A CONVEXITY THEOREM FOR TORUS ACTIONS ON CONTACT MANIFOLDS

EUGENE LERMAN

Abstract

We show that the image cone of a moment map for an action of a torus on a contact compact connected manifold is a convex polyhedral cone and that the moment map has connected fibers provided the dimension of the torus is bigger than 2 and that no orbit is tangent to the contact distribution. This may be considered as a version of the Atiyah-Guillemin-Sternberg convexity theorem for torus actions on symplectic cones and as a direct generalization of the convexity theorem of Banyaga and Molino for completely integrable torus actions on contact manifolds.

1. Introduction

The goal of the paper is to prove a convexity theorem for torus actions on contact manifolds. Recall that a contact form on a manifold M of dimension $2 n+1$ is a 1 -form α such that $\alpha \wedge d \alpha^{n} \neq 0$. A (co-oriented) contact structure on a manifold M is a subbundle ξ of the tangent bundle $T M$ which is given as the kernel of a contact form. Note that if f is any nowhere vanishing function and α is a contact form, then $\operatorname{ker} \alpha=\operatorname{ker} f \alpha$. Thus a co-oriented contact structure is a conformal class of contact forms. One can show that a hyperplane subbundle ξ of $T M$ is a co-oriented contact structure if and only if its annihilator ξ° in $T^{*} M$ is a trivial line bundle and $\xi^{\circ} \backslash 0$ is a symplectic submanifold of the punctured cotangent bundle $T^{*} M \backslash 0$ (we use 0 as a shorthand for the image of the zero section). In fact, the map $\psi_{\alpha}: M \times \mathbb{R} \rightarrow \xi^{\circ}$, $(m, t) \mapsto t \alpha_{m}$, defines a trivialization, and the pull-back by ψ_{α} of the tautological 1-form on $T^{*} M$ is $t \alpha$. The symplectic manifold $(M \times(0, \infty), d(t \alpha))$ is called the symplectization of (M, α).

Recall that a symplectic cone is a symplectic manifold (N, ω) with a proper action of the real line which expands the symplectic form exponentially. For example, the action of \mathbb{R} on $M \times(0, \infty)$ given by $s \cdot(m, t)=\left(m, e^{s} t\right)$ makes

[^0]the symplectization $(M \times(0, \infty), d(t \alpha))$ of (M, α) into a symplectic cone. Conversely a symplectic cone is the symplectization of a contact manifold.

Throughout the paper α will always denote a contact form and ξ will always denote a co-oriented contact structure. We will refer either to a pair (M, α) or to a pair (M, ξ) as a contact manifold.

An action of a Lie group G on a contact manifold (M, ξ) is contact if the action preserves the contact structure. It is not hard to show that if additionally the action of G is proper (for example if G is compact) and preserves the co-orientation of ξ (for example if G is connected), then it preserves a contact form α with $\xi=\operatorname{ker} \alpha$ (see [L]).

Contact moment maps. We now recall the notion of a moment map for an action of a group on a contact manifold. An action of a Lie group G on a manifold M naturally lifts to a Hamiltonian action on the cotangent bundle $T^{*} M$. The corresponding moment map $\Phi: T^{*} M \rightarrow \mathfrak{g}^{*}$ is given by

$$
\begin{equation*}
\langle\Phi(q, p), A\rangle=\left\langle p, A_{M}(q)\right\rangle \tag{1.1}
\end{equation*}
$$

for all vectors $A \in \mathfrak{g}$, all points $q \in M$ and all covectors $p \in T_{q}^{*} M$. Here and elsewhere in the paper A_{M} denotes the vector field induced on M by $A \in \mathfrak{g}$.

If the action of the Lie group G on the manifold M preserves a contact distribution ξ, then the lifted action preserves the annihilator $\xi^{\circ} \subset T^{*} M$. Moreover, if the action of G preserves a co-orientation of ξ then it preserves the two components of $\xi^{\circ} \backslash 0$. Denote one of the components by ξ_{+}°. In this case we define the moment map Ψ for the action of G on (M, ξ) to be the restriction of Φ to ξ_{+}° :

$$
\Psi=\left.\Phi\right|_{\xi_{+}^{\circ}}
$$

An invariant contact form α on M defining the contact distribution ξ is a nowhere zero section of $\xi^{\circ} \rightarrow M$. We may assume that $\alpha(M) \subset \xi_{+}^{\circ}$. In this case we get a map $\Psi_{\alpha}: M \rightarrow \mathfrak{g}^{*}$ by composing Ψ with $\alpha: \Psi_{\alpha}=\Psi \circ \alpha$. It follows from (1.1) that

$$
\begin{equation*}
\left\langle\Psi_{\alpha}(x), A\right\rangle=\alpha_{x}\left(A_{M}(x)\right) \tag{1.2}
\end{equation*}
$$

for all $x \in M$ and all $A \in \mathfrak{g}$. Recall that the choice of a contact form on M establishes a bijection between the space of smooth functions on M and the space of contact vector fields. It is easy to check that for any $A \in \mathfrak{g}$ the contact vector field corresponding to the function $\left\langle\Psi_{\alpha}, A\right\rangle$ is A_{M}. Thus it makes sense to think of Ψ_{α} as the moment map defined by the contact form α and of Ψ as the moment map defined by the contact distribution ξ. The image $\Psi_{\alpha}(M)$ depends on the action and the contact form, while the image $\Psi\left(\xi_{+}^{\circ}\right)$ depends only on the action and the contact distribution. Clearly the two sets are related:

$$
\Psi\left(\xi_{+}^{\circ}\right)=\mathbb{R}^{+} \Psi_{\alpha}(M)
$$

Definition 1.1. Let (M, ξ) be a co-oriented contact manifold with an action of a Lie group G preserving the contact structure ξ and its co-orientation. Let ξ_{+}° denote a component of $\xi^{\circ} \backslash 0$, the annihilator of ξ minus the zero section. Let $\Psi: \xi_{+}^{\circ} \rightarrow \mathfrak{g}^{*}$ denote the corresponding moment map. The moment cone $C(\Psi)$ is the set

$$
C(\Psi):=\Psi\left(\xi_{+}^{\circ}\right) \cup\{0\} .
$$

Note that if α is an invariant contact form with $\xi=\operatorname{ker} \alpha$ and $\alpha(M) \subset \xi_{+}^{\circ}$, and if $\Psi_{\alpha}: M \rightarrow \mathfrak{g}^{*}$ is the moment map defined by α, then $C(\Psi)=\{t f \mid f \in$ $\left.\Psi_{\alpha}(M), t \in[0, \infty)\right\}$.

