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ALMOST SURE CONVERGENCE OF WEIGHTED SERIES
OF CONTRACTIONS

FAKHREDDINE BOUHKARI AND MICHEL WEBER

Abstract. In this paper we consider the almost sure convergence of
a series of contractions (of an arbitrary Hilbert space) with random

weights. The paper is a continuation of a previous work [PSW], in
which only convergence in operator norm was investigated. We obtain
conditions ensuring the existence of universal sets on which these series
are converging almost everywhere, for any contraction. The paper is
also a continuation of the paper [SW], in which an analogous problem

concerning ergodic averages was considered, as well as the paper [S],
which deals with a variant of the problem. The proofs of our results rely
on uniform estimates of random polynomials which were established in

a recent paper by the second author and proved by means of metric
entropy methods.

1. Introduction

Let (X,F , µ) be a probability space. The purpose of the paper is to es-
tablish conditions for the convergence almost everywhere of the randomly
weighted series of contractions

(1.1)
∞∑
k=1

Wk(ω)T pk ,

where {Wk}k≥1 is a sequence of independent, mean zero, square integrable
random variables, defined on some probability space (Ω,B,P), T is a linear
contraction in the Hilbert space H = L2(µ), {pk}k≥1 is a non-decreasing
sequence of non-negative integers, and ω ∈ Ω. Our main goal is to find
sufficient conditions for the convergence almost everywhere of the series in
(1.1) which are valid for all Hilbert spaces H = L2(µ) and all contractions T
in H. The paper is in this sense a continuation of the paper [PSW], where
we obtained sufficient conditions for the convergence in norm of the series in
(1.1). More precisely, we proved the following theorem:
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Theorem 1.1 ([PSW, Theorm 3.1, p. 272, and Remark 3.2]). Let {Wk}k≥1

be a sequence of independent, mean zero, random variables, defined on some
probability space (Ω,B,P), and let {pk}k≥1 be a non-decreasing sequence of
non-negative integers, with p1 > 1. Suppose that there exist integers 0 :=
N0 < N1 < N2 < · · · such that the following condition is satisfied:

(1.2)
∞∑
i=0

√
log(pNi+1)E


 Ni+1∑
k=Ni+1

|Wk|2
1/2

 converges.

Then there exists a (universal) sequence of P-integrable random variables M =
{MJ}J≥1 defined on (Ω,B,P) which converges to zero P-a.s. and in P-mean,
such that for any Hilbert space H and any contraction T in H we have

(1.3) sup
R>NJ

∥∥∥∥∥
R∑

k=NJ+1

Wk(ω)T pk
∥∥∥∥∥ ≤MJ(ω)

for all ω ∈ Ω and all N ≥ 1. In particular, there exists a (universal) P-null
set N∗ ∈ B such that the series

(1.4)
∞∑
k=1

Wk(ω)T pk

converges in operator norm for all ω ∈ Ω\N∗, whenever H is a Hilbert space
and T is a contraction in H.

We will show (see Theorem 3.1) that Condition (1.2) is, in fact, already
enough to imply that there exists a (universal) P-null set N∗ ∈ B such that
for each ω ∈ Ω\N∗, for any probability space (X,F , µ), any contraction T on
L2(µ), and any f ∈ L2(µ), if we define

(1.5) ∀ω ∈ Ω, ∀x ∈ X, ∀n ≥ 1, Sn(ω, x) =
n∑
k=1

Wk(ω)T pkf(x),

then the sequence SNk(ω, ·) converges µ-almost surely.
If, in addition to Condition (1.2), we have

(1.6)
∑
k

min

log2 (Nk+1 −Nk) log pNk+1

 Nk+1∑
j=Nk+1

E(W 2
j )

 ,

E

 Nk+1∑
j=Nk+1

|Wj |

2
 <∞,

then there also exists a (universal) P-null set N∗ ∈ B such that for each
ω ∈ Ω\N∗, for any probability space (X,F , µ), any contraction T on L2(µ),
and any f ∈ L2(µ), the sequence Sn, n = 1, 2, . . . , converges µ-almost surely.
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The method of proof is essentially based on an improvement of a classical
result of Salem and Zygmund (see Lemma 2.2) providing a global uniform
estimate for random polynomials. For the proof of our main result, we will
also invoke a classical uniform estimate arising in the theory of stochastic
processes (see Theorem 2.3).

2. Preliminary results

We begin by recalling a useful tool, the spectral inequality, which reduces
the problem of evaluating norms to Fourier analysis questions. Let T be a
contraction in a Hilbert H, that is, a linear operator such that ‖T (f)‖ ≤ ‖f‖
for each f in H . Let f ∈ H , and put

Pn(f) = 〈Tn(f), f〉 for n ≥ 0 and Pn(f) = P−n(f) for n ≤ 0.

The sequence (Pn(f))n∈Z is non-negative definite, and thus, by Herglotz’
Theorem, there exists a finite positive measure µf on B(]− π, π]) (called the
spectral measure of f) such that for all n ≥ 0

〈Tn(f), f〉 =
∫ π

−π
einλµf (dλ).

From this fact and the Dilation Theorem of Sz-Nagy (see Theorem 1 in [N])
one deduces:

Lemma 2.1 (Spectral Inequality). If T is a contraction in a Hilbert space
H and f is an element from this space with spectral measure µf , then we have

(2.1) ‖P (T )f‖ ≤
(∫ π

−π
|P (eiλ)|2µf (dλ)

)1/2

,

whenever P (z) =
∑N
k=0 akz

k is a complex polynomial of degree N ≥ 0.

