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ON THE SECOND EIGENVALUE OF THE LAPLACIAN IN
AN ANNULUS

LIANGPAN LI

Abstract. It is shown that the second eigenvalue of the Laplacian with
either Dirichlet or Neumann boundary conditions in an annulus in a
Euclidean space, or in a sphere, or in a hyperbolic space of dimension
n > 1 has multiplicity n.

1. Introduction

Let Ω be a bounded domain in R2 and consider the corresponding Dirichlet
boundary problem (DBP){

4u+ λu = 0 in Ω,
u = 0 on ∂Ω,

with eigenfunctions ui ∈ H1
0 (Ω), and with eigenvalues λ1 < λ2 ≤ λ3 ≤ · · · .

Let us consider a solution ui of the DBP on Ω. We denote by N (ui) the nodal
set of ui, that is, N (ui) = {x ∈ Ω : ui(x) = 0}. The nodal domains of ui are
the connected components of Ω\N (ui).

In 1967 Payne conjectured in [16] that u2 cannot have a closed nodal line
in Ω, and in 1982 Yau [18] asked the same question for more restrictive con-
vex domains in R2. In 1992 Melas [15] answered positively Yau’s question;
see also a more recent treatment of Liboff [13]. In 1997 a beautiful coun-
terexample to the original conjecture of Payne was given by M. Hoffmann-
Ostenhof, T. Hoffmann-Ostenhof and N. Nadirashvili [9], who constructed a
multi-connected domain in R2 such that the corresponding second eigenfunc-
tion u2 has a closed nodal line. Even though, it is widely believed [8], [10]
that Payne’s conjecture holds true for general simply-connected domains in
the plane.

Motivated by this question, the author tried to determine N (u2) when the
domain is a Euclidean annulus, since annuli are the simplest multi-connected
regions in the Euclidean space. We can also ask similar questions in curved
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spaces. Recently Shieh [17] proved that the second eigenvalue of the DBP on a
spherical band in the unit sphere S2 has multiplicity 2; as a natural corollary,
Payne’s conjecture holds true for that spherical band.

The main purpose of this paper is to extend the earlier work of Shieh
and the author. Denote by Mn

k the n-dimensional (n > 1) simply-connected
complete Riemannian manifold with constant sectional curvature k, and by
BR ⊂ Mn

k a geodesic ball of radius R centered at a fixed point p ∈ Mn
k . For

two concentric balls BR1 $ BR2 (if k > 0, we further require R2 < π/
√
k), we

denote by WR1,R2 the annular domain BR2\BR1 . First we will establish:

Theorem 1.1. The second eigenvalue of the Dirichlet Laplacian inWR1,R2

has multiplicity n.

Next we consider the Neumann boundary problem (NBP) on WR1,R2{
4v + µv = 0 in WR1,R2 ,
∂v
∂ν = 0 on ∂WR1,R2 ,

with eigenfunctions vi ∈ H1(Ω) and eigenvalues µ1 < µ2 ≤ µ3 ≤ · · · , where
ν denotes the unit outward normal vector on ∂WR1,R2 . Corresponding to
Theorem 1.1 we have:

Theorem 1.2. The second eigenvalue of the Neumann Laplacian in
WR1,R2 has multiplicity n.

The main source of inspiration for the analysis in this paper are the pa-
pers [7], [14], [19] concerning the multiplicity of the second eigenvalue of the
Dirichlet Laplacian. This paper is organized as follows. In Section 2 we briefly
describe how to study the second eigenvalue of the Laplacian in an annulus
and we state two propositions to be proved in Section 4. The main results of
this paper are proved in Section 3.

2. Candidates for the second eigenvalue

2.1. Candidates for the second Dirichlet eigenvalue. Let exp : Mp 7→
Mn

k be the exponential map from Mp, the tangent space of Mn
k at p, onto Mn

k .
Let Sn−1

p be the unit sphere in Mp and � be the Laplacian acting on functions
on Sn−1

p . For a function F : WR1,R2 7→ R of the form

F (exp rη) = T (r)G(η),

where R1 < r < R2, η ∈ Sn−1
p , one has by a standard calculation [3, pp.

