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AN EXACT SOLUTION TO AN EQUATION AND THE
FIRST EIGENVALUE OF A COMPACT MANIFOLD

JUN LING

To Hiroshi Matano

Abstract. We study an exact solution to a singular ordinary differen-
tial equation and use the solution to give a new estimate on the lower
bound of the first non-zero eigenvalue of a closed Riemannian mani-
fold with a negative lower bound on the Ricci curvature in terms of the
lower bound on the Ricci curvature and the largest interior radius of
the nodal domains of the eigenfunction. This provides a new way to
estimate eigenvalues.

1. Introduction

Spectral geometry has had an impact on many developments of mathemat-
ics. There have been numerous studies on eigenvalues, and especially the first
non-zero eigenvalue, of Riemannian manifolds. While there are many results
on the first non-zero eigenvalue for closed manifolds with positive Ricci cur-
vature, there are only a few results for manifolds with negative lower bound
on the Ricci curvature. In this paper, we study such problems. Let us re-
call some previous results. Li and Yau [2] proved that for an n-dimensional
closed Riemannian manifold with Ricci curvature bounded below by a con-
stant (n − 1)κ < 0 the first non-zero eigenvalue λ of the Laplacian has the
lower bound

λ ≥ 1

2(n− 1)d2e1+
√

1+4(n−1)2d2|κ|
,

where d is the diameter of the manifold. H. C. Yang [4] obtained a better
estimate,

λ ≥ π2

d2emax{
√

n−1,
√

2}
√

(n−1)|κ|d2
.
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In this paper, we give a new estimate on the lower bound. Note that the
interior radius of a domain in a manifold M is the radius of the largest ball
contained in the domain. We have the following result.

Theorem 1.1. If (Mn, g) is an n-dimensional closed Riemannian mani-
fold and if the Ricci curvature Ric(M) of (Mn, g) has a lower bound (n−1)κ <
0, that is,

Rij ≥ κδij ,(1)

then the first non-zero eigenvalue λ of the Laplacian ∆ of (Mn, g) satisfies
the inequality

λ ≥ π2

d2[1− (n− 1)κ/(2λ)]
> 0

and λ has the lower bound

λ ≥ π2

d2
+

1
2
(n− 1)κ,(2)

where d = 2r, and r is the largest interior radius of the nodal domains of the
first eigenfunction.

In the next section, we study the properties of an exact solution ξ, which
the author constructed in [3], to a singular ordinary differential equation. In
the final section we use this solution and its properties and the structure of
the nodal domains of the eigenfunction to derive our estimate for the first
non-zero eigenvalue. This provides a new way to estimate eigenvalues.

2. An exact solution to a differential equation

Theorem 2.1. The function

ξ(t) =
cos2 t + 2t sin t cos t + t2 − π2

4

cos2 t
on

[
−π

2
,
π

2

]
(3)

is an exact solution of the equation

1
2
ξ′′ cos2 t− ξ′ cos t sin t− ξ = 2 cos2 t in

(
−π

2
,
π

2

)
.(4)

Moreover, the function ξ has the following properties:

ξ′ cos t− 2ξ sin t = 4t cos t,(5) ∫ π
2

0

ξ(t) dt = −π

2
,(6)
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1− π2

4
= ξ(0) ≤ ξ(t) ≤ ξ(±π

2
) = 0 on

[
−π

2
,
π

2

]
,

ξ′ is increasing on
[
−π

2
,
π

2

]
and ξ′(±π

2
) = ±2π

3
,

ξ′(t) < 0 on
(
−π

2
, 0
)

and ξ′(t) > 0 on
(
0,

π

2

)
,

ξ′′(±π

2
) = 2, ξ′′(0) = 2

(
3− π2

4

)
and ξ′′(t) > 0 on

[
−π

2
,
π

2

]
,(

ξ′(t)
t

)′
> 0 on

(
0,

π

2

)
and 2

(
3− π2

4

)
≤ ξ′(t)

t
≤ 4

3
on

[
−π

2
,
π

2

]
,

ξ′′′
(π

2

)
=

8π

15
, ξ′′′(t) < 0 on

(
−π

2
, 0
)

and ξ′′′(t) > 0 on
(
0,

π

2

)
.