We next state a stronger form of the classical Salem-Zygmund bound for
random polynomials, on which our results in the next section are based. Con-
sider the Young function G(t) = exp(t2) − 1, where t is real, together with
the associated Orlicz space LG(P), that is, the set of B-measurable functions
f : Ω→R such that EG(af) < ∞ for some real 0 < a < ∞. We recall that
LG(P) is endowed with the norm

∀f ∈ LG(P), ‖f‖G = inf{c > 0 : EG(f/c) ≤ 1},

and that (LG(P), ‖·‖G) is a Banach space.
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Lemma 2.2 ([W, Theorem 7]). Let W = (Wk)∞k=1 be a sequence of inde-
pendent, symmetric real random variables. Then

(2.2)

∥∥∥∥∥∥∥ sup
N<M

sup
0≤t≤1

∣∣∣∑M
k=N+1Wke

2iπpkt
∣∣∣(

log pM
∑M
k=N+1W

2
k

)1/2

∥∥∥∥∥∥∥
G

≤ C,

where C is a universal constant.

It is easily seen, by means of the Cauchy-Schwarz inequality, that Lemma
2.2 is only interesting when the sequence (pm)m≥1 grows at most geometri-
cally.

We define the sequence of random polynomials

(2.3) UN (t) =
N∑
k=1

ak

{
e2iπt(pk+Pk) −Ee2iπt(pk+Pk)

}
, N = 1, 2, . . . ,

where {ak, k ≥ 1} is a sequence of reals and P: = {P1, P2, . . . } a sequence
of Z-valued, independent random variables defined on a probability space
(Ω,B,P), and satisfying

(2.4) P {pi + Pi ≥ 0} = 1, i = 1, 2, . . . .

Let us assume that the following assumption, in which Φ: N→N is an in-
creasing map, is satisfied:

(2.5) C(P,Φ) = E
∞

sup
M=1

[
log+(pM + PM )

]1/2
Φ(M)

< ∞.

The following lemma will be used for proving Theorem 3.7, in which we ex-
amine a variant of the problem considered in [S].

Lemma 2.3. There exists a universal constant C such that

(2.6) E sup
N<M

sup
0≤t≤1

|UM (t)− UN (t)|(∑M
k=N+1 a

2
k

)1/2

Φ(M)
≤ C · C(P,Φ).

Proof. The proof is a modification of that of Theorem 9 in [W]. We consider
the symmetrized sequence

VN (t) =
N∑
k=1

akεke
2iπt(pk+Pk), N = 1, 2, . . . ,

where ε1, ε2, . . . is a Rademacher sequence defined on another probability
space (Ωε,Bε,Pε). We denote by Eε the corresponding symbol of integration.
Since conditionally to the sequence (Pk)k these polynomials are of the same
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type as those in Lemma 2.2, this lemma can be applied to estimate their
extrema, and we obtain∥∥∥∥∥∥∥ sup

N<M
sup

0≤t≤1

|VM (t)− VN (t)|{(∑M
k=N+1 a

2
k

)
log+(pM + PM )

}1/2

∥∥∥∥∥∥∥
G,Pε

≤ C,

where C is a universal constant. Hence

Eε sup
N<M

sup
0≤t≤1

|VM (t)− VN (t)|{(∑M
k=N+1 a

2
k

)
log+(pM + PM )

}1/2
≤ C.

Thus

E Eε sup
N<M

sup
0≤t≤1

|VM (t)− VN (t)|(∑M
k=N+1 a

2
k

)1/2

Φ(M)

≤ E Eε sup
N<M

sup
0≤t≤1

|VM (t)− VN (t)|[(∑M
k=N+1 a

2
k

)
log+(pM + PM )

]1/2
× sup

M

[
log+(pM + PM )

]1/2
Φ(M)

≤ CE sup
M

[
log+(pM + PM )

]1/2Φ(M) ≤ C C(P,Φ).

To conclude, observe that, by means of the usual symmetrization proce-
dure,

E Eε sup
N<M

sup
0≤t≤1

|UM (t)− UN (t)|(∑M
k=N+1 a

2
k

)1/2

Φ(M)

= E sup
N<M

sup
0≤t≤1

∣∣∣∑M
k=N+1 e

2iπt(pk+Pk) −E
′
e2iπt(pk+P

′
k)
∣∣∣(∑M

k=N+1 a
2
k

)1/2

Φ(M)

≤ EE
′

sup
N<M

sup
0≤t≤1

∣∣∣∑M
k=N+1 e

2iπt(pk+Pk) − e2iπt(pk+P
′
k)
∣∣∣(∑M

k=N+1 a
2
k

)1/2

Φ(M)

≤ 2E sup
N<M

sup
0≤t≤1

∣∣∣∑M
k=N+1 εke

2iπt(pk+Pk)
∣∣∣(∑M

k=N+1 a
2
k

)1/2

Φ(M)

= E Eε sup
N<M

sup
0≤t≤1

|VM (t)− VN (t)|(∑M
k=N+1 a

2
k

)1/2

Φ(M)
≤ C · C(P,Φ),
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where P
′

1, P
′

2, . . . is an independent copy of the sequence P1, P2, . . . , defined
on another probability space (Ω

′
,B′ ,P′), with E

′
as the corresponding symbol

of integration. �

We conclude this section by recalling a classical tool from the theory of
stochastic processes given in the following statement:

Theorem 2.4 ([P, Theorem 2.1]). Let (E, d) be a compact space endowed
with a continuous pseudo-metric d. Assume that

(2.7)
∫ 1

0

Nd(E, ε)1/2 dε <∞,

where Nd(E, ε) is the smallest number of d-open balls of radius ε needed to
cover E. Then any stochastic process X = {Xt, t ∈ E} satisfying

(2.8) ∀s, t ∈ E, ‖Xs −Xt‖2 ≤ d(s, t)

possesses a modification with continuous sample paths on E. Moreover,

(2.9)
[
E sup
E×E

|Xt −Xs|2
]1/2

≤ K
∫ K1D

0

Nd(E, ε)1/2 dε,

where D = supE×E d(s, t) and K1 is an absolute constant.