38–41] that F is an eigenfunction of the DBP on WR1,R2 with eigenvalue λ if
and only if (i) G is an eigenfunction of −�, and (ii) T satisfies the following
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Sturm-Liouville problem

(2.1)

{
(Sn−1T ′)′ + {λ− γS−2}Sn−1T = 0,
T (R1) = T (R2) = 0,

where γ is the eigenvalue of G and S : (R1, R2) 7→ R is of the form

S(r) =


sin(

√
kr)/

√
k, k > 0,

r, k = 0,
sinh(

√
−kr)/

√
−k, k < 0.

Standard theory for the Sturm-Liouville problem [12, Theorem 1.3.3] asserts
that (2.1) has eigenvalues λγ,1 < λγ,2 < λγ,3 < · · · , and the eigenfunction Tγ,s

corresponding to λγ,s has s−1 zeros over (R1, R2) for all s ∈ N. To emphasize
the dependence on the region, we shall also write λγ,s = λγ,s(WR1,R2).

Next we describe some spectral properties of −�. Since Sn−1
p is isometric

to Sn−1, the unit sphere in Rn, we can view Sn−1
p as simply Sn−1. Let P̃ be

any homogeneous harmonic polynomial of degree j (j ≥ 0) on Rn, and let
P be its restriction to Sn−1. Then −�P = j(j + n − 2)P . In this way we
obtain all the eigenfunctions of −� (cf., e.g., [2], [3]). In particular, the first
eigenfunction is of a constant value, while the second one with multiplicity n
can be written in the form

(2.2) θ1x1 + · · ·+ θnxn|Sn−1 ,

where (θ1, . . . , θn) ∈ Rn\{0}.
Let u2 be a second eigenfunction of the DBP on WR1,R2 . According to

Courant’s nodal domain theorem [4], u2 has exactly two nodal domains.
Hence λ2(WR1,R2) must be either λ0,2(WR1,R2) or λn−1,1(WR1,R2). Consid-
ering λ1(WR1,R2) = λ0,1(WR1,R2), we further have

(2.3) λ2(WR1,R2) = min{λ0,2(WR1,R2), λn−1,1(WR1,R2)}.

2.2. Candidates for the second Neumann eigenvalue. Similarly, for
a function F̃ : WR1,R2 7→ R of the form

F̃ (exp rη) = T̃ (r)G̃(η),

where R1 < r < R2, η ∈ Sn−1
p , one has by a standard calculation that F̃ is an

eigenfunction of the NBP on WR1,R2 with eigenvalue µ if and only if (i) G̃ is
an eigenfunction of −�, and (ii) T̃ satisfies the Sturm-Liouville problem

(2.4)

{
(Sn−1T̃ ′)′ + {µ− δS−2}Sn−1T̃ = 0,
T̃ ′(R1) = T̃ ′(R2) = 0,

where δ is the eigenvalue of G̃. (2.4) has eigenvalues µδ,1 < µδ,2 < µδ,3 < · · · ,
and the eigenfunction T̃δ,s corresponding to µδ,s has s− 1 zeros over (R1, R2)



916 LIANGPAN LI

for all s ∈ N. We shall also write µδ,s = µδ,s(WR1,R2) to emphasize the
dependence on the region. Similar to (2.3) one has

(2.5) µ2(WR1,R2) = min{µ0,2(WR1,R2), µn−1,1(WR1,R2)}.

2.3. Two useful propositions. Let Φt : Mn
k 7→ Mn

k (t ∈ R) be a non-
trivial isometric transformation group and let X be its infinitesimal genera-
tor. Since Mn

k is homogeneous and isotropic, and by rescaling the isometric
group if necessary, for fixed θ ∈ Mp\{0} one can assume X(p) = θ without
loss of generality. Let ω(exp(rη)) = r be the distance function from p and
ϕ(exp(rη)) = 〈η, θ〉 be the angle function with respect to θ. We first claim
that

Proposition 2.1. One always has

(2.6) Xω = ϕ.

