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COMPUTING K-THEORY AND Ext FOR GRAPH
C*-ALGEBRAS

D. DRINEN AND M. TOMFORDE

ABSTRACT. K-theory and Ext are computed for the C*-algebra C*(FE)
of any countable directed graph E. The results generalize the K-theory
computations of Raeburn and Szymanski and the Ext computations of
Tomforde for row-finite graphs. As a consequence, it is shown that if A
is a countable {0,1} matrix and E4 is the graph obtained by viewing
A as a vertex matrix, then C*(E4) is not necessarily Morita equivalent
to the Exel-Laca algebra O 4.

1. Introduction

In [2] Cuntz and Krieger described a way to associate a C*-algebra O 4 to
a finite square matrix A with entries in {0,1}. Since that time these Cuntz-
Krieger algebras have been generalized in a remarkable number of ways. Per-
haps the most direct of these is due to Exel and Laca, who define O4 for
an infinite {0,1}-matrix A [4]. Another generalization involves associating a
C*-algebra to a countable directed graph. These graph algebras have drawn
much interest because they comprise a wide class of C*-algebras, and yet
many of their C*-algebraic properties can be easily deduced from the associ-
ated graphs.

In order to make sense of the relations for the generators of the graph
algebra, it was often assumed in the original treatments that the graphs were
row-finite; that is, each vertex is the source of finitely many edges [9, 8, 1].
However, in the past few years it has been shown how to define graph algebras
for arbitrary graphs [6]. Consequently, much work has been done to extend
results for the C*-algebras of row-finite graphs to the C*-algebras of arbitrary
graphs [3, 6, 11, 12].

In [11], Raeburn and Szymanski computed the K-theory of C*(E), where
F is a row-finite directed graph. We briefly review that result here. Let J
denote the set of sinks of E, let I = E°\ J, and let Ag = (5 §) denote
the vertex matrix of E with respect to the decomposition E° = I U .J. Then

Received January 29, 2001; received in final form March 7, 2001.
2000 Mathematics Subject Classification. 46L55.

(©2002 University of Illinois
81



82 D. DRINEN AND M. TOMFORDE

. . . t_ . .
because F is row-finite, the matrix (B el ) determines a homomorphism from

c
PD,%Z to @,Z® ;7. The kernel and cokernel of this homomorphism are

isomorphic to K1 (C*(E)) and Ko(C*(E)), respectively. In [14], Ext(C*(E))
is computed similarly for row-finite graphs E which satisfy Condition (L) and
have no sinks. Specifically, Ext(C*(F)) is isomorphic to the cokernel of the
homomorphism Ag —I: [z Z — [[go Z.

In this paper we will show that the above results remain true for graphs
which are not necessarily row-finite, provided we replace the word “sink” with
the phrase “sink or vertex which emits infinitely many edges.” We remark that
the K-theory for Exel-Laca algebras has been computed by Exel and Laca [5]
and also by Raeburn and Szymaiiski [11, Theorem 4.1]. Also, the K-theory
results have been obtained by Szymanski in [13] for graphs with finitely many
vertices, and the proof given there holds for arbitrary graphs as well. Our
proof is different, and relies on desingularization [3], a tool for generalizing
from the row-finite case to arbitrary graphs. If E is an arbitrary graph, we say
a vertex v of E is a singular vertex if either v is a sink or v emits infinitely many
edges. In [3] it is shown that there exists a graph F, called a desingularization
of E, such that F has no singular vertices and C*(F') is Morita equivalent
to C*(FE). The key ingredient in our calculations of K-theory and Ext is
a technical lemma, proven in Section 2, which shows that desingularizing a
graph does not alter the kernel and cokernel of the maps determined by its
vertex matrix. Thus we can apply the results of [11] and [14] to obtain the
K-theory and Ext of C*(F) in terms of the vertex matrix of E. This, together
with the fact that K-theory and Ext are stable, yields the K-theory and Ext
of C*(F) stated in Theorem 3.1.