Proof of Theorem 2.1. For convenience, let q(t) = ξ′(t), that is,

q(t) = ξ′(t) =
2
(
2t cos t + t2 sin t + cos2 t sin t− π2

4 sin t
)

cos3 t
.(7)

Equation (4), the values ξ(±π/2) = 0, ξ(0) = 1 − π2/4 and ξ′(±π/2) =
±2π/3 can be verified directly from (3) and (7) . The values of ξ′′ at 0 and
±π/2 can be computed via (4).

(5) is equivalent to (ξ(t) cos2 t)′ = 4t cos2 t. Therefore

ξ(t) cos2 t =
∫ t

π
2

4s cos2 s ds,

and ∫ π
2

−π
2

ξ(t) dt = 2
∫ π

2

0

ξ(t) dt

= −8
∫ π

2

0

(
1

cos2(t)

∫ π
2

t

s cos2 s ds

)
dt

= −8
∫ π

2

0

(∫ s

0

1
cos2(t)

dt

)
s cos2 s ds

= −8
∫ π

2

0

s cos s sin s ds = −π.

It is easy to see that the function q satisfies the following equations:
1
2
q′′ cos t− 2q′ sin t− 2q cos t = −4 sin t,(8)

and
cos2 t

2(1 + cos2 t)
q′′′ − 2 cos t sin t

1 + cos2 t
q′′ − 2q′ = − 4

1 + cos2 t
.(9)
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The last equation implies that q′ = ξ′′ cannot achieve its non-positive lo-
cal minimum at a point in (−π/2, π/2). On the other hand, ξ(±π/2) = 0,
and ξ′(±π/2) = ±2π/3. It is also easy to compute from equation (4) that
ξ′′(±π/2) = 2. Therefore ξ′′(t) > 0 and ξ′ is increasing on [−π/2, π/2]. Since
ξ′(0) = 0, we have ξ′(t) < 0 on (−π/2, 0) and ξ′(t) > 0 on (0, π/2).

q′′ satisfies the equation

(10)
cos2 t

2(1 + cos2 t)
(q′′)′′ − cos t sin t(3 + 2 cos2 t)

(1 + cos2 t)2
(q′′)′

− 2(5 cos2 t + cos4 t)
(1 + cos2 t)2

q′′ = − 8 cos t sin t

(1 + cos2 t)2
.

Thus q′′ cannot achieve its non-positive local minimum at a point t1 ∈ (0, π/2).
Otherwise, the left-hand side of the equation is non-negative at t1 and the
right hand side of the equation at t1 is negative, which is impossible. Now
ξ′′′(0) = q′′(0) = 0 since ξ is an even function and ξ′′′ = q′′ is an odd function,
and ξ′′′(π/2) = q′′(π/2) = 8π/15 since by q(π/2) = ξ′(π/2) = 2π/3, q′(π/2) =
ξ′′(π/2) = 2 and by (8),

q′′
(π

2

)
= lim

t→π/2

(
2q′(t) tan t + 2q(t)− 4 tan t

)
= −2q′′

(π

2

)
+

4π

3
.

Therefore ξ′′′(t) > 0 on (0, π/2). The remaining results on the last line of the
theorem follow from the fact that ξ′′′ is an odd function.