Note that the geodesic hyperplane {exp(rη) : r ≥ 0, η ∈ Sn−1
p , η⊥θ} divides

∂WR1,R2 into four parts, namely ∂(Ri,±) .= {exp(rη) : r = Ri,±〈η, θ〉 > 0}.
Remembering that ν denotes the unit outward normal vector on ∂WR1,R2 , we
next claim:

Proposition 2.2. One always has

(2.7)

{
X · ν > 0, on ∂(R1,−) ∪ ∂(R2,+);
X · ν < 0, on ∂(R1,+) ∪ ∂(R2,−).

Propositions 2.1 and 2.2 are trivial for the case when the annulus lies in a
Euclidean space as the interested reader can easily verify. The proofs of both
propositions will be given later in Section 4.

3. The second eigenvalue of the Laplacian

3.1. The second Dirichlet eigenvalue.

Proposition 3.1. λ0,2(WR1,R2) 6= λn−1,1(WR1,R2).

Proof. We argue by contradiction and suppose that λ0,2 = λn−1,1. Hence
there exist second eigenfunctions ψ and φ with corresponding eigenvalues
λ0,2 and λn−1,1, respectively, and θ ∈ Sn−1

p , such that (i) ψ is negative near
∂(R1,+) ∪ ∂(R1,−) and positive near ∂(R2,+) ∪ ∂(R2,−), and (ii) φ is posi-
tive near ∂(R1,+)∪∂(R2,+) and negative near ∂(R1,−)∪∂(R2,−). Here by
saying that a function f is positive/negative near ∂(Ri,±) we mean that for
any x ∈ ∂(Ri,±), there exists an open set U containing x in Mn

k such that f
is positive/negative in WR1,R2 ∩{U\∂(Ri,±)}. Note that (see Section 2.3 for
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the notation X)

Xφ · 4ψ −4Xφ · ψ = Xφ · 4ψ −X4φ · ψ
= −λ0,2Xφ · ψ + λn−1,1Xφ · ψ
= 0.

Thus by Green’s second formula,

(3.1)
∫

∂WR1,R2

Xφ · ∂ψ
∂ν

= 0.

But by Hopf’s lemma and Proposition 2.2, Xφ = ∂φ/∂ν〈X, ν〉 and ∂ψ/∂ν
are both negative on ∂(R2,+)∪∂(R2,−) and positive on ∂(R1,+)∪∂(R1,−).
These facts contradict (3.1) and consequently the proposition follows. �

Proposition 3.2. Suppose WR1,R2 ⊂ Rn. Then when R1 is sufficiently
small, one has λn−1,1(WR1,R2) < λ0,2(WR1,R2).

Proof. Let u(x) = ũ(|x|) be the radial solution to the equation{
4u+ λ∗u = 0 in BR2 ,

u = 0 on ∂BR2 ,

such that ũ has exactly one zero over (0, R2). By the monotonicity of the
Dirichlet eigenvalues with respect to domains [6], one has

λ∗(BR2) < λ0,2(WR1,R2).

On the other hand, by the continuity of the Dirichlet eigenvalues under con-
tinuous deformations of domains [5], one has

lim
R1→0

λn−1,1(WR1,R2) = λ2(BR2).

In addition, since BR2 ⊂ Rn one can easily deduce

λ2(BR2) < λ∗(BR2).

Combining these facts yields the desired result. �

Proof of Theorem 1.1. We first tackle the case when WR1,R2 ⊂ Rn. Define
a continuous function Π on (0, R2) by

Π(r) = λ0,2(Wr,R2)− λn−1,1(Wr,R2).