3. Almost sure convergence

3.1. In this section, we present the main result of the paper.

Theorem 3.1. Let (Wk)k∈N be a sequence of independent, symmetric,
square integrable random variables defined on a probability space (Ω,B,P),
and let (pn)n∈N be an increasing sequence of positive integers. Assume that
condition (1.2) is satisfied for some arbitrary, but given increasing sequence
(Nk)k of positive integers. Then there exists a (universal) P-null set N∗ ∈ B
such that for each ω ∈ Ω\N∗, for any probability space (X,F , µ), any con-
traction T on L2(µ), and any f ∈ L2(µ), if we define

(3.1) ∀ω ∈ Ω, ∀x ∈ X, ∀n ≥ 1, Sn(ω, x) =
n∑
k=1

Wk(ω)T pkf(x),

the sequence (SNk(ω, ·))k≥1 converges µ-almost surely.
If, in addition to condition (1.2), we assume

(3.2)
∑
k

min

log2 (Nk+1 −Nk) log pNk+1

 Nk+1∑
j=Nk+1

E(W 2
j )

 ,

E

 Nk+1∑
j=Nk+1

|Wj |

2
 <∞,



ALMOST SURE CONVERGENCE 7

then there exists a (universal) P-null set N∗ ∈ B such that for each ω ∈ Ω\N∗,
for any probability space (X,F , µ), any contraction T on L2(µ), and any
f ∈ L2(µ), the sequence (Sn)n≥1 converges µ-almost surely.

Proof. Let f ∈ L2(µ) and assume that ‖f‖2,µ = 1. Define

∀ω ∈ Ω, ∀k ≥ 1, ψk(ω) =
Nk+1∑

j=Nk+1

Wj(ω)T pjf.

Then, by Lemmas 2.1 and 2.2, there exists a P-integrable random variable C
such that

∀ω ∈ Ω, ∀k ≥ 1, ‖ψk(ω)‖2,µ ≤ C(ω)

log pNk+1

Nk+1∑
Nk+1

W 2
j (ω)

1/2

.

Since

SNm =
Nm∑
j=1

Wj(ω)T pjf =
m−1∑
k=0

ψk(ω)

and

∞∑
k=0

‖ψk(ω)‖1,µ ≤
∞∑
k=0

‖ψk‖2,µ ≤ C(ω)
∞∑
k=0

log pNk+1

Nk+1∑
Nk+1

W 2
j (ω)

1/2

,

we deduce from assumption (1.2) that there exists a (universal) P-null set
N∗ ∈ B such that, if ω ∈ Ω\N∗, then

∞∑
k=0

‖ψk(ω)‖1,µ <∞.

Consequently, the series
∑m
k=0 |ψk(ω)| converges µ-almost surely for each ω ∈

Ω\N∗. Therefore, for each ω ∈ Ω\N∗, the sequence of partial sums
Nk+1∑
j=1

Wj(ω)T pjf(x), k = 1, 2, . . . ,

converges µ-almost surely. The general case follows from this by considering,
for an arbitrary function g ∈ L2(µ) with g 6= 0, the function f = g/‖g‖2,µ.
This is the first assertion of Theorem 3.1.

To prove the second assertion, we proceed as before, by considering f ∈
L2(µ) with ‖f‖2,µ = 1. Set Ik =]Nk, Nk+1], k = 1, 2, . . . . Let s, t ∈ Ik with
s < t and estimate the increments ‖St − Ss‖. By Lemmas 2.1 and 2.2, there
exists a P-integrable random variable C such that

∀ω ∈ Ω, ∀k ≥ 1, ∀s, t ∈ Ik, ‖St − Ss‖22,µ ≤ C(ω) log pNk+1

t∑
j=s+1

W 2
j (ω).
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Since T is a contraction, we also have

‖St − Ss‖2,µ ≤
t∑

j=s+1

|Wj(ω)|.

Replacing, if necessary, C by max(C, 1), we deduce

∀ω ∈ Ω, ∀k ≥ 1, ∀s, t ∈ Ik,
d(s, t) := ‖St − Ss‖2,µ

≤ C(ω) min


log pNk+1

t∑
j=s+1

W 2
j (ω)

1/2

,
t∑

j=s+1

|Wj(ω)|

 .
We will control the oscillation maxs,t∈Ik |St − Ss| by means of Theorem 2.4.
In our case, the set E will be the interval of integers Ik (where, here and in
what follows, we fix k), endowed with the pseudo-metric d.

We next consider the entropy number N(E, d, ε). Put

A =

log pNk+1

Nk+1∑
j=Nk+1

W 2
j (ω)

1/2

, B =
Nk+1∑

j=Nk+1

|Wj(ω)|.

Then maxs,t∈E d(s, t) ≤ min(A,B). For 0 < ε ≤ min(A,B), we now estimate
the entropy number N(E, d, ε). Define for each integer l ≥ 0

Sl1 =

t : lε2C(ω)−2 ≤ log pNk+1

t∑
j=Nk

W 2
j (ω) ≤ C(ω)−2(l + 1)ε2

 .

Then s, t ∈ Sl1 implies d(s, t) ≤ ε. Moreover,

L⋃
l=0

Sl1 =

t : log pNk+1

t∑
j=Nk

W 2
j (ω) ≤ C(ω)−2(L+ 1)ε2

 .

Let L = L1 be the smallest integer such that

C(ω)−2(L1 + 1)ε2 ≥ log pNk+1

Nk+1∑
j=Nk

W 2
j (ω).