Finally, we use this result to shed some light on a question posed by Rae-
burn and Szymaiiski in [11]. They showed that if A is any countable square
{0, 1}-matrix and if E4 is the graph obtained by viewing A as a vertex matrix
(that is, let EY be the index set of A and draw A(i,j) edges from i to j),
then the graph algebra C*(E,) is a C*-subalgebra of the Exel-Laca algebra
O4. We will show that it is possible for C*(E4) and O4 to have different
K-theory. So in particular C*(E4) is not always a full corner in Q4.

2. The technical lemma

Given a graph E, it was shown in [3] how to construct a graph F', called
a desingularization of E, such that F' has no singular vertices and C*(E) is
Morita equivalent to C*(F'). We review that procedure here.

DEFINITION 2.1. Suppose F is a graph with a singular vertex vy. We add
a tail to vy by performing the following procedure. List the vertices wq, wq, . . .
of 7(s71(vg)). Note that the list of w’s could be empty (if vy is a sink), finite,
or countably infinite.
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We begin by adding an infinite tail to vy as in [1, (1.2)]:

e e (&)
Vo ! (%1 2 (%) 3 v3...

Now, for every j with w; € r(s™*(vg)), let C; be the number of edges from
vg to w;. For every ¢ with j <+¢ < j+ C}, draw an edge labelled f;_jH from
v; to w;. To be precise, if I is a graph with a singular vertex v, we define
F%:= E°U{vy,vy,...} and

o) 7 Cj
F':={ec E'|s(e) #vo} U{e;}5°U U {fjils-
{jlwj€r(s=1(vo))}
We extend r and s to I as indicated above. In particular, s(e;) = v;_1,
r(ei) = vi, s(f}) = vigj-1, and 7(f}) = w;.

DEFINITION 2.2. If E is a directed graph, a desingularization of E is a
graph F' obtained by adding a tail at every singular vertex of F.

Note that different orderings of the vertices of r(s~!(vg)) may give rise to
non-isomorphic graphs via the process of adding a tail. Thus a graph may
have many desingularizations.

If E is a graph, then any desingularization F' of F is a row-finite graph, so
the rows of the matrix Ap are eventually zero. Thus Ap: [[p0Z — [[p0 Z

and AL: DroZ — Ppo Z.

LEMMA 2.3. Let E be a graph. Also let J be the set of singular vertices
of E and let I := E°\J. Then with respect to the decomposition E° = I U J
the vertex matriz of E will have the form

B C
AE:(* *)a

where B and C have entries in Z and the x’s have entries in Z U {occ}. If F
is a desingularization of E, then coker(Ap — I) = coker(B — I C), where

(B-10): [[zeo]]z—]]2Z
I J I

Furthermore,
t

ker(A% — I) = ker (Bot

_ t_
I) and  coker(A% — I) 2 coker (B I) ,

where

(Btcj I> : @Z - EIDZ@EJDZ.
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Proof. List the elements of J as J := {v?,v3,v3,...}. (Note that J may

be either finite or countably infinite.) For each 1 < ¢ < |J| let D; be the J x N
matrix

D; =

OO O
[ erRenNenRan]
SO OoO O
SOoOOoO O

with a 1 in the (¢,1) position and 0’s elsewhere. Also let Z be the N x N
matrix

with —1’s along the diagonal and 1’s above the diagonal. Now for each 1 <
i < |J| let {v},v? ...} be the vertices of the tail which is added to v? to

1770

form F'. Then, by the way that desingularization is defined, we see that with
respect to the decomposition I U J U {vi,vZ v},...} U{vi 03, v3,...}U...
the matrix Ar — I will have the form

B-1 C 0 0
X1 Y1i—-1 D1 Do
Ap—T=| X Y, Z 0
Xs Yy 0 Z

where the X;’s and Y;’s are row-finite. If we let P := [[yZ, then
Ap —1I: HZ@HZ@HPHHZ@HZ@HP.
I J J I J J
Also
(B-10): [[ze]]z-]]2
I J I
Let us define a map ¢: [[,Z@®[[,Z® ][], P — ][, Z by
x

y
o (%

Z2

|
ré
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We shall show that ¢ induces a map from coker(Ap — I) to coker(B — I C).
Let

X a
y b
z =Ar-1)| ([«
Z2 C2
Then
X
y
ol (% :XZ(B—IC)@)eim(B—IO).