By Propositions 3.1 and 3.2, Π remains positive over (0, R2).
In general, supposeWR1,R2 ⊂ Mn

k . We shall also writeWn
R1,R2,k forWR1,R2

to emphasize the dimension and the curvature. Let Π̃ be the continuous
function on (−∞,max{0, k}] defined by

Π̃ : s 7→ λ0,2(Wn
R1,R2,s)− λn−1,1(Wn

R1,R2,s).
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By Proposition 3.1, Π̃(0)Π̃(k) > 0. Since we have already shown that Π̃(0) >
0, it follows that Π̃(k) > 0. Thus by (2.3), λ2(WR1,R2) = λn−1,1(WR1,R2),
and consequently by (2.2), λ2(WR1,R2) has multiplicity n. �

3.2. The second Neumann eigenvalue.

Proposition 3.3. µ0,2(WR1,R2) 6= µn−1,1(WR1,R2).

Proof. We argue by contradiction and suppose that µ0,2 = µn−1,1. Hence
there exist eigenfunctions ψ(x) = T̃0,2(ω(x)) and φ(x) = T̃n−1,1(ω(x))ϕ(x)
(see Section 2.3 for the notations of ω and ϕ) with corresponding eigenvalues
µ0,2 and µn−1,1, respectively. Since T̃0,2 has a unique zero over (R1, R2) and
either T̃0,2(R1) = 0 or T̃0,2(R2) = 0 implies ψ ≡ 0, we may further assume
that T̃0,2(R1) < 0 < T̃0,2(R2); else we can choose −ψ for the purpose. Note
that

Xψ · 4φ−4Xψ · φ = Xψ · 4φ−X4ψ · φ
= −µn−1,1Xψ · φ+ µ0,2Xψ · φ
= 0.

By Green’s second formula,

(3.2)
∫

∂WR1,R2

φ · ∂
∂ν
Xψ = 0.

By (2.4), T̃ ′0,2(Ri) = 0 and T̃ ′′0,2(Ri) = −µ0,2T̃0,2(Ri) for i = 1, 2. Hence by
Proposition 2.1,∫

∂WR1,R2

φ · ∂
∂ν
Xψ =

∫
∂WR1,R2

T̃n−1,1(ω)ϕ · ∂
∂ν
{T̃ ′0,2(ω)Xω}

=
∫

∂WR1,R2

T̃n−1,1(ω)ϕ · ∂
∂ν
{T̃ ′0,2(ω)ϕ}

=
∫

∂BR2

T̃n−1,1(ω)ϕ2 · T̃ ′′0,2(ω)

−
∫

∂BR1

T̃n−1,1(ω)ϕ2 · T̃ ′′0,2(ω)

= −µ0,2

∫
∂BR2

T̃n−1,1(R2)ϕ2 · T̃0,2(R2)

+ µ0,2

∫
∂BR1

T̃n−1,1(R1)ϕ2 · T̃0,2(R1).

Also by (2.4), T̃n−1,1(R1) 6= 0 and T̃n−1,1(R2) 6= 0. Since T̃n−1,1 has no zero
over (R1, R2), we may assume that T̃n−1,1(R1) > 0, T̃n−1,1(R2) > 0; else we
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can choose −T̃n−1,1 for the purpose. With this choice, we have

(3.3)
∫

∂WR1,R2

φ · ∂
∂ν
Xψ < 0,

since T̃0,2(R1) < 0 < T̃0,2(R2). (3.3) contradicts (3.2) and consequently the
proposition follows. �

Proposition 3.4. Suppose WR1,R2 ⊂ Rn. Then µ2(WR1,R2) ≤ 2n+2
R2

1
.

Proof. Set r =
√
x2

1 + · · ·+ x2
n. By the max-min principle (cf. [2], [3]),

µ2(WR1,R2) ≤

∫
WR1,R2

|∇x1
r |

2dx∫
WR1,R2

|x1
r |2dx

≤ 2

∫
WR1,R2

1
r2 |∇x1|2dx

1
n

∫
WR1,R2

dx
+ 2

∫
WR1,R2

x2
1|∇ 1

r |
2dx

1
n

∫
WR1,R2

dx

= 2n

∫
WR1,R2

1
r2 dx∫

WR1,R2
dx

+ 2

∫
WR1,R2

r2 · 1
r4 dx∫

WR1,R2
dx

≤ 2n+ 2
R2

1

. �

Proof of Theorem 1.2. Similar to the proof of Theorem 1.1, we need only
show that there exists a Euclidean annulus WR1,R2 ⊂ Rn such that

µn−1,1(WR1,R2) < µ0,2(WR1,R2).