We can now state the main result of the paper.
Theorem 1.2. Let (M, ξ) be a co-oriented contact manifold with an effective action of a torus G preserving the contact structure and its co-orientation. Let ξ_{+}° be a component of the annihilator of ξ in $T^{*} M$ minus the zero section: $\xi^{\circ} \backslash 0=\xi_{+}^{\circ} \sqcup\left(-\xi_{+}^{\circ}\right)$. Assume that M is compact and connected and that the dimension of G is bigger than 2. If 0 is not in the image of the contact moment map $\Psi: \xi_{+}^{\circ} \rightarrow \mathfrak{g}^{*}$ then the fibers of Ψ are connected and the moment cone $C(\Psi)=\Psi\left(\xi_{+}^{\circ}\right) \cup\{0\}$ is a convex rational polyhedral cone.

REMARK 1.3. A polyhedral set in \mathfrak{g}^{*} is the intersection of finitely many closed half-spaces. A polyhedral set is rational if the annihilators of codimension one faces are spanned by vectors in the integral lattice \mathbb{Z}_{G} of \mathfrak{g}, that is, by vectors in the kernel of $\exp : \mathfrak{g} \rightarrow G$. The whole space \mathfrak{g}^{*} is trivially a rational polyhedral cone. Note that a rational polyhedral cone C in \mathfrak{g}^{*} is of the form

$$
C=\bigcap_{i}\left\{v_{i} \geq 0\right\}
$$

for some finite collection of vectors v_{1}, \ldots, v_{r} in the integral lattice \mathbb{Z}_{G}.
Remark 1.4. For actions of tori of dimension less than or equal than 2 , the fibers of the corresponding moment maps need not be connected. For actions of two-dimensional tori the moment cone need not be convex. In fact, it is easy to construct an example of an effective 2-torus action on an overtwisted 3 -sphere so that the image cone is not convex. It is also easy to construct examples of moment maps for actions of 2-tori and circles with non-connected fibers (the convexity result for circles is trivial). See [L].

Theorem 1.2 extends known convexity results for Hamiltonian torus actions on symplectic manifolds. Such results have a long history. Atiyah [A] and, independently, Guillemin and Sternberg [GS] proved that for Hamiltonian torus actions on compact symplectic manifolds the image of the moment map is a rational polytope and that the fibers of the moment map are connected. The assumption of compactness of the manifold has been subsequently weakened
by de Moraes and Tomei [MT], by Prato [P], by Hilgert, Neeb, and Plank [HNP] using the methods of [CDM], and by Lerman, Meinrenken, Tolman and Woodward [LMTW] to the point where it is enough to assume that the moment map is proper as a map from a symplectic manifold M to a convex open subset U of the dual of the Lie algebra \mathfrak{g}^{*}. The conclusion is that the fibers of the moment map are connected and that the intersection of the image of the moment map with U is a convex locally polyhedral set. Note that the hypotheses of Theorem 1.2 only guarantee that the moment map $\Psi: \xi_{+}^{\circ} \rightarrow \mathfrak{g}^{*}$ is proper as a map into $\mathfrak{g}^{*} \backslash\{0\}$, which is certainly not convex.

Theorem 1.2 is a direct generalization of a convexity theorem of Banyaga and Molino [BM2]:

Theorem 1.5 (Banyaga-Molino). Let (M, ξ) be a co-oriented contact manifold with an effective contact action of a torus G preserving the coorientation. Assume that M is compact and connected, that the dimension of G is bigger than 2 and that $\operatorname{dim} M+1=2 \operatorname{dim} G$. Then the moment cone $C(\Psi)$ is a convex rational polyhedral cone.

REmark 1.6. It is easy to show the hypotheses of the Banyaga-Molino theorem guarantee that the image of the moment map does not contain the origin:

Lemma 1.7. Let (M, ξ) be a co-oriented contact manifold with an effective action of a torus G preserving the contact structure and its co-orientation. Let α be an invariant contact form with $\operatorname{ker} \alpha=\xi$ and let $\Psi_{\alpha}: M \rightarrow \mathfrak{g}^{*}$ be the corresponding moment map. If $\operatorname{dim} M+1=2 \operatorname{dim} G$ then $\Psi_{\alpha}(x) \neq 0$ for any $x \in M$.

Proof. Suppose not. Then for some point $x \in M$ the orbit $G \cdot x$ is tangent to the contact distribution. Therefore the tangent space $\zeta_{x}:=T_{x}(G \cdot x)$ is isotropic in the symplectic vector space $\left(\xi_{x}, \omega_{x}\right)$ where $\omega_{x}=\left.d \alpha_{x}\right|_{\xi}$.

We now argue that this forces the action of G not to be effective. More precisely we argue that the slice representation of the connected component of identity H of the isotropy group of the point x is not effective. The group H acts on ξ_{x} preserving the symplectic form ω_{x} and preserving $\zeta_{x}=T_{x}(G \cdot x)$. Since ζ_{x} is isotropic, $\xi_{x}=\left(\zeta_{x}^{\omega} / \zeta_{x}\right) \oplus\left(\zeta_{x} \times \zeta_{x}^{*}\right)$ as a symplectic representation of H. Here ζ_{x}^{ω} denotes the symplectic perpendicular to ζ_{x} in $\left(\xi_{x}, \omega_{x}\right)$. Note that since G is a torus, the action of H on ζ_{x} is trivial. Hence it is trivial on ζ_{x}^{*}.

Observe next that the dimension of the symplectic vector space $V=: \zeta_{x}^{\omega} / \zeta_{x}$ is $\operatorname{dim} \xi_{x}-2 \operatorname{dim} \zeta_{x}=\operatorname{dim} M-1-2(\operatorname{dim} G-\operatorname{dim} H)=(\operatorname{dim} M-1)-(\operatorname{dim} M+$ 1) $+2 \operatorname{dim} H=2 \operatorname{dim} H-2$. On the other hand, since H is a compact connected Abelian group acting symplecticly on V, its image in the group of symplectic linear transformations $\mathrm{Sp}(V)$ lies in a maximal torus T of a maximal compact
subgroup of $\operatorname{Sp}(V)$. The dimension of T is $\operatorname{dim} V / 2=\operatorname{dim} H-1$. Therefore the representation of H on V is not faithful. Since the fiber at x of the normal bundle of $G \cdot x$ in M is $\left(T_{x} M / \xi_{x}\right) \oplus\left(\xi_{x} / \zeta_{x}\right) \simeq \mathbb{R} \oplus\left(V \oplus \zeta_{x}^{*}\right)$, the slice representation of H is not faithful. Consequently the action of G in not effective in a neighborhood of an orbit $G \cdot x$. This is a contradiction.