Then N(E, d, ε) ≤ L1 + 1. Similarly, define

Sl2 =

t : lεC(ω)−1 ≤
t∑

j=Nk

|Wj | ≤ C(ω)−1(l + 1)ε

 .
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Then s, t ∈ Sl2 implies d(s, t) ≤ ε, and

L⋃
l=0

Sl2 =

t :
t∑

j=Nk

|Wj | ≤ C(ω)−1(L+ 1)ε

 .

Let L = L2 be the smallest integer such that

C(ω)−1(L2 + 1)ε ≥
Nk+1∑
j=Nk

|Wj |.

Then N(E, d, ε) ≤ L2 + 1. We have thus

N(E, d, ε) ≤ K min
[
A2C(ω)2

ε2
,
BC(ω)
ε

,Nk+1 −Nk
]
,

where K is an absolute constant. Replacing, if necessary, C by max(C, 1), we
estimate I :=

∫min(A,B)

0
N(E, d, ε)1/2 dε by means of the crude inequality

I ≤ K min

(
C

∫ A

0

min
[
A2

ε2
, Nk+1 −Nk

]1/2

dε,

√
C

∫ B

0

min
[
B

ε
,Nk+1 −Nk

]1/2

dε

)
.

On the one hand, we have∫ A

0

min
[
A2

ε2
, Nk+1 −Nk

]1/2

dε

=

∫ A√
Nk+1−Nk

0

+
∫ A

A√
Nk+1−Nk

min
[
A2

ε2
, Nk+1 −Nk

]1/2

dε

≤ A+A

∫ A

A√
Nk+1−Nk

dε

ε
= A+

A

2
log[Nk+1 −Nk].

On the other hand,∫ B

0

min
[
B

ε
,Nk+1 −Nk

]1/2

dε

=

(∫ B
Nk+1−Nk

0

+
∫ B

B
Nk+1−Nk

)
min

[
B

ε
,Nk+1 −Nk

]1/2

dε

≤ B√
Nk+1 −Nk

+ 2
√
B

[√
B −

√
BNk+1 −Nk

]
≤ 2B.
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Therefore

I ≤ C(ω) min (A log[Nk+1 −Nk], B)

= C(ω) min

log[Nk+1 −Nk]

log pNk+1

Nk+1∑
j=Nk+1

W 2
j (ω)

1/2

,

Nk+1∑
j=Nk+1

|Wj |(ω)

 .

We deduce from these computations and Theorem 2.4∥∥∥∥max
s,t∈Ik

|St − Ss|
∥∥∥∥2

2,µ

≤ C(ω) min

log2 (Nk+1 −Nk) log pNk+1

Nk+1∑
j=Nk+1

W 2
j (ω),

 Nk+1∑
j=Nk+1

|Wj(ω)|

2
 .

Put, for k = 1, 2, . . . ,

Xk = min

log(Nk+1 −Nk)

log pNk+1

Nk+1∑
j=Nk+1

W 2
j (ω)

,
 Nk+1∑
j=Nk+1

|Wj(ω)|

2
 .

Now note that the variables Xk form a sequence of non-negative, independent
random variables, so if Condition (3.2) is fulfilled, then there exists a P-null
set N∗ ∈ B such that, for each ω ∈ Ω\N∗,

∞∑
k=1

∥∥∥∥ max
s,t∈Ik

|St − Ss|
∥∥∥∥2

2,µ

≤
∞∑
k=1

Xk <∞.

Combining this result with the one obtained in the first step of the proof
easily leads to the conclusion. �

Remark 3.2. Suppose that Conditions (1.2) and (3.2) are fulfilled for
given sequences of integers (Nk)k≥1, (pk)k≥1, and a sequence of independent,
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symmetric, square integrable random variables (Wk)k≥1, defined on a proba-
bility space (Ω,B,P). Consider a sequence of contractions (Tk)k≥1 defined on
L2(X,F , µ). Then the conclusions of Theorem 3.1 are also true for the series

S
′

n(f) =
n∑
j=1

Wj(ω)Upjj (f) for n ≥ 1, ω ∈ Ω, f ∈ L2(µ),

where Uj = Tk if Nk < j ≤ Nk+1, k ≥ 1. To see this, observe that for all
k ≥ 1, s, t ∈ Ik with s < t, and f ∈ L2(µ) with ‖f‖2,µ ≤ 1, one has

‖S
′

t − S
′

s‖22,µ ≤ C(ω) log pNk+1

Nk+1∑
j=Nk+1

W 2
j (ω)

and

‖S
′

t − S
′

s‖2,µ ≤
Nk+1∑

j=Nk+1

|Wj(ω)|.

Hence, the assertion of Theorem 3.1 remains true.

3.2. We now apply Theorem 3.1 to improve some previous results on ran-
domly weighted means of contractions (see [A], [SW], and [R]).

Corollary 3.3. Let (Zk)k∈N be a sequence of independent, symmetric,
square integrable, identically distributed random variables, defined on a prob-
ability space (Ω,B,P). Let α > 1/2, β > 2. Then there exists a (universal)
P-null set N∗ ∈ B such that for each ω ∈ Ω\N∗, for any probability space
(X,F , µ), any contraction T on L2(µ), and any f ∈ L2(µ), the sequences
(Sn(ω, ·))n≥1, (Rn(ω, ·))n≥1 defined by

(3.3) ∀x ∈ X, ∀n ≥ 1, Sn(ω, x) =
n∑
k=1

Zk(ω)
kα

T kf(x)

and

(3.4) ∀x ∈ X, ∀n ≥ 1, Rn(ω, x) =
n∑
k=1

Zk(ω)√
k logβ k

T kf(x)

converge µ-almost surely.