Thus ¢ induces a map@: coker(Ap — I) — coker(B — I C).
We shall show that ¢ is an isomorphism. To see that ¢ is injective suppose
that

ol (%1 =xe€im(B-1ICQC).
Z2

Then there exists (§) € [[; Z®[]; Z such that x = (B —I)a+ Cb. For each
1<i<|J]| let

Cl1 =Yy — (Xla—i— (Yl — I)b)“
where (Xja+ (Y7 — I)b); denotes the ith entry of the vector Xja+ (Y] — I)b.
Then, for each k € {1,2,...} define c¥ recursively by
AT = cF + () — (Xi1a+ Yipib)y,

where (z;)r denotes the kth entry of the vector z; and (X;11a + Yir1b)g
denotes the kth entry of the vector (X;11a+Y;y1b). Now for each 1 < i < |J|
1
c

define ¢; € [[Z by ¢; := ¢ |. Then
(B—1I)a+Cb
ta) Xla+(Y1—I)b+D1€1+D202+... X
Xoa+Yob+ Zcy y
(Ar=D) | (C) | = Xsa+Ysb+ Zey =| (o

X4a —+ Y4b —+ ZC3
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and thus

z Eim(Ap—I)

and ¢ is injective. Furthermore, since ¢ is surjective it follows that ¢ is
surjective. Thus coker(Ap — I) = coker(B — I C).

Next we shall examine A% —I. Note that with respect to the decomposition
mentioned earlier A% — I will have the form

Bt-T Xt X, X!
ct Yi-T V¢ Vi

AL—1=| o DI ozt 0 7
0 Dt ozt
where the X!’s and Y'’s are column-finite matrices. If we let Q := Py Z,
then
AL -1): Prze@PrePo—-PrzePzePe.
I J J I J J
Also

Bt -1
( ot ):@ZH@Z@@Z.
I I J
Let us define a map

v Pz—-PrzePre@Pe
I 1 J J

Note that if x € ker (B;jl), then

X 0
(AL —D) 0| = C'x =10
0 0
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S0 9 restricts to a map ¥: ker (B;jl> — ker(A% — I). We shall show that

this map is surjective. Suppose that

Z1 € ker(A% —I).

2t
Then for each 1 < i < |J| we must have that Dly + Z'z; = 0. If z; = (Z? ),

then for all £ € N we must have
yi — 2} =0 and 2 — 21 = 0.

Since z; € @ ; Z we know that 2¥ is eventually zero. Thus the above equations
imply that y; = z! = 22 =--- = 0. Since this holds for all i we have that

and 1 is surjective. Furthermore, since 1 is clearly injective,

t_
Y: ker (Bc,t I) — ker(AL — 1)

is an isomorphism and ker (B;ZI) = ker(Af —1).

Next we shall define a map

p: @Z@@Z—)@Z@@Z@@Q
I J I J J

X
p(")z y
y 0

We shall show that p induces a map from coker (B;jf ) to coker(Ap — I).

by

Ct

that () = ((B;;i)a) Hence

Suppose that (3) € im <Bt_1 ) Then there exists an element a € @; Z such

a X
(AL —-D) 0] = Cta =y
0 0



88 D. DRINEN AND M. TOMFORDE

B'—

Thus p maps im ( ot I ) into im(A% — I) and hence induces a map

t

p: coker (Bct I) — coker(AL —1).

We shall show that this map is injective. Suppose that p (3 ) equals zero in
coker(A% — I). Then

oo

a
x b

= (AL -1 C1 for some C1 € 7o 7o )
(1) =] (2 o) | < DreDreDe

But then as before we must have that b = ¢; = ¢y = --- = 0 and the above
equation implies that (3) = ((Btc:;)a) € im (B;jl) so p is injective. We

shall now show that p is surjective. Let
e

y
2\ lePrzePrePe.
Z:2 I J J

u

It suffices to show that there exists (?)') €@, Zo@,;Zd @, Q such that

X—1u
yYy—v

21\ | € im(Al - 1).
Zo

For each 1 <14 < |J| write z; = <22> and define
b = sz and cF = Z z] for k € N.