Remark 1.8. The paper [BM2] is not published. It is a revision of [BM1], which is not widely available, but has an extensive review in Math. Reviews (MR 94c53029). Theorem 1.5 is cited without proof in [B]. Providing an independent and easily accessible proof of Theorem 1.5 is one of the motivations for this paper.

Remark 1.9. I do not know if the condition that no orbit is tangent to the contact distribution is necessary for Theorem 1.2 to hold.

A note on notation. Throughout the paper the Lie algebra of a Lie group denoted by a capital Roman letter will be denoted by the same small letter in the fraktur font: thus \mathfrak{g} denotes the Lie algebra of a Lie group G, etc. The vector space dual to \mathfrak{g} is denoted by \mathfrak{g}^{*}. The identity element of a Lie group is denoted by 1 . The natural pairing between \mathfrak{g} and \mathfrak{g}^{*} will be denoted by $\langle\cdot, \cdot\rangle$.

When a Lie group G acts on a manifold M we denote the action by an element $g \in G$ on a point $x \in G$ by $g \cdot x ; G \cdot x$ denotes the G-orbit of x, and so on. The vector field induced on M by an element X of the Lie algebra \mathfrak{g} of G is denoted by X_{M}. The isotropy group of a point $x \in M$ is denoted by G_{x}; the Lie algebra of G_{x} is denoted by \mathfrak{g}_{x} and is referred to as the isotropy Lie algebra of x. We recall that $\mathfrak{g}_{x}=\left\{X \in \mathfrak{g} \mid X_{M}(x)=0\right\}$.

If P is a principal G-bundle then $[p, m]$ denotes the point in the associated bundle $P \times{ }_{G} M=(P \times M) / G$ which is the orbit of $(p, m) \in P \times M$.

Acknowledgments. I thank Stephanie Alexander for commenting on a draft of this manuscript and Yuri Burago for providing an advanced copy of parts of $[\mathrm{BBI}]$.

2. Torus actions on contact manifolds

We now proceed with a proof of Theorem 1.2. The methods we use is a mixture of the ideas from [CDM] and [LMTW].

Recall that M denotes a compact connected manifold with an effective action of a torus $G(\operatorname{dim} G>2)$ preserving a co-oriented contact distribution ξ. Choose a G-invariant contact form α with $\operatorname{ker} \alpha=\xi$. Let $\Psi_{\alpha}: M \rightarrow \mathfrak{g}^{*}$ be the corresponding moment map; it is defined by equation (1.2). Recall also that we assume that $0 \notin \Psi_{\alpha}(M)$. Note that this condition amounts to saying that no orbit of G is tangent to the contact distribution ξ; thus it is a condition on a contact distribution and not on a particular choice of a contact form representing the distribution.

Next fix an inner product on the dual of the Lie algebra \mathfrak{g}^{*}. Since $\Psi_{\alpha}(x) \neq 0$ for all x we can define a new contact form α^{\prime} by

$$
\alpha_{x}^{\prime}:=\frac{1}{\left\|\Psi_{\alpha}(x)\right\|} \alpha_{x}
$$

Then the corresponding moment map $\Psi_{\alpha^{\prime}}$ satisfies $\left\|\Psi_{\alpha^{\prime}}(x)\right\|=1$ for all $x \in M$. We assume from now on that we have chosen an invariant contact form α in such a way that the corresponding moment map Ψ_{α} sends M to the unit sphere $S:=\left\{f \in \mathfrak{g}^{*} \mid\|f\|=1\right\}$.

Lemma 2.1. Let (M, ξ) be a co-oriented contact manifold with an effective contact action of a torus G. Assume that no orbit of G is tangent to the contact distribution. Let α be a G-invariant contact form defining ξ normalized so that the image of M under the corresponding moment map Ψ_{α} lies in the unit sphere S in \mathfrak{g}^{*}. Let $H \subset \mathfrak{g}^{*}$ be an open half-space, i.e., suppose that for some $0 \neq v \in \mathfrak{g}$ we have $H=\left\{f \in \mathfrak{g}^{*} \mid\langle f, v\rangle>0\right\}$.

For any connected component N of $\Psi_{\alpha}^{-1}(H)$, the fibers of $\left.\Psi_{\alpha}\right|_{N}$ are connected.

Lemma 2.2. Let M, ξ, G, α and Ψ_{α} be as in Lemma 2.1 above. Let H be an open half-space and N a component of $\Psi_{\alpha}^{-1}(H)$. Then $\Psi_{\alpha}(N)$ is a convex rational polyhedral subset of $H \cap S \subset \mathfrak{g}^{*}$ with open interior.

Remark 2.3. A subset W of the unit sphere $S=\left\{f \in \mathfrak{g}^{*} \mid\|f\|=1\right\}$ is convex iff there is a convex cone $C \subset \mathfrak{g}^{*}$ (with the vertex at the origin) so that $W=S \cap C$. Equivalently, W is convex if for any two points $x, y \in W$ there is a geodesic of length $\leq \pi$ connecting x to y and lying entirely in W.