Proof. Set Nk = 2k for all k ∈ N. By Theorem 3.1 it is enough to verify
Conditions (1.2) and (3.2).

If α > 1/2, then for the series (3.3), Condition (1.2) becomes

∞∑
i=0

√
log(2i+1)

 2i+1∑
k=2i+1

E(|Zk|2)
k2α

1/2

≤ K(E|Z1|2)1/2
∞∑
i=0

√
i+ 1

2(α−1/2)i
<∞,
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while Condition (3.2) becomes

∞∑
k=1

min

log2 (2k+1 − 2k) log 2k+1

 2k+1∑
j=2k+1

E |Zj |2

j2α

 ,

E

 2k+1∑
j=2k+1

|Zj |
jα

2
 ≤ KE(|Z1|2)

∞∑
k=1

k3

2(2α−1)k
<∞.

If β > 2, then for the series (3.4), Condition (1.2) becomes

∞∑
i=0

√
log(2i+1)

 2i+1∑
k=2i+1

E(|Zk|2)
k log2β k

1/2

≤ K(E|Z1|2)1/2
∞∑
i=1

1
i(β−1/2)

<∞,

while Condition (3.2) becomes

∞∑
k=1

min

log2 (2k+1 − 2k) log 2k+1

 2k+1∑
j=2k+1

E(|Zj |2)
j log2β j

 ,

E

 2k+1∑
j=2k+1

|Zj |
j log2β j

2
 ≤ KE(|Z1|2)

∞∑
k=1

1
k2β−3

<∞.

Hence, Conditions (1.2) and (3.2) are fulfilled for the series (3.3) and (3.4).
This completes the proof of Corollary 3.3. �

Remark 3.4. If α ≤ 1/2 and P{|Z1| > 0} > 0, then the series (3.3) does
not converge. To see this, it is enough to take T = I and α = 1/2 in (3.3).
Then we have

∀ω ∈ Ω, ∀x ∈ X,
∞∑
k=1

Zk(ω)√
k
T kf(x) = f(x)

∞∑
k=1

Zk(ω)√
k
.

But by the 0–1 law and the Central Limit Theorem, the series on the right-
hand side diverges almost surely. The case α < 1/2 is treated in exactly the
same manner, completing the proof of our claim. Corollary 3.3 strengthens a
previous result of J. Rosenblatt [R], who obtained this result with a factor n
instead of

√
n logβ n and the Rademacher sequence instead of general sequence

of independent, symmetric, identically distributed random variables.

By combining Corollary 3.3 with Kronecker’s Lemma, we get:

Theorem 3.5. If (Zk)k∈N is a sequence of independent, symmetric, square
integrable, identically distributed random variables on a probability space
(Ω,B,P) and if β > 2, then there exists a (universal) P-null set N∗ ∈ B
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such that for each ω ∈ Ω\N∗, for any probability space (X,F , µ), any con-
traction T on L2(µ), and any f ∈ L2(µ), the sequence

(3.5) An(ω, x) =
1

√
n logβ n

n∑
k=1

Zk(ω)T kf(x), x ∈ X,n ≥ 1

converges to zero µ-almost surely.

Remark 3.6. The almost sure convergence of the weighted means

(3.6)
1
n

n∑
k=1

Zk(ω)T kf

has been studied in [A], [R], and [SW]. Indeed, in [A] the almost sure conver-
gence to zero of these means is established when (Zk)k∈N is an i.i.d sequence
of symmetric random variables such that E(|Z1|p) <∞ for some 1 < p <∞,
and T is the transformation induced by a measure preserving transformation,
whereas in [R] these means are studied when T is a contraction on Lp(µ),
1 < p < ∞, and (Zk)k∈N is a Rademacher sequence. In [SW] a Gaussian
randomization technique is used to prove the almost sure convergence of the
means (3.6), and a similar result is obtained when the sequence (Zk)k≥1 is
positive.

3.3. Now let (Zk)k∈N be as in Theorem 3.4, let (X,F , µ) be a probability
space, and T a contraction on L1(µ), which is also assumed to be a contraction
on any Lp(µ), p ≥ 1. Consider the series

(3.7) ∀ω ∈ Ω, ∀x ∈ X, ∀n ≥ 1, Sn(ω, x) =
n∑
k=1

Zk(ω)
k

T kf(x).

By using the above results and a complex interpolation method, we will prove
the almost sure convergence of this series, for all f ∈ Lp(µ), p > 1.

Theorem 3.7. Let (Zk)k∈N be a sequence of independent, symmetric,
square integrable, identically distributed random variables on some probability
space (Ω,B,P). Then there exists a (universal) P-null set N∗ ∈ B, such that
for each ω ∈ Ω\N∗, for any probability space (X,F , µ), any contraction T on
L1(µ) which is also a contraction on every Lp(µ), and for any f ∈ Lp(µ), p >
1, the series Sn(ω, ·) defined in (3.7) converges µ-almost surely. Furthermore,
if we define

(3.8) ∀ω ∈ Ω\N∗, ∀p > 1, ∀f ∈ Lp(µ), S∗(f) = sup
n≥1

∣∣∣∣∣
n∑
k=1

Zk(ω)
k

T kf

∣∣∣∣∣ ,
then we have the strong maximal inequality

(3.9) ∀ω ∈ Ω\N∗, ∀p > 1, ∀f ∈ Lp(µ), ‖S∗(f)‖p ≤ C(p, ω)‖f‖p.
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Proof. Let α > 1/2, z ∈ C with 0 ≤ <(z) ≤ 1, and Nj = 2j for j = 1, 2, . . . .
Let ν : X → N∗ be a measurable map and define for ω ∈ Ω and p ≥ 1 the
following operators on Lp(µ):

(3.10) ∀f ∈ Lp(µ), Sνz (f) =
ν∑
j=1

Zj(ω)
j(α+z/2)

T k(f)

and

(3.11) S∗z (f) = sup
ν≥1
|Sνz (f)| .