j=1 j=k+1

Note that since z; is in the direct sum, all of the above sums are finite, and

z
since (Z?) € @, Q we have that eventually z; = 0 and hence

b1 C1 Czl
b:= b.2 € @Z and ¢ := 0.2 € @Q, where ¢; := | 2
: J : J :

If we then let a = 0 and take
u:=x—(B"'-Ta— Xib— Xic; — Xlcg —---
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and
vi=y—Cla— (Y} - I)b—Yic, — Yicy -,
cy

2

which are finite sums since (C, ) is in the direct sum, we have that

a X—u
b y—vV

A= (o) [ =] (2
2

Z2

1

Thus p is surjective. Hence p is an isomorphism and coker (B;;I )
coker(AL, —I). O

3. Main results

THEOREM 3.1. Let E be a graph. Also let J be the set of singular vertices
of E and let I := E°\J. Then with respect to the decomposition E° = I U J
the vertex matriz of E will have the form

B C
AE:(* *>7

where B and C' have entries in Z and the *’s have entries in Z U {oo}. Then

Ko(C*(E)) = coker (B;jl> and K1(C*(E)) = ker (Btcjl), where

Bt -1
( ot ) . Pz-PzePez
I I J
If, in addition, E satisfies Condition (L), then Ext(C*(FE)) = coker(B —

I1C), where
B-10): [[ze]]z-]]2Z
1 J 1

Proof. Let F be a desingularization of E. Since F' is row-finite and has no
sinks it follows from [11, Theorem 3.2] that Ko(C*(E)) = coker(A% — I) and
K,(C*(E)) = ker(A%—1I). By [3, Theorem 2.11] C*(E) is Morita equivalent to
C*(F). Because K-theory is stable, we have that Ko(C*(F)) = coker(A% —1I)
and K;(C*(E)) = ker(A% — I). The result then follows from Lemma 2.3.

Furthermore, if E satisfies Condition (L), then it follows from [3, Lemma
2.7] that F also satisfies Condition (L). Hence by [14, Theorem 6.16] we have
that Ext(C*(F)) = coker(B — I (). Since Ext is stable, the result again
follows from Lemma 2.3. g

COROLLARY 3.2. If every vertex of E is either a sink or emits infinitely
many edges, then Ko(C*(E)) = @ o Z and K1(C*(E)) = Ext(C*(E)) = {0}.
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Proof. I =1, so we have @;Z = [[; Z = {0}, and the result then follows
from Theorem 3.1. O

In [11], Raeburn and Szymaiiski prove that every graph algebra is an Exel-
Laca algebra, but not conversely. In particular, they produce a matrix

h

I
oSoo~O
corROoORO
OO ==
OO
O—HOO M
HOOoOOFF

such that the Exel-Laca algebra O4 is not a graph algebra. They do prove,
however, that C*(E4) is a C*-subalgebra in O4, where E4 is the graph
whose vertex matrix is A [11, Proposition 5.1], and this prompts them to ask
if anything more can be said about the relationship between the two.

It appears not. For if A and E4 are as above, the reader can check using
Theorem 3.1 that Ko(C*(Ea)) & K1(C*(E4)) = {0}. In [11, Remark 4.3],
the K-theory of O4 is computed as Ky(O4) = {0} and K;(O4) = Z. Hence
C*(E4) is not a full corner of O4, and in fact C*(E4) and O4 are not even
Morita equivalent.

We also point out that, for the matrix A above, knowing the K-theory of
C*(E ) allows one to actually determine C*(E4) up to isomorphism. C*(E )
is a purely infinite, simple, separable, nuclear C*-algebra without unit and
hence the Kirchberg-Phillips Classification Theorem tells us that it is deter-
mined up to Morita equivalence by its K-theory [10, Theorem 4.2.4]. Since
O3 has the same K-theory we may conclude that C*(E,4) is Morita equivalent
to Oy. Finally, since E4 is transitive with infinitely many vertices, it follows
from [7, Theorem 2.13] that C*(E,) is stable. Hence C*(E4) = Oy ®@ K.
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