A subset W of S (respectively of $H \cap S$) is rational polyhedral if there exist vectors $v_{1}, \ldots v_{k}$ in the integral lattice $\mathbb{Z}_{G}=\operatorname{ker}\{\exp : \mathfrak{g} \rightarrow G\}$ such that

$$
W=\left\{f \in S \mid\left\langle f, v_{i}\right\rangle \geq 0, \quad 1 \leq i \leq k\right\}
$$

(respectively $W=\left\{f \in S \cap H \mid\left\langle f, v_{i}\right\rangle \geq 0, \quad 1 \leq i \leq k\right\}$).
Proof of Lemmas 2.1 and 2.2. Consider the symplectization $\left(M \times \mathbb{R}, d\left(e^{t} \alpha\right)\right)$ of (M, α). As usual t denotes the coordinate on \mathbb{R}. The contact action of G on M extends trivially to a Hamiltonian action on the symplectization. The corresponding moment map $\Phi: M \times \mathbb{R} \rightarrow \mathfrak{g}^{*}$ is given by

$$
\Phi(x, t)=e^{t} \Psi_{\alpha}(x)
$$

The symplectic manifold $\left(N \times \mathbb{R},\left.d\left(e^{t} \alpha\right)\right|_{N \times \mathbb{R}}\right)$ is a symplectization of $\left(N,\left.\alpha\right|_{N}\right)$. The manifold $N \times \mathbb{R}$ is a connected symplectic manifold with a Hamiltonian action of G, the map $\Phi_{N}:=\left.\Phi\right|_{N \times \mathbb{R}}$ is a corresponding moment map for the action of G. Moreover, it has the following two properties:
(1) $\Phi_{N}(N \times \mathbb{R})$ is contained in the convex open subset H of \mathfrak{g}^{*};
(2) $\Phi_{N}: N \times \mathbb{R} \rightarrow H$ is proper.

Therefore Theorem 4.3 of [LMTW] applies. We conclude that the fibers of Φ_{N} are connected and that the image $\Phi_{N}(N \times \mathbb{R})$ is convex.

Next, since the action of the torus G on M is effective, it is free on a dense open subset of M. This is a consequence of the principal orbit type theorem and the fact that G is abelian. Consequently the action of G on $N \times \mathbb{R}$ is free on a dense open subset. Hence the image $\Phi_{N}(N \times \mathbb{R})$ has non-empty interior. Also, since M is compact and G is abelian, the number of subgroups of G that occur as isotropy groups of points of M is finite. Therefore not only does [LMTW, Theorem 4.3] imply that $\Phi_{N}(N \times \mathbb{R})$ is the intersection a locally polyhedral subset of \mathfrak{g}^{*} with the open half-space H, but that in fact $\Phi_{N}(N \times \mathbb{R})=\Phi(N \times \mathbb{R})$ is a polyhedral cone.

Lemma 2.4. Let M, G, α and Ψ_{α} be as in Lemma 2.1 above. Define an equivalence relation \sim on M by declaring the equivalence classes to be the connected components of the fibers of the moment map Ψ_{α}. Let $\bar{M}=M / \sim$.

Then \bar{M} is a compact path connected space and the moment map $\Psi_{\alpha}: M \rightarrow$ \mathfrak{g}^{*} descends to a continuous map $\bar{\Psi}: \bar{M} \rightarrow S$, where as before S is the unit sphere in \mathfrak{g}^{*} centered at 0 .

Moreover, \bar{M} is a length space and $\bar{\Psi}: \bar{M} \rightarrow S$ is locally an isometric embedding. More precisely, for any open half-space H and any connected component N of $\bar{\Psi}^{-1}(H)$ the map $\left.\bar{\Psi}\right|_{N}: N \rightarrow S$ is an isometric embedding.

Our proof of Lemma 2.4 uses length spaces, the notion that is due to Gromov [G1, G2]. We therefore briefly summarize the relevant facts. The treatment follows D. Burago, Yu. Burago and S. Ivanov [BBI].
2.1. Digression: length structures and length spaces. Let X be a topological space. Consider a class \mathcal{A} of continuous paths in X which is closed under restrictions, concatenations and reparameterizations. Suppose that there is a map $L: \mathcal{A} \rightarrow[0, \infty]$ (the "length") satisfying the following conditions for any curve $\gamma:[a, b] \rightarrow X$ in \mathcal{A} :
(a) $L(\gamma)=L\left(\left.\gamma\right|_{[a, c]}\right)+L\left(\left.\gamma\right|_{[c, b]}\right)$ for any $c \in(a, b)$.
(b) The function $L_{t}:=L\left(\left.\gamma\right|_{[a, t]}\right)$ is a continuous function of $t \in[a, b]$.
(c) If $\varphi:[c, d] \rightarrow[a, b]$ is monotone and continuous, then $L(\gamma)=L(\gamma \circ \varphi)$.
(d) If a sequence of curves $\gamma_{i} \in \mathcal{A}$ converges to γ uniformly, then $L(\gamma) \leq$ $\lim \inf L\left(\gamma_{i}\right)$.
(e) If $U \subset X$ is a proper open subset, and $p \in U$ is a point then the number

$$
\inf \{L(\gamma) \mid \gamma:[a, b] \rightarrow X, \gamma \in \mathcal{A}, \gamma(a)=p, \gamma(b) \notin U\}
$$

is positive.

Definition 2.5. The triple (X, \mathcal{A}, L), where X is a topological space, \mathcal{A} is a class of continuous curves in X and $L: \mathcal{A} \rightarrow[0, \infty]$ is a map satisfying the conditions above, is called a length structure.

Let (X, \mathcal{A}, L) be a length structure. Suppose that for any two points $x, y \in$ X there is a path $\gamma \in \mathcal{A}$ starting at x and ending at y. We then define the distance $d_{L}: X \times X \rightarrow[0, \infty]$ by

$$
d_{L}(x, y)=\inf \{L(\gamma) \mid \gamma:[a, b] \rightarrow X, \gamma(a)=x, \gamma(y)=b, \gamma \in \mathcal{A}\}
$$

One can check that if $d_{L}(x, y)<\infty$ for all $x, y \in X$ then d_{L} is a metric.
Suppose (X, d) is a metric space. Then we can take \mathcal{A} to be the set of rectifiable paths and $L=L_{d}: \mathcal{A} \rightarrow[0, \infty]$ to be the length functional. Then (X, \mathcal{A}, L) is a length structure. Note that in general $d_{L}(x, y) \geq d(x, y)$ for $x, y \in X$. If $d_{L}=d$ then (X, d) is called a length space. A unit sphere S in a normed finite dimensional vector space with the standard metric induced by the embedding is an example of a length space.

Definition 2.6. Let (X, \mathcal{A}, L) be a length structure. Let $\gamma:[a, b] \rightarrow X$ be a curve in \mathcal{A}. It is a geodesic if for any $c, d \in[a, b]$ with $|c-d|$ sufficiently small $L\left(\left.\gamma\right|_{[c, d]}\right)=d_{L}(\gamma(c), \gamma(d))$.

Remark 2.7. We think of geodesics as maps, not as subsets. Also, from now on all geodesics are parameterized by arc length.

