuous, or projectively µ-
continuous, so is, respectively, L(E).

(b) If L is (sequentially) boundedly closed, so is L(E).
(c) If L has the disjoint Property (O), so does L(E).
(d) L(E) is piecewise uniformly closed in L0(µ,E).
(e) L(E) satisfies conditions (s) and (t).

Theorem 10.2. Assume E contains no copy of c0, L is Lebesgue, and
either

(a) L is σ-Levi and L(E) is sequentially complete, or
(b) λ is of type (SC) and L is boundedly sequentially closed in L0(λ).

Then L(E) has Property (O).

Proof. (a): As L is Lebesgue and sequentially complete (because so is
L(E)), by Propositions 5.1 and 5.9 the conditions ‘every fundamental band in
L is boundedly closed in L0(λ)’ and ‘L is σ-Levi’ are equivalent. Now apply
Theorem 9.2 (a).

(b): This is a direct consequence of Theorem 9.2 (b). �

In view of Proposition 10.1 (c) and (d), our next result is immediate from
Corollary 9.3.

Corollary 10.3. Let E contain no copy of c0, and L(E) be projectively
complete. If L has the disjoint Property (O), then L(E) has Property (O).

Finally, note that if L(E) is quasi-complete, so is L; in particular, L has
the MCP. Combining this with Theorems 1.3 and 1.4, and taking also Propo-
sition 10.1 (e) into account, we derive the following two results from Theo-
rems 9.4 and 9.6.

Theorem 10.4. Assume that E contains no copy of c0, and let L(E) be
quasi-complete. Then the following conditions are equivalent.

(a) L(E) contains no copy of c0.
(b) L(E) contains no disjointly supported copy of c0.
(c) L has the disjoint Property (O).
(c) L is σ-Lebesgue and σ-Levi.
(c) L contains no lattice copy of c0.
(d) L(E) has Property (O).

Theorem 10.5. Assume that L0(λ,E) contains no copy of `∞, and let
L(E) be quasi-complete. Then the following conditions are equivalent.

(a) L(E) contains no copy of `∞.
(b) L(E) contains no disjointly supported copy of `∞.
(c) L is σ-Lebesgue.
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(c) L contains no lattice copy of `∞.
(d) Every bounded finitely additive measure m : P(N)→ L(E) is exhaus-

tive.

The following result is a significant generalization of a result of Emmanuele
[E] for Banach spaces L(E). It should also be stressed that the Köthe (or
Banach) function spaces L used in [E] are far more restrictive than their
‘counterparts’ here. Emmanuele’s theorem was, in turn, an extension of a
result of Mendoza [M] (see also [CM, Thm. 4.2.1]) for spaces Lp(λ,E), 1 6
p < ∞. In fact, Emmanuele’s proof was a reduction to Mendoza’s result. A
similar reduction is achieved in the proof below.

Theorem 10.6. Assume that a TRS L of µ-measurable functions is com-
plete and has a separating continuous dual L′. If L(E) contains a copy of `∞,
then either L or E contains a copy of `∞.

Proof. Let T : `∞ → L(E) be an isomorphic embedding, and m : P(N) →
L(E) the associated measure; that is, m(N) = T (1N ) for N ⊂ N. Clearly,
m is not exhaustive. Suppose L does not contain a copy of `∞. Then, by
Theorem 1.2, L is Lebesgue, or µ-continuous. Consequently, by Proposi-
tion 10.1 (a), L(E) is also µ-continuous. From this, using Proposition 8.1 (b),
it follows that there is A ∈ Σ′ such that the measure PA◦m is not exhaustive.
Next, choose a sequence (An) in Σoc(µ) so that An ↑ A. Then, applying
the Brooks-Jewett theorem (see, e.g., [D1]) to the measures PAn◦m, we find
B = Ak such that the measure PB◦m is not exhaustive. Clearly, we may
assume that the support of the band LB is equal to B.

Consider any 0 < x′ ∈ L′B . Clearly, the representing measure ϕ : A →
x′(1A) is (σ-additive and) µ-continuous (ϕ � µ) on ΣB = Σ ∩ B. By the
Lebesgue decomposition, there is C ∈ ΣB such that µ(C) > 0 and ϕ(D) > 0
iff µ(D) > 0 for all D ∈ ΣC . Note that then x′(f) > 0 for all 0 < f ∈ LC .
Now, let C be a maximal disjoint family of non-µ-null sets C in ΣB such
that there is 0 < x′C ∈ L′C with the property that x′C(f) > 0 whenever
0 < f ∈ LC . Since µ is o.c. on ΣB , C is countable, say C = {C1, C2, . . . }.
Moreover, C0 =

⋃
C equals B µ-a.e. Otherwise, the band LBrC0 would be

nonzero with a nontrivial dual space, and the construction in the first part of
this paragraph would lead to a contradiction with the maximality of C. By a
similar application of the Brooks-Jewett theorem as above, it can be shown
that for some D = Ck the measure PD◦m is not exhaustive.

Without loss of generality it can be assumed that fn = PD
(
m({n})

)
9

0. Consider the continuous linear operator PDT : `∞ → LD(E). Since
PBT (en) = fn 9 0, by [D3] there is an infinite subset M of N such that
PDT |`∞(M) is an isomorphic embedding of `∞(M) ∼= `∞ into LD(E).

As a result of the above reduction process, we may, therefore, assume that
the submeasure µ is o.c. and that there is 0 < x′ ∈ L′ such that x′(f) > 0
whenever 0 < f ∈ L. Then the measure λ on Σ defined by λ(A) = x′(1A) is
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equivalent to µ. Consequently, L0(µ,E) = L0(λ,E). Moreover, the formula
‖f‖1 = x′(|f |) =

∫
S
|f | dλ defines a continuous L1-norm on L. This means

that we have a continuous inclusion L ⊂ L1(λ). Hence we also have L(E) ⊂
L1(λ,E) continuously. Now observe that the measure m : P(N) → L1(λ,E)
is not exhaustive; otherwise, by Corollary 8.5 (b), m : P(N)→ L(E) would be
exhaustive, which is not the case. Therefore, by applying [D3] to the operator
T : `∞ → L1(λ,E), we can now produce an isomorphic embedding of `∞ into
L1(λ,E). To finish, apply a result of Mendoza [M] to conclude that E contains
an isomorphic copy of `∞. �

Remark. It would be desirable to replace ‘L0(λ,E) contains no copy of
`∞’ with ‘E contains no copy of `∞’ in Theorem 10.5. However, as was
already mentioned, whether these two conditions are equivalent is still an
open question. Nonetheless, such an improvement is possible if the dual space
L′ is separating. This should be clear by inspecting the proof of Theorem 9.6
for the case X = L(E), and changing the proof of the implication (c) =⇒ (d)
therein by an almost verbatim repetition of the proof given above. Only
after arriving at a nonexhaustive bounded measure m : P(N) → L1(λ,E) a
slight change of argument would be needed: At that point, define an operator
T : `∞ → L1(E) by T (a) =

∫
N
a dm, and next apply [D3] and [M] to get a

contradiction.
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