We first establish a useful estimate for ‖Sνz (f)‖2 when f ∈ L2(µ). Let x ∈ X.
Then there exists a positive integer k0 = k0(ν), such that 2k0 < ν(x) ≤ 2k0+1.
Thus

|Sνz (f)|(x) =

∣∣∣∣∣∣
ν(x)∑
j=1

Zj(ω)
j(α+z/2)

T jf(x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
2k0∑
j=1

Zj(ω)
j(α+z/2)

T jf(x)

∣∣∣∣∣∣+ max
2k0<n≤2k0+1

∣∣∣∣∣∣
n∑

j=2k0+1

Zj(ω)
j(α+z/2)

T jf(x)

∣∣∣∣∣∣
≤ |Z1(ω)T (f)(x)|+

∞∑
k=0

∣∣∣∣∣∣
2k+1∑

j=2k+1

Zj(ω)
j(α+z/2)

T jf(x)

∣∣∣∣∣∣
+
∞∑
k=0

max
2k<n≤2k+1

∣∣∣∣∣∣
n∑

j=2k+1

Zj(ω)
j(α+z/2)

T jf(x)

∣∣∣∣∣∣
≤ |Z1(ω)T (f)(x)|+ 2

∞∑
k=0

max
2k<n≤2k+1

∣∣∣∣∣∣
n∑

j=2k+1

Zj(ω)
j(α+z/2)

T jf(x)

∣∣∣∣∣∣ .
But, by the second step in the proof of Theorem 3.1, we have

∞∑
k=0

∥∥∥∥∥∥ max
2k<n≤2k+1

∣∣∣∣∣∣
n∑

2k+1

Zj(ω)
j(α+z/2)

T jf

∣∣∣∣∣∣
∥∥∥∥∥∥

2

≤ C2(ω)‖f‖2,

where

C2(ω) = |Z1(ω)|+ C(ω)
∞∑
k=1

k3
2k+1∑

j=2k+1

|Zj(ω)|2

j2α

1/2

is a P-almost surely finite random variable. Hence,

(3.12) ∀f ∈ L2(µ), ‖Sνz (f)‖2 ≤ C2(ω)‖f‖2.
Now let f1, f2 be two simple functions and consider the map Φ: z →∫
Sνz (f1)f2 dµ. Then Φ is analytic on {z | 0 < <(z) < 1} and uniformly
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bounded for 0 ≤ <(z) ≤ 1. To see this, it is enough to consider the case when
f1 and f2 are characteristic functions. Indeed, let A1, A2 ∈ B, and denote by
1A1 and 1A2 their respective characteristic functions. We have

|Φ(z)| =

∣∣∣∣∣∣
∫
A2

ν(x)∑
n=1

Zn(ω)
n(α+z/2)

Tn(1A1)(x) dµ(x)

∣∣∣∣∣∣
≤
√
µ(A2)

∥∥∥∥∥
ν∑

n=1

Zn(ω)
n(α+z/2)

Tn(1A1)

∥∥∥∥∥
2

.

Hence, by using inequality (3.12), we obtain

|Φ(z)| ≤ C(ω)
√
µ(A1)µ(A2).

This proves the uniform boundedness of Φ(z) when 0 ≤ <(z) ≤ 1 and f1, f2

are the characteristic functions of measurable sets. By the same method, we
obtain the result for the case when f1, f2 are simple functions.

Let f ∈ L1(µ), N ≥ 1, and set z = 1 + iy, y ∈ R. Then∥∥∥∥∥∥ sup
n≤N

∣∣∣∣∣∣
n∑
j=1

Zj(ω)
j(α+(1+iy)/2)

T k(f)

∣∣∣∣∣∣
∥∥∥∥∥∥

1

≤
∞∑
j=1

|Zj(ω)|
j(α+1/2)

‖f‖1.

But

E

 ∞∑
j=1

|Zj |
j(α+1/2)

 <∞.

Hence

(3.13) ∀f ∈ L1(µ), ‖Sν1+iy(f)‖1 ≤ C1(ω)‖f‖1,
where

C1(ω) =

 ∞∑
j=1

|Zj(ω)|
j(α+1/2)

 .

Further, if we choose z = iy, y ∈ R, in inequality (3.12), we have

(3.14) ∀f ∈ L2(µ), ‖Sνiy(f)‖2 ≤ C2(ω)‖f‖2.
By inequalities (3.13), (3.14), and the Interpolation Theorem of Stein (see

Theorem 1.39 in [Z]), we have

∀ 1 ≤ p ≤ 2, ∀f ∈ Lp(µ), ‖Sνr (f)‖p ≤ C0(p, ω)‖f‖p,
where 0 ≤ r ≤ 1, and 1/p = (1− r)/2 + r. But, if 1 < p ≤ 2, we can choose
α > 1/2 such that α+ r/2 = 1. Hence, for 1 < p ≤ 2 and f ∈ Lp(µ) we have∥∥∥∥∥∥

ν∑
j=1

Zj(ω)
j

T jf

∥∥∥∥∥∥
p

≤ Cp(ω)‖f‖p.
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Now if we put, for 1 < p ≤ 2, f ∈ Lp(µ), and N ≥ 1,

ν(x) = ν(ω, f,N, x)

= min

ν ≤ N : max
n≤N

∣∣∣∣∣∣
n∑
j=1

Zj(ω)
j

T k(f)(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
ν∑
j=1

Zj(ω)
j

T k(f)(x)

∣∣∣∣∣∣
 ,

we have, for 1 < p ≤ 2, f ∈ Lp(µ), and N ≥ 1,∥∥∥∥∥∥max
n≤N

∣∣∣∣∣∣
n∑
j=1

Zj(ω)
j

T jf

∣∣∣∣∣∣
∥∥∥∥∥∥
p

≤ C0(p, ω)‖f‖p.