Denote by J the Bessel function of order n/2−1, and by Ji the i-th positive
zero of J . It is well-known (cf. [1]) that Ji →∞ as i→∞ and for x ∈ Rn\{0}

4{|x|1−n/2J(|x|)}+ |x|1−n/2J(|x|) = 0.

Since J(Ji) = J(Ji+1) = J(Ji+2) = 0, there exist Ji < ξi < Ji+1 < ζi < Ji+2

such that the derivative of r1−n/2J(r) vanishes at both ξi and ζi, which implies
µ0,2(Wξi,ζi) = 1. By Proposition 3.4, µ2(Wξi,ζi) ≤ 2n+ 2/ξ2i < 2n+ 2/J2

i ,
which means that for sufficiently large i, say i > N1, µ2(Wξi,ζi) < µ0,2(Wξi,ζi).
Consequently by (2.5),

µn−1,1(Wξi,ζi
) < µ0,2(Wξi,ζi

) for i > N1.

This concludes the proof of Theorem 1.2. �

4. Proofs of Propositions 2.1 and 2.2

In this section we prove Propositions 2.1 and 2.2.
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Case A: k > 0: Set R = 1/
√
k and denote by Sn

R the sphere of radius R
centered at the origin in Rn+1, with the metric induced by the Euclidean
metric on Rn+1. Obviously Sn

R is a model for Mn
k . Let Φt : Sn

R 7→ Sn
R (t ∈ R)

be the isometric transformation group defined by

(x1, x2, x3, . . . , xn+1) 7→ (x1 cos t− x2 sin t, x1 sin t+ x2 cos t, x3, . . . , xn+1).

This isometric group is generated by the vector field X : Sn
R 7→ Rn+1 defined

by

(4.1) X(x1, x2, x3, . . . , xn+1) = (−x2, x1, 0, . . . , 0).

Now we choose p = (R, 0, 0, . . . , 0) with θ = X(p) = (0, R, 0, . . . , 0) ∈Mp\{0}.
With this choice,

WR1,R2 =
{

(x1, x2, . . . , xn+1) ∈ Sn
R : R cos

R2

R
< x1 < R cos

R1

R

}
and

∂(Ri,±) =
{

(x1, x2, . . . , xn+1) ∈ Sn
R : x1 = R cos

Ri

R
,±x2 > 0

}
.

Suppose x = (x1, x2, . . . , xn+1) ∈ ∂(Ri,±). Write l(x) for the line {x+sν(x) :
s ∈ R} and l for the line {sp : s ∈ R}.

Case A1: x1 6= 0: Suppose l(x) touches l at (a(x), 0, . . . , 0) for some a(x) 6=
0. Then

(4.2) ν(x) = ± (x1 − a(x), x2, . . . , xn+1)√
(x1 − a(x))2 + x2

2 + · · ·+ x2
n+1

.

Consequently by (4.1) and (4.2),

(X · ν)(x) = ± a(x)x2√
(x1 − a(x))2 + x2

2 + · · ·+ x2
n+1

6= 0.

Case A2: x1 = 0: Note that in this case ν(x) = ±(1, 0, . . . , 0). Thus by
(4.1),

(X · ν)(x) = ∓x2 6= 0.

In either case X ·ν is of constant sign on ∂(Ri,±). Let pi,± = (R cosRi/R,
±R sinRi/R, 0, . . . , 0) ∈ ∂(Ri,±). Then it is straightforward to verify that
(X · ν)(p1,+) < 0, (X · ν)(p2,+) > 0, (X · ν)(p1,−) > 0 and (X · ν)(p2,−) < 0.
Hence (2.7) follows by continuity.