Set h(t) = ξ′′(t)t− ξ′(t). Then h(0) = 0 and h′(t) = ξ′′′(t)t > 0 in (0, π/2).
Therefore (ξ′(t)/t)′ = h(t)/t2 > 0 in (0, π/2). Note that ξ′(−t)/(−t) = ξ′(t)/t,
limt→0 ξ′(t)/t = ξ′′(0) = 2(3− π2/4) and ξ′(t)/t|t=π/2 = 4/3. �

3. An estimate on the first non-zero eigenvalue

We now estimate the first non-zero eigenvalue, using the method in [5]. Let
v be an eigenfunction of the first non-zero eigenvalue λ of the Laplacian ∆

∆v = −λv in M.(11)

We may scale v such that

max
M

v = 1, min
M

v = −k(12)

with 0 < k ≤ 1.
Let b > 1 be an arbitrary constant and let

α =
1
2
(n− 1)κ < 0 and δ =

α

λ
< 0.(13)

Define a function Z on [− sin−1(k/b), sin−1(1/b)] by

Z(t) = max
x∈M,t=sin−1(v(x)/b)

|∇v|2

λ(b2 − v2)
.
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Theorem 3.1. Suppose the function z : [− sin−1(k/b), sin−1(1/b)] 7→ R1

satisfies the following conditions:
(i) z(t) ≥ Z(t), t ∈ [− sin−1(k/b), sin−1(1/b)].
(ii) There exists some x0 ∈ M such that z(t0) = Z(t0) at the point t0 =

sin−1
(
v(x0)/b

)
.

(iii) z(t0) ≥ 1.
(iv) z′(t0) sin t0 ≤ 0.

Then the following inequality holds:

0 ≥ −1
2
z′′(t0) cos2 t0 + z′(t0) cos t0 sin t0 + z(t0)− 1 + 2δ cos2 t0.(14)

Proof. Define

J(x) =
{

|∇v|2

(b2 − v2)
− λz

}
cos2 t,

where t = sin−1(v(x)/b). Then

J(x) ≤ 0 for x ∈ M and J(x0) = 0.

If ∇v(x0) = 0, then

0 = J(x0) = −λz cos2 t.

This contradicts condition (iii) in the theorem. Therefore

∇v(x0) 6= 0.

The maximum principle implies that

∇J(x0) = 0 and ∆J(x0) ≤ 0.(15)

J(x) can be rewritten as

J(x) =
1
b2
|∇v|2 − λz cos2 t.

Take normal coordinates about x0. (15) is equivalent to

(2/b2)
∑

i

vivij

∣∣
x0

= λ cos t[z′ cos t− 2z sin t]tj
∣∣
x0

(16)

and

0 ≥ (2/b2)
∑
i,j

v2
ij + (2/b2)

∑
i,j

vivijj − λ(z′′|∇t|2 + z′∆t) cos2 t(17)

+ 4λz′ cos t sin t|∇t|2 − λz∆ cos2 t
∣∣
x0

.

Rotate the frame so that v1(x0) 6= 0 and vi(x0) = 0 for i ≥ 2. Then (16)
implies

v11

∣∣
x0

= (λb/2)(z′ cos t− 2z sin t)
∣∣
x0

and v1i

∣∣
x0

= 0 for i ≥ 2.(18)
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It is easy to verify that the following equations:

|∇v|2
∣∣
x0

= λb2z cos2 t
∣∣
x0

, |∇t|2
∣∣
x0

=
|∇v|2

(b2 − v2)
= λz

∣∣
x0

,

∆v/b
∣∣
x0

= ∆ sin t = cos t∆t− sin t|∇t|2
∣∣
x0

,

∆t
∣∣
x0

=
sin t|∇t|2 + ∆v/b

cos t
=

λz sin t− λv/b

cos t

∣∣∣
x0

,

∆ cos2 t
∣∣
x0

= ∆
(
1− v2/b2

)
= −(2/b2)|∇v|2 − (2/b2)v∆v

= −2λz cos2 t + (2/b2)λv2
∣∣
x0

.