If (X, d) is a compact connected metric space then a version of the HopfRinow theorem holds, and so any two points of X can be connected by a geodesic. See, for example, Proposition 3.7 in [BH]. This ends our digression on length spaces.

Proof of Lemma 2.4. It is clear that \bar{M} is a compact path-connected topological space and that the moment map $\Psi_{\alpha}: M \rightarrow \mathfrak{g}^{*}$ descends to a continuous map $\bar{\Psi}: \bar{M} \rightarrow S=\{\|f\|=1\}$. Moreover, by Lemmas 2.1 and 2.2, for any open half-space $H \subset \mathfrak{g}^{*}$ and any component Z of $\bar{\Psi}^{-1}(H)$, the map $\bar{\Psi}: Z \rightarrow S \cap H$ is a topological embedding which is a homeomorphism on an open dense set.

This gives us a way to define a length structure on \bar{M} : We define the class \mathcal{A} to be the set of all curves $\bar{\gamma}:[a, b] \rightarrow \bar{M}$ such that $\bar{\Psi} \circ \bar{\gamma}$ is a rectifiable curve in the unit sphere S. For $\bar{\gamma} \in \mathcal{A}$ we set $L(\bar{\gamma})=L_{S}(\bar{\Psi} \circ \bar{\gamma})$, where L_{S} is the length functional on the rectifiable curves in the sphere defined by the standard metric. Let d_{L} be the corresponding metric on \bar{M}. Then, since for any half-space H and any component Z of $\bar{\Psi}^{-1}(H)$ the set $\bar{\Psi}(Z)$ is convex in the sphere S, the map $\bar{\Psi}: Z \rightarrow S$ is an isometric embedding. Thus $\bar{\Psi}: \bar{M} \rightarrow S$ is locally an isometric embedding.

Corollary 2.8. Let $\bar{M}, \bar{\Psi}$ and S be as in Lemma 2.4. If $\bar{\gamma}$ is a geodesic in \bar{M} then $\bar{\Psi} \circ \bar{\gamma}$ is a geodesic in S.

Remark 2.9. Since $\bar{\Psi}$ is a local isometry it maps geodesics in \bar{M} to geodesics in the unit sphere S of the same length. In particular, if the end points of a (nonconstant) geodesic $\bar{\gamma}$ in \bar{M} are sent by $\bar{\Psi}$ to the same point in the sphere, then $\bar{\Psi} \circ \bar{\gamma}$ multiply covers a great circle and consequently the length of $\bar{\gamma}$ is an integer multiple of 2π.

We emphasize that Lemmas 2.1 and 2.2 can be restated for the induced map $\bar{\Psi}: \bar{M} \rightarrow S$ of Lemma 2.4 as follows:

Lemma 2.10. For any open half-space H and any connected component N of $\bar{\Psi}^{-1}(H)$ the map $\left.\bar{\Psi}\right|_{N} \rightarrow S$ is an isometric embedding.

Lemma 2.11. For any open half-space H and any connected component N of $\bar{\Psi}^{-1}(H)$ the set $\bar{\Psi}(N)$ is a convex polyhedral subset of the sphere S with non-empty interior.

As a consequence of Lemmas 2.10 and 2.11 we get:
Corollary 2.12. Let $\bar{\Psi}: \bar{M} \rightarrow S$ be as in Lemma 2.4. Suppose the points $x_{1}, x_{2} \in \bar{M}$ lie in the same connected component of $\bar{\Psi}^{-1}(H)$ for some open half-space H.

If $\bar{\Psi}\left(x_{1}\right)=\bar{\Psi}\left(x_{2}\right)$ then $x_{1}=x_{2}$. If $\bar{\Psi}\left(x_{1}\right) \neq \bar{\Psi}\left(x_{2}\right)$ then there is a geodesic $\bar{\gamma}$ in \bar{M} connecting x_{1} to x_{2}. Moreover we may choose $\bar{\gamma}$ such that $\bar{\Psi} \circ \bar{\gamma}$ is a geodesic in S lying entirely in the half-space H and connecting $\bar{\Psi}\left(x_{1}\right)$ and $\bar{\Psi}\left(x_{2}\right)$.

As a consequence of Lemma 2.4 we get:
Corollary 2.13. Any two points in \bar{M} can be connected by a short geodesic, i.e., for any two points $x, y \in \bar{M}$ there is a geodesic $\bar{\gamma}$ with $\bar{\gamma}(0)=x$ and $\bar{\gamma}(d)=y$, where d is the distance between x and y (recall that all geodesics are parameterized by arc length).

Remark 2.14. Such a geodesic in \bar{M} need not be unique. For example, consider the unit co-sphere bundle M in the cotangent bundle of a flat torus G. Then $M=G \times S, \Psi: G \times S \rightarrow S \subset \mathfrak{g}^{*}$ is the projection and \bar{M} is the unit sphere S. In this case for any point $x \in \bar{M}=S$ there are infinitely many geodesics of length π connecting x and $-x$.

The following lemma uses the notation above.

Lemma 2.15. Suppose x_{1}, x_{2} are two points in \bar{M} connected by a path $\bar{\gamma}$ with the property that $\bar{\Psi} \circ \bar{\gamma}$ lies entirely in some open half-space H. Then the points x_{1}, x_{2} lie in the same connected component of $\bar{\Psi}^{-1}(H)$.

Proof. The image of $\bar{\gamma}$ lies in a connected component of $\bar{\Psi}^{-1}(H)$.
Lemma 2.16 below is the main technical tool for proving the connectedness of fibers of moment maps.

Lemma 2.16. Let $\bar{\Psi}: \bar{M} \rightarrow S$ be as in Lemma 2.4. Suppose $\bar{\gamma}_{1}, \bar{\gamma}_{2}$ are two distinct geodesics in \bar{M} with $\bar{\gamma}_{1}(0)=\bar{\gamma}_{2}(0)$, and suppose that $\bar{\Psi} \circ \gamma_{1}$ and $\bar{\Psi} \circ \gamma_{2}$ trace out two distinct great circles in the unit sphere S. Then $\bar{\gamma}_{2}(0)=\bar{\gamma}_{2}(2 \pi)$ (and so $\bar{\gamma}_{1}(0)=\bar{\gamma}_{1}(2 \pi)$).

REmARK 2.17. Note that the assumption $\operatorname{dim} G>2$ is crucial for the lemma to make sense.