Note that in coordinates x = (x1, x2, . . . , xn+1),

ω(x) = R
{π

2
− arcsin

x1

R

}
, ϕ(x) =

Rx2√
x2

2 + · · ·+ x2
n+1

.
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Hence

Xω(x) = lim
t→0

ω(Φt(x))− ω(x)
t

=
Rx2√

x2
2 + · · ·+ x2

n+1

= ϕ(x).

Case B: k = 0: Let Φt : Rn 7→ Rn (t ∈ R) be the isometric transformation
group defined by (x1, x2, . . . , xn) 7→ (x1 + t, x2, . . . , xn). This isometric group
is generated by the constant-valued vector field X : Rn 7→ Rn defined by
X(x) ≡ (1, 0, . . . , 0). The verification of (2.7) is trivial and we omit the
details. Let p be the origin of Rn. Then ω(x) =

√
x2

1 + x2
2 + · · ·+ x2

n and

ϕ(x) =
x1√

x2
1 + x2

2 + · · ·+ x2
n

.

Hence

Xω(x) = lim
t→0

ω(Φt(x))− ω(x)
t

=
x1√

x2
1 + x2

2 + · · ·+ x2
n

= ϕ(x).

Case C: k < 0: Set R = 1/
√
−k and denote by Un

R the upper half-space in
Rn defined in coordinates (x1, . . . , xn−1, xn) by {xn > 0}, with the metric

R2 dx
2
1 + · · ·+ dx2

n−1 + dx2
n

x2
n

.

Obviously Un
R is a model for Mn

k . Let Φt : Un
R 7→ Un

R (t ∈ R) be the isometric
transformation group defined by

(x1, x2, . . . , xn) 7→ (x1 + t, x2, . . . , xn).

This isometric group is generated by the vector field X : Un
R 7→ Rn defined

by X(x1, x2, . . . , xn) = (1, 0, . . . , 0). Now we choose p = (0, . . . , 0, R) with
θ = X(p) = (1, 0, . . . , 0) ∈Mp\{0}.

For any x ∈ ∂(Ri,±), we show that (X · ν)(x) 6= 0. We argue by con-
tradiction. Suppose (X · ν)(x∗) = 0 for some x∗ ∈ ∂(Ri,±). By defini-
tion, there exists η ∈ Sn−1

p , ±〈η, θ〉 > 0, such that x∗ = exp(Riη). Since
〈η, θ〉 6= 0, according to the standard structure of the geodesic line in hy-
perbolic spaces [11, pp. 83–86], there exist ξ = (ξ1, ξ2, . . . , ξn−1, 0) ∈ Rn

and r∗ ∈ R+ such that {exp rη : R1 < r < R2} lies entirely in the semi-
circle F ⊂ Rn of radius r∗ centered at ξ passing through both x∗ and p.
Note that by the assumption (X · ν)(x∗) = 0, it follows immediately that
F ⊂ {(x1, x2, . . . , xn) ∈ Un

R : x1 = ξ1}. Since p ∈ F , ξ1 = 0. Consequently
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one has {exp rη : R1 < r < R2} ⊂ {(x1, x2, . . . , xn) ∈ Un
R : x1 = 0}. This

obviously implies 〈η, θ〉 = 0. Hence we get a contradiction.

Thus in each of the cases, X · ν is of constant sign on ∂(Ri,±). Let pi,± =
exp(±Riθ/‖θ‖). Then it is straightforward to verify that (X · ν)(p1,+) < 0,
(X · ν)(p2,+) > 0, (X · ν)(p1,−) > 0 and (X · ν)(p2,−) < 0. Hence (2.7) follows
again by continuity.

Denote by Bn
R the ball of radius R in Rn centered at the origin with the

metric given in coordinates (y1, y2, . . . , yn) by

4R4 dy
2
1 + dy2

2 + · · ·+ dy2
n

(R2 − |y|2)2
.

Denote by Ψ : Bn
R 7→ Un

R the generalized Cayley transform given in coordinates
(z, v) ∈ Rn−1 × R by

(4.3) Ψ(z, v) =
(

2R2z

|z|2 + (v −R)2
, R

R2 − |z|2 − v2

|z|2 + (v −R)2

)
.