But C0(p, ω) is independent of N , so taking the limit in the above inequality
gives

(3.15) ∀ 1 < p ≤ 2, ∀f ∈ Lp(µ), ‖S∗(f)‖p ≤ C0(p, ω)‖f‖p.
Using the same argument, we get a maximal inequality for p ≥ 2. Indeed, let
2 ≤ p ≤ ∞, f ∈ L∞(µ), N ≥ 1, and set z = 1 + iy, y ∈ R. Then∥∥∥∥∥∥

ν∑
j=1

Zj(ω)
j(α+(1+iy)/2)

T k(f)

∥∥∥∥∥∥
∞

≤

 ∞∑
j=1

|Zj(ω)|
j(α+1/2)

 ‖f‖∞.
Thus,

(3.16) ∀f ∈ L∞(µ), ‖Sν1+iy(f)‖∞ ≤ C1(ω) ‖f‖∞.
Hence, by (3.14), (3.16), and Stein’s Interpolation Theorem, there exists a
P-null set N∗ ∈ B, such that, for each ω ∈ Ω\N∗ and for 2 ≤ p ≤ ∞,

∀f ∈ Lp(µ), ‖Sνr (f)‖p ≤ C3(p, ω)‖f‖p,
where 0 ≤ r ≤ 1, 2 ≤ p ≤ ∞, and 1/p = (1− r)/2. But if 2 ≤ p < ∞, we
can choose α such that α+ r/2 = 1. Hence, as above we obtain

∀ 2 < p <∞, ∀f ∈ Lp(µ), ‖S∗(f)‖p ≤ C3(p, ω)‖f‖p.
Consequently, for 1 < p <∞ there exists a P-null set N∗ ∈ B, and a P-almost
surely finite random variable C(p, ω), such that, for each ω ∈ Ω\N∗,

∀f ∈ Lp(µ), ‖S∗(f)‖p ≤ C(p, ω)‖f‖p. �

Remark 3.8. Inequality (3.15) and the fact that the series (3.7) con-
verges µ-almost surely when f ∈ L2, imply that the series (3.7) converges
µ-almost surely, for any f ∈ Lp(µ), 1 < p < ∞. This observation implies,
by Kronecker’s Lemma,

lim
n→+∞

1
n

n∑
j=1

Zj(ω)T jf = 0

µ-almost surely, for each ω ∈ Ω\N∗ and f ∈ Lp(µ), p > 1.
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3.4. We now focus on a series of operators perturbed by random variables.
By invoking Lemma 2.3 this time, we will establish conditions for the conver-
gence µ-almost everywhere of these series and show how to deduce a result of
Schneider (Theorem 1.1. in [S]).

Theorem 3.9. Let (ak)k≥1 be a sequence of real numbers, (pk)k∈N a se-
quence of positive integers, and (θk)k≥1 a sequence of independent, identically
distributed, N-valued random variables with positive moments, defined on a
probability space (Ω,B,P). Assume that there exist integers 0 := N0 < N1 <
N2 < · · · such that the following conditions are satisfied:

(3.17)
∞∑
i=0

√
log pNi+1

 Ni+1∑
k=Ni+1

a2
k

1/2

<∞

and

(3.18)

∑
k

min

log2 (Nk+1 −Nk) log pNk+1

 Nk+1∑
j=Nk+1

a2
j

 ,

 Nk+1∑
j=Nk+1

aj

2
 <∞.

Then there exists a (universal) P-null set N∗ ∈ B such that for each ω ∈
Ω\N∗, for any probability space (X,F , µ), any contraction T on L2(µ), and
any f ∈ L2(µ), the sequence (Rn(ω, ·))n≥1 defined by

(3.19) ∀ω ∈ Ω, ∀x ∈ X, ∀n ≥ 1,

Rn(ω, x) =
n∑
k=1

ak

[
T pk+θk(ω)(f)−E

(
T pk+θ1(f)

)]
converges µ-almost surely.

Proof. Let f ∈ L2(µ) and assume that ‖f‖2,µ = 1. Define

∀ω ∈ Ω, ∀k ≥ 1, ψk(ω) =
Nk+1∑

j=Nk+1

aj

[
T pj+θj(ω)(f)−E

(
T pj+θ1(f)

)]
.

By Lemma 2.3 in [S], we have

A = E

(
sup
m≥1

√
log (pm + θ1)

log pm

)
<∞.
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By means of the spectral inequality we may write

‖ψk(ω)‖2,µ ≤ sup
0≤λ≤1

∣∣∣∣∣∣
Nk+1∑

j=Nk+1

aj

[
e2iπλ(pj+θj(ω)) −E

(
e2iπλ(pj+θ1)

)]∣∣∣∣∣∣
≤ sup
N<M

sup
0≤λ≤1

∣∣∣∑M
j=N aj

[
e2iπλ(pj+θj(ω)) −E

(
e2iπλ(pj+θ1)

)]∣∣∣{
(log pM )

∑M
j=N a

2
j

}
×

(log pNk+1)
Nk+1∑

j=Nk+1

a2
j


1/2

.

By Lemma 2.3 we have

E

 sup
N<M

sup
0≤λ≤1

∣∣∣∑M
j=N+1 aj

[
e2iπλ(pj+θj) −E

(
e2iπλ(pj+θ1)

)]∣∣∣{
(log pM )

∑M
j=N a

2
j

}1/2

 ≤ CA.
There thus exists a P-almost surely finite random variable C(ω), such that

‖ψk(ω)‖2,µ ≤ C(ω)

log pNk+1

Nk+1∑
j=Nk+1

a2
j


1/2

.