Proof of Lemma 2.16. The idea of the proof is to show that there is an open half-space H containing $\bar{\Psi}\left(\bar{\gamma}_{2}(0)\right)$ such that $\bar{\gamma}_{2}(0)$ and $\bar{\gamma}_{2}(2 \pi)$ lie in the same connected component of $\bar{\Psi}^{-1}(H)$. For then, by Corollary 2.12, $\bar{\gamma}_{2}(0)=\bar{\gamma}_{2}(2 \pi)$.

Given a path $\bar{\gamma}_{i}$ in \bar{M} we write γ_{i} for the path $\bar{\Psi} \circ \bar{\gamma}_{i}$ in S.
Since by assumption the geodesics γ_{1} and γ_{2} trace out two distance great circles in $S, \gamma_{1}\left(\frac{\pi}{2}\right) \neq \pm \gamma_{2}\left(\frac{\pi}{2}\right)$. On the other hand, we clearly have $\gamma_{1}(0)=$ $-\gamma_{1}(\pi)=-\gamma_{2}(\pi), \gamma_{1}(2 \pi)=\gamma_{2}(2 \pi)=\gamma_{1}(0), \gamma_{1}\left(\frac{3 \pi}{2}\right)=-\gamma_{1}\left(\frac{\pi}{2}\right)$, and $\gamma_{2}\left(\frac{3 \pi}{2}\right)=$ $-\gamma_{2}\left(\frac{\pi}{2}\right)$.

Since $\gamma_{1}\left(\frac{\pi}{2}\right) \neq \pm \gamma_{2}\left(\frac{\pi}{2}\right)$, there is an open half-space H_{1} containing the points $\gamma_{1}(0), \gamma_{1}\left(\frac{\pi}{2}\right)$ and $\gamma_{2}\left(\frac{\pi}{2}\right)$. By Lemma 2.15, $\bar{\gamma}_{1}\left(\frac{\pi}{2}\right)$ and $\bar{\gamma}_{2}\left(\frac{\pi}{2}\right)$ lie in the same connected component of $\bar{\Psi}^{-1}\left(H_{1}\right)$ as $\bar{\gamma}_{1}(0)$. By Corollary 2.12 there a geodesic $\bar{\sigma}_{1}$ in \bar{M} connecting $\bar{\gamma}_{1}\left(\frac{\pi}{2}\right)$ to $\bar{\gamma}_{2}\left(\frac{\pi}{2}\right)$ such that $\sigma_{1}:=\bar{\Psi} \circ \bar{\sigma}_{1}$ traces out a short geodesic connecting $\gamma_{1}\left(\frac{\pi}{2}\right)$ to $\gamma_{2}\left(\frac{\pi}{2}\right)$.

Choose an open half-space H_{2} containing the points $\gamma_{1}\left(\frac{\pi}{2}\right), \gamma_{2}\left(\frac{\pi}{2}\right)$ and $\gamma_{1}(\pi)=\gamma_{2}(\pi)$. Note that by construction $\bar{\gamma}_{1}\left(\frac{\pi}{2}\right)$ is connected to $\bar{\gamma}_{2}\left(\frac{\pi}{2}\right)$ by $\bar{\sigma}_{1}, \bar{\gamma}_{1}\left(\frac{\pi}{2}\right)$ is connected to $\bar{\gamma}_{1}(\pi)$ by a piece of $\bar{\gamma}_{1}$ and $\bar{\gamma}_{2}\left(\frac{\pi}{2}\right)$ is connected to $\bar{\gamma}_{2}(\pi)$ by a piece of $\bar{\gamma}_{2}$. By Lemma $2.15 \bar{\gamma}_{1}(\pi)$ and $\bar{\gamma}_{2}(\pi)$ lie in the same connected component of $\bar{\Psi}^{-1}\left(H_{2}\right)$. By Corollary 2.12 we have $\bar{\gamma}_{1}(\pi)=\bar{\gamma}_{2}(\pi)$.

Choose a half-space H_{3} containing $\gamma_{1}(\pi), \gamma_{1}\left(\frac{\pi}{2}\right)$ and $\gamma_{2}\left(\frac{3 \pi}{2}\right)$. Since $\bar{\gamma}_{1}(\pi)=$ $\bar{\gamma}_{2}(\pi)$, since $\bar{\gamma}_{1}(\pi)$ is connected to $\bar{\gamma}_{1}\left(\frac{\pi}{2}\right)$ by a piece of $\bar{\gamma}_{1}$ and since $\bar{\gamma}_{2}(\pi)$ is connected to $\bar{\gamma}_{2}\left(\frac{3 \pi}{2}\right)$ by a piece of $\bar{\gamma}_{2}, \bar{\gamma}_{1}\left(\frac{\pi}{2}\right)$ and $\bar{\gamma}_{2}\left(\frac{3 \pi}{2}\right)$ lie in the same connected component of $\bar{\Psi}^{-1}\left(H_{3}\right)$. By Corollary 2.12 there a geodesic $\bar{\sigma}_{2}$ in \bar{M} connecting $\bar{\gamma}_{1}\left(\frac{\pi}{2}\right)$ to $\bar{\gamma}_{2}\left(\frac{3 \pi}{2}\right)$ such that $\sigma_{2}:=\bar{\Psi} \circ \bar{\sigma}_{2}$ traces out a short geodesic connecting $\gamma_{1}\left(\frac{\pi}{2}\right)$ to $\gamma_{2}\left(\frac{3 \pi}{2}\right)$.

Finally choose a half-space H_{4} containing $\gamma_{1}(0)=\gamma_{2}(0)=\gamma_{2}(2 \pi), \gamma_{1}\left(\frac{\pi}{2}\right)$ and $\gamma_{2}\left(\frac{3 \pi}{2}\right)$. Arguing as above we see that $\bar{\gamma}_{2}(0)$ and $\bar{\gamma}_{2}(2 \pi)$ lie in the same connected component of $\bar{\Psi}^{-1}\left(H_{4}\right)$. Hence, by Corollary 2.12, $\bar{\gamma}_{2}(0)=\bar{\gamma}_{2}(2 \pi)$.

Lemma 2.18. The fibers of the map $\bar{\Psi}: \bar{M} \rightarrow S$ are connected, i.e., $\bar{\Psi}$ is an embedding.