It is well-known [11, p. 38] that Un
R
∼= Bn

R and that Ψ is an isometric map
between Bn

R and Un
R. Note that the inverse of Ψ can be written as

(4.4) Ψ−1(z, v) =
(

2R2z

|z|2 + (v +R)2
, R

|z|2 + v2 −R2

|z|2 + (v +R)2

)
.

Note that Θt
.= Ψ−1ΦtΨ : Bn

R 7→ Bn
R (t ∈ R) is an isometric transformation

group on Bn
R. Suppose {Θt}t∈R is generated by the vector field X̃. Set p̃ =

Ψ−1(p) = (0, 0, . . . , 0) ∈ Bn
R. Since isometric transformations preserves the

lengths of tangent vectors under transformations, it follows easily fromX(p) =
(1, 0, . . . , 0, 0) ∈ Sn−1

p that

X̃(p̃) =
(

1
2
, 0, . . . , 0, 0

)
∈ Sn−1ep .

Hence in coordinates y = (y1, y2, . . . , yn) ∈ Bn
R one has

ϕ(y) =
y1√

y2
1 + y2

2 + · · ·+ y2
n

.

Note also that

ω(y) =
∫ |y|

0

2R2

R2 − s2
ds.

Consequently, by a long calculation (see below) one has

X̃ω(y) = lim
t→0

ω(Θt(y))− ω(y)
t

(4.5)

=
y1√

y2
1 + y2

2 + · · ·+ y2
n

= ϕ(y).
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Verification of (4.5). We first observe that

X̃ω(y) = lim
t→0

ω(Θt(y))− ω(y)
t

(4.6)

= lim
t→0

ω(Θt(y))− ω(y)
|Θt(y)| − |y|

· |Ψ
−1ΦtΨ(y)| − |Ψ−1Ψy|

t

=
2R2

R2 − |y|2
· {∂1|Ψ−1|}(Ψ(y))

=
2R2

R2 − |y|2
·

{
n∑

i=1

Ψ−1
i ∂1Ψ−1

i

|Ψ−1|

}
(Ψ(y))

=
2R2

R2 − |y|2
·

n∑
i=1

yi

|y|
{∂1Ψ−1

i }(Ψ(y)).

By (4.4), if i = 1, then

{
∂1Ψ−1

i

}
(z, v) =

2R2z1
|z|2 + (v +R)2

· 1
z1
−

{
2R2z1

|z|2 + (v +R)2

}2

· 1
R2

;

if 2 ≤ i ≤ n− 1, then

{∂1Ψ−1
i }(z, v) =

2R2zi

|z|2 + (v +R)2
· 2R2z1
|z|2 + (v +R)2

· −1
R2

;

and if i = n, then

{∂1Ψ−1
i }(z, v) =

2R2z1
|z|2 + (v +R)2

· 1
R

+

R · |z|
2 + v2 −R2

|z|2 + (v +R)2
· 2R2z1
|z|2 + (v +R)2

· −1
R2

.

Consequently, for i = 1 (note (4.3)),

(4.7)
{
∂1Ψ−1

i

}
(Ψ(y)) = y1

∑n−1
j=1 y

2
j + (yn −R)2

2R2y1
− y2

1

R2
;

for i = 2, . . . , n− 1,

(4.8)
{
∂1Ψ−1

i

}
(Ψ(y)) = −yiy1

R2
;

and for i = n,

(4.9)
{
∂1Ψ−1

i

}
(Ψ(y)) =

y1
R
− yny1

R2
.
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Combining (4.7)–(4.9) yields
n∑

i=1

yi{∂1Ψ−1
i }(Ψ(y)) =

y1{|y|2 − y2
n + (yn −R)2}
2R2

− y1|y|2

R2
+
y1yn

R
(4.10)

=
y1{R2 − |y|2}

2R2
.

Hence (4.5) follows from (4.6) and (4.10).
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