Since

RNm =
Nm∑
j=1

aj

[
T pj+θj(ω)(f)−E

(
T pj+θ1(f)

)]
=
m−1∑
k=0

ψk(ω)

and

∞∑
k=0

‖ψk(ω)‖1,µ ≤
∞∑
k=0

‖ψk‖2,µ ≤ C(ω)
∞∑
k=0

log pNk+1

Nk+1∑
Nk+1

a2
j

1/2

,

there exists a (universal) P-null set N∗ ∈ B, such that, for each ω ∈ Ω\N∗,
∞∑
k=0

‖ψk(ω)‖1,µ <∞.

Consequently, the series
∑m
k=0 |ψk(ω)|, converges µ-almost surely for each

ω ∈ Ω\N∗. Therefore, for each ω ∈ Ω\N∗, the sequence of partial sums
Nk+1∑
j=1

aj

[
T pj+θj(ω)(f)−E

(
T pj+θ1(f)

)]
, k = 1, 2, . . . ,

converges µ-almost surely. The general case follows from this by considering,
for an arbitrary function g ∈ L2(µ) with g 6= 0, the function f = g/‖g‖2,µ. As
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in the second half of the proof of Theorem 3.1, and by means of Theorem 2.4,
we control the oscillations of the sequence Rn on the interval Ik =]Nk, Nk+1]
by using the following inequalities, which result from the Spectral Lemma and
Lemma 2.3:

‖Rt −Rs‖22,µ ≤ C(ω) log pNk+1

t∑
j=s+1

a2
j

and

‖Rt −Rs‖2,µ ≤ 2
t∑

j=s+1

|aj |,

for each ω ∈ Ω, k ≥ 1 and s, t ∈ Ik. Hence we obtain

∞∑
k=1

∥∥∥∥ max
s,t∈Ik

|Rt −Rs|
∥∥∥∥2

2,µ

≤ C(ω)
∑
k

min

log2 (Nk+1 −Nk) log pNk+1

 Nk+1∑
j=Nk+1

a2
j

 ,

 Nk+1∑
j=Nk+1

aj

2
 <∞.

This completes the proof of Theorem 3.9. �

Now take ak = 1/k and Nk = 2k in Theorem 3.9 and suppose that the
sequence (pk)k∈N satisfies

(a1) pk = O(2k
δ

) for some δ ∈]0, 1[.

Define also a contraction ∆ on L2(µ) by

(a2) ∆: f ∈ L2(µ)→ ∆(f) = E
(
T θ1(f)

)
.

In this case, Conditions (3.17) and (3.18) are fulfilled, so there exists a (uni-
versal) P-null set N∗ ∈ B such that for each ω ∈ Ω\N∗ the series

n∑
k=1

1
k

[
T pk+θk(ω)(f)− T pk(∆(f))

]
, n = 1, 2, . . . ,

converges µ-almost surely. This gives immediately the following result:

Corollary 3.10. Let (pk)k∈N be a sequence of positive integers which
satisfies (a1) and let (θk)k≥1 be a sequence of independent, identically dis-
tributed, N-valued random variables with positive moments, defined on a prob-
ability space (Ω,B,P). There exists a (universal) P-null set N∗ ∈ B such that
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for each ω ∈ Ω\N∗, for any probability space (X,F , µ), any contraction T on
L2(µ), and any f ∈ L2(µ), if ∆ is the contraction defined in (a2), one has

lim
n→∞

1
n

n∑
k=1

T pk+θk(ω)(f) = lim
n→∞

1
n

n∑
k=1

T pk(∆(f)), µ-almost surely.

Corollary 3.10 states that if (pk)k∈N is a sequence of positive integers
which satisfies (a1) and which is good for the pointwise ergodic theorem,
i.e., limn→∞(1/n)

∑n
k=1 T

pk(f) exists µ-almost surely, there exists a (univer-
sal) P-null set N∗ ∈ B such that for each ω ∈ Ω\N∗, the perturbed sequence
{pk + θk(ω), k ∈ N} is also good for the pointwise ergodic theorem. Thus we
have:

(1) If T is the operator induced by a measure preserving transformation
and (pk)k∈N is the sequence {kd, k ≥ 1}, d ≥ 1, or the sequence of
prime numbers, then the perturbed sequence {pk+θk(ω), k ∈ N} is
good for the pointwise ergodic theorem. Furthermore, if d = 1 (resp.
d ≥ 2) and T is ergodic (resp. Tn is ergodic for each n ∈ N), then for
any ω ∈ Ω\N∗ one has

lim
n→∞

1
n

n∑
k=1

T pk+θk(ω)(f) =
∫
X

∆(f) dµ =
∫
X

f dµ

µ-almost surely. Hence, in this case the limit is independent of the
sequence (θk)k≥1.

(2) If T is a positive contraction, then the sequence {k+ θk(ω), k ∈ N}
is also good for the pointwise ergodic theorem.

On the other hand, we can deduce from Corollary 3.10 that if (pk)k∈N is
a sequence of positive integers which satisfies (a1) and which is bad for the
ergodic theorem (i.e., there exist an f ∈ L2(µ) and Xf ∈ F with µ(Xf ) > 0
such that, for each x ∈ Xf , limn→∞(1/n)

∑n
k=1 T

pk(f)(x) does not exist),
then there exists a (universal) P-null set N∗ ∈ B such that for each ω ∈ Ω\N∗
the sequence {pk+θk(ω), k ∈ N} is also bad for the pointwise ergodic theorem.
This was observed in [S], where Corollary 3.10 was proved using Gaussian
randomization techniques.
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