Proof. Suppose $x_{1}, x_{2} \in \bar{M}$ are two points with $\bar{\Psi}\left(x_{1}\right)=\bar{\Psi}\left(x_{2}\right)$. We want to show that $x_{1}=x_{2}$. Suppose not. Then the distance d between x_{1} and x_{2} is positive. Let $\bar{\gamma}_{1}$ be a short geodesic connecting x_{1} and x_{2}, so that $\bar{\gamma}_{1}(0)=x_{1}$ and $\bar{\gamma}_{1}(d)=x_{2}$. Then $\gamma_{1}:=\bar{\Psi} \circ \bar{\gamma}_{1}$ is a geodesic in the unit sphere S starting and ending at $\gamma_{1}(0)$. Therefore γ_{1} multiply covers a great circle in S (and so d is an integer multiple of 2π).

Suppose that we can construct a geodesic $\bar{\gamma}_{2}$ connecting x_{1} to x_{2} so that $\gamma_{2}:=\bar{\Psi} \circ \bar{\gamma}_{2}$ covers a great circle distinct from the one covered by γ_{1}. Then by Lemma $2.16 \bar{\gamma}_{1}(0)=\bar{\gamma}_{1}(2 \pi)$, contradicting the choice of $\bar{\gamma}_{1}$ as a short geodesic.

Now we construct $\bar{\gamma}_{2}$ with the required properties. Pick an open halfspace H containing $\gamma_{1}(0)$. Let N denote the connected component of $\bar{\Psi}^{-1}(H)$ containing x_{1}. By Lemma 2.11 the set $\bar{\Psi}(N)$ is convex with nonempty interior. Pick a point y in N so that $\bar{\Psi}(y)$ is not in the image of the geodesic γ_{1}. By Corollary 2.12 there is a geodesic $\bar{\sigma}$ connecting x_{1} to y with the image of $\sigma:=\bar{\Psi} \circ \bar{\sigma}$ lying entirely in H. Let $\bar{\tau}$ be a short geodesic connecting y to x_{2}. If the image of $\tau:=\bar{\Psi} \circ \bar{\tau}$ lies entirely in a half-space containing $\bar{\Psi}\left(x_{2}\right)$ and $\bar{\Psi}(y)$ then by Lemma 2.15 we have $x_{1}=x_{2}$.

Otherwise τ traces out a long geodesic connecting $\bar{\Psi}(y)$ to $\bar{\Psi}\left(x_{2}\right)=\gamma_{1}(0)$. If $\bar{\tau}$ passes through x_{1} then the piece of $\bar{\tau}$ starting at x_{1} and ending at x_{2} is the desired geodesic $\bar{\gamma}_{2}$. If $\bar{\tau}$ does not pass through x_{1}, concatenate $\bar{\sigma}$ with $\bar{\tau}$. The concatenation $\bar{\gamma}_{2}$ is the desired geodesic.

Lemma 2.19. The image of the map $\bar{\Psi}: \bar{M} \rightarrow S$ is convex.
Proof. Suppose f_{1}, f_{2} are two points in the image of $\bar{\Psi}$. Then either f_{1} and f_{2} lie in some open half-space H or $f_{1}=-f_{2}$. In the former case, by Lemma 2.18, $N=\bar{\Psi}^{-1}(H)$ is connected. Hence, by Lemma 2.11, $\bar{\Psi}(N)=$ $H \cap \bar{\Psi}(\bar{M})$ is convex and consequently $\bar{\Psi}(\bar{M})$ is convex.

In the latter case we argue as follows. The sets $\bar{\Psi}^{-1}\left(f_{i}\right), i=1,2$ consists of single points; denote these points by x_{i}. Connect x_{1} and x_{2} by a short geodesic $\bar{\gamma}$. Then the image of $\gamma=\bar{\Psi} \circ \bar{\gamma}$ contains an arc of a great circle in S passing through f_{1} and $f_{2}=-f_{1}$ (in fact it follows from the proof of Lemma 2.16 that the image of γ is exactly such an arc).

Lemma 2.20. Let $\Psi_{\alpha}: M \rightarrow \mathfrak{g}^{*}$ be a moment map as in Lemma 2.1. The corresponding moment cone $C(\Psi)$ is a rational convex polyhedral cone. That is either $C(\Psi)=\mathfrak{g}^{*}$ or there exist vectors v_{1}, \ldots, v_{k} in the integral lattice \mathbb{Z}_{G} of the torus G such that

$$
C(\Psi)=\bigcap_{i}\left\{v_{i} \geq 0\right\}
$$

Proof. By Lemmas 2.11 and 2.18 for any open half-space H of \mathfrak{g}^{*} there exist vectors v_{1}, \ldots, v_{r} in the integral lattice $\mathbb{Z}_{G}(r$ depends on $H)$ such that

$$
C(\Psi) \cap H=\left(\bigcap_{i}\left\{v_{i} \geq 0\right\}\right) \cap H
$$

Moreover, we may and will assume that the set of v_{i} 's is minimal. Thus no v_{i} is strictly positive on $C(\Psi) \cap H$. Since the moment cone is a cone on a compact set, there exist finitely many open half-spaces H^{1}, \ldots, H^{s} such that $\bigcup_{\beta} H^{\beta}$ contains $C(\Psi) \backslash\{0\}$. For each such half-space H^{β}, let $v_{1}^{\beta}, \ldots, v_{r(\beta)}^{\beta}$ be the minimal set of integral vectors so that

$$
C(\Psi) \cap H^{\beta}=\left(\bigcap_{i}\left\{v_{i}^{\beta} \geq 0\right\}\right) \cap H^{\beta} .
$$

We claim that

$$
C(\Psi)=\bigcap_{i, \beta}\left\{v_{i}^{\beta} \geq 0\right\}
$$

As a first step we argue that for any i, β we have

$$
C(\Psi) \subset\left\{v_{i}^{\beta} \geq 0\right\}
$$

By choice of v_{i}^{β} there exists a point $x \in C(\Psi) \cap H^{\beta}$ such that $v_{i}^{\beta}(x)=0$ (since $\left.x \in H^{\beta}, x \neq 0\right)$. Suppose there exists a point $y \in C(\Psi)$ with $v_{i}^{\beta}(y)<0$. Since $C(\Psi)$ is convex, $t x+(1-t) y \in C(\Psi)$ for all $t \in[0,1]$. On the other hand, $v_{i}^{\beta}(t x+(1-t) y)=(1-t) v_{i}^{\beta}(y)<0$ for all $t \in[0,1)$. Since H^{β} is open there is $\epsilon>0$ so that $t x+(1-t) y \in H^{\beta}$ for all $t \in(\epsilon, 1]$. Therefore for all $t \in(\epsilon, 1)$ we have

$$
t x+(1-t) y \in H^{\beta} \cap C(\Psi) \subset\left\{v_{i}^{\beta} \geq 0\right\}
$$

which is a contradiction. We conclude that

$$
C(\Psi) \subset \bigcap_{i, \beta}\left\{v_{i}^{\beta} \geq 0\right\}
$$

Next we argue that the reverse inclusion, i.e., $\bigcap_{i, \beta}\left\{v_{i}^{\beta} \geq 0\right\} \subset C(\Psi)$, holds as well. By construction, for each β

$$
C(\Psi) \cap H^{\beta}=\left(\bigcap_{i}\left\{v_{i}^{\beta} \geq 0\right\}\right) \cap H^{\beta}
$$

Since $\bigcup_{\beta} H^{\beta} \cup\{0\}$ covers the image cone $C(\Psi)$, we have

$$
\begin{aligned}
C(\Psi)=C(\Psi) \cap\left(\bigcup_{\beta} H^{\beta} \cup\{0\}\right) & =\{0\} \cup \bigcup_{\beta}\left(C(\Psi) \cap H^{\beta}\right) \\
& =\bigcup_{\beta}\left(\bigcap_{i}\left\{v_{i}^{\beta} \geq 0\right\} \cap\left(H^{\beta} \cup\{0\}\right)\right. \\
& \supseteq\left(\bigcap_{i, \beta}\left\{v_{i}^{\beta} \geq 0\right\}\right) \cap\left(\bigcup_{\beta} H^{\beta} \cup\{0\}\right) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
C(\Psi)=\left(\bigcap_{i, \beta}\left\{v_{i}^{\beta} \geq 0\right\}\right) \cap\left(\bigcup_{\beta} H^{\beta} \cup\{0\}\right) . \tag{2.1}
\end{equation*}
$$

Finally, since $\bigcap_{i, \beta}\left\{v_{i}^{\beta} \geq 0\right\}$ is closed and convex, its intersection with the unit sphere $S \cap \bigcap_{i, \beta}\left\{v_{i}^{\beta} \geq 0\right\}$ is closed and connected. On the other hand,

$$
\begin{align*}
S \cap \bigcap_{i, \beta}\left\{v_{i}^{\beta} \geq 0\right\}=\left(S \cap \bigcap_{i, \beta}\left\{v_{i}^{\beta} \geq 0\right\} \cap\right. & \left.\left(\bigcup_{\beta} H^{\beta}\right)\right) \tag{2.2}\\
& \sqcup S \cap\left(\bigcap_{i, \beta}\left\{v_{i}^{\beta} \geq 0\right\} \backslash\left(\bigcup_{\beta} H^{\beta}\right)\right) .
\end{align*}
$$

It follows from (2.1) and (2.2) that the set $S \cap \bigcap_{i, \beta}\left\{v_{i}^{\beta} \geq 0\right\}$ is a disjoint union of two closed sets. Therefore the set $S \cap\left(\bigcap_{i, \beta}\left\{v_{i}^{\beta} \geq 0\right\} \backslash \cup_{\beta} H^{\beta}\right)$ is empty. We conclude that

$$
C(\Psi)=\bigcap_{i, \beta}\left\{v_{i}^{\beta} \geq 0\right\} \cap\left(\bigcup_{\beta} H^{\beta} \cup\{0\}\right)=\bigcap_{i, \beta}\left\{v_{i}^{\beta} \geq 0\right\}
$$

References

[A] M.F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), 1-15.
[B] A. Banyaga, The geometry surrounding the Arnold-Liouville theorem, Advances in geometry, Progr. Math., vol. 172, Birkhäuser, Boston, MA, 1999, pp. 53-69.
[BM1] A. Banyaga and P. Molino, Géométrie des formes de contact complètement intégrables de type toriques, Séminaire Gaston Darboux de Géométrie et Topologie Différentielle, 1991-1992 (Montpellier), Univ. Montpellier II, Montpellier, 1993, pp. 1-25.
[BM2] \qquad , Complete integrability in contact geometry, Penn State preprint PM 197, 1996.
[BH] M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, vol. 319, Springer-Verlag, Berlin, 1999.
[BBI] D. Burago, Yu. Burago, and S. Ivanov, A course in metric geometry, Amer. Math. Soc., Providence, RI, 2001.
[CDM] M. Condevaux, P. Dazord, and P. Molino, Géométrie du moment, Travaux du Séminaire Sud-Rhodanien de Géométrie, I, Publ. Dép. Math. Nouvelle Sér. B, 88-1, Univ. Claude-Bernard, Lyon, 1988, pp. 131-160.
[G1] M. Gromov, Hyperbolic manifolds, groups and actions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 183-213.
[G2] _ , Metric structures for Riemannian and non-Riemannian spaces. Based on the 1981 French original. With appendices by M. Katz, P. Pansu, and S. Semmes, Progr. Math., vol. 152, Birkhäuser, Boston, MA, 1999.
[GS] V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982), 491-513.
[HNP] J. Hilgert, K.-H. Neeb, and W. Plank, Symplectic convexity theorems and coadjoint orbits, Compositio Math. 94 (1994), 129-180.
[L] E. Lerman, Contact cuts, Israel J. Math 124 (2001), 77-92.
[LMTW] E. Lerman, E. Meinrenken, S. Tolman, and C. Woodward, Nonabelian convexity by symplectic cuts, Topology 37 (1998), 245-249.
[MT] S. Falcao de Moraes and C. Tomei, Moment maps on symplectic cones, Pacific J. Math. 181 (1997), 357-375.
[P] E. Prato, Convexity properties of the moment map for certain non-compact manifolds, Comm. Anal. Geom. 2 (1994), 267-278.

Department of Mathematics, University of Illinois, Urbana, IL 61801, USA
E-mail address: lerman@math.uiuc.edu

[^0]: Received March 6, 2001; received in final form September 6, 2001.
 2000 Mathematics Subject Classification. Primary 53D20, 53Dxx. Secondary 37Jxx.
 Partially supported by NSF Grant DMS 980305 and the American Institute of Mathematics.