Therefore,

(2/b2)
∑
i,j

v2
ij

∣∣
x0
≥ (2/b2)v2

11

= (1/2)λ2(z′)2 cos2 t− 2λ2zz′ cos t sin t + 2λ2z2 sin2 t
∣∣
x0

,

(2/b2)
∑
i,j

vivijj

∣∣
x0

= (2/b2) (∇v∇(∆v) + Ric(∇v,∇v))

≥ (2/b2)(∇v∇(∆v) + (n− 1)κ|∇v|2)
= −2λ2z cos2 t + 4αλz cos2 t

∣∣
x0

− λ(z′′|∇t|2 + z′∆t) cos2 t
∣∣
x0

= −λ2zz′′ cos2 t− λ2zz′ cos t sin t + (1/b)λ2z′v cos t
∣∣
x0

,

and

4λz′ cos t sin t|∇t|2 − λz∆ cos2 t
∣∣
x0

= 4λ2zz′ cos t sin t + 2λ2z2 cos2 t− (2/b)λ2zv sin t
∣∣
x0

.

Putting these results into (17) we get

0 ≥ −λ2zz′′ cos2 t + (1/2)λ2(z′)2 cos2 t + λ2z′ cos t (z sin t + sin t)(19)

+ 2λ2z2 − 2λ2z + 4αλz cos2 t
∣∣
x0

,

where we used (18). By condition (iii) in the theorem,

z(t0) ≥ 1.(20)

Dividing both sides of (19) by 2λ2z
∣∣
x0

, we have

0 ≥ −1
2
z′′(t0) cos2 t0 + z′(t0) cos t0 sin t0 + z(t0)− 1 + 2δ cos2 t0(21)

+
1
2
z′(t0) sin t0 cos t0

(
1

z(t0)
− 1
)

+
1

4z(t0)
(z′(t0))2 cos2 t0.

By conditions (iii) and (iv) in the theorem, the last two terms are nonnegative.
Therefore (14) follows. �
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Proof of Theorem 1.1. Let

z(t) = 1 + δξ(t),(22)

where ξ is the function defined by (3) in Theorem 2.1 and δ is the negative
constant in (13). We claim that

Z(t) ≤ z(t) on [− sin−1(k/b), sin−1(1/b)].(23)

Theorem 2.1 implies that for t ∈ [− sin−1(k/b), sin−1(1/b)], we have the fol-
lowing:

1
2
z′′ cos2 t− z′ cos t sin t− z = −1 + 2δ cos2 t,

z′(t) sin t ≤ 0 (since δ < 0), and

z(t) ≥ z
(π

2

)
= 1.

Let P ∈ R1 and t0 ∈ [− sin−1(k/b), sin−1(1/b)] be such that

P = max
t∈[− sin−1(k/b),sin−1(1/b)]

(Z(t)− z(t)) = Z(t0)− z(t0).

Thus

Z(t) ≤ z(t) + P on [− sin−1(k/b), sin−1(1/b)] and(24)

Z(t0) = z(t0) + P.

Suppose that P > 0. Then z +P satisfies the conditions in Theorem 3.1. (14)
implies that

z(t0) + P = Z(t0)

≤ 1
2
(z + P )′′(t0) cos2 t0 − (z + P )′(t0) cos t0 sin t0 + 1− 2δ cos2 t0

=
1
2
z′′(t0) cos2 t0 − z′(t0) cos t0 sin t0 + 1− 2δ cos2 t0

= z(t0).

This contradicts the assumption P > 0. Thus P ≤ 0 and (23) must hold.
This means

√
λ ≥ |∇t|√

z(t)
.(25)

Note that the eigenfunction v of the first non-zero eigenvalue has exactly
two nodal domains D+ = {x : v(x) > 0} and D− = {x : v(x) < 0} (cf. [1])
and that the nodal set v−1(0) is compact. Take q1 on M such that v(q1) = 1 =
supM v and q2 ∈ v−1(0) such that distance d(q1, q2) = distance d(q1, v

−1(0)).
Let L be the minimal geodesic segment between q1 and q2. We integrate both
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sides of (25) along L and change variables, and let b → 1. Let r be the larger
of the two interior radii of the nodal domains. Then

r
√

λ ≥
∫

L

|∇t|√
z(t)

dl(26)

=
∫ π

2

0

1√
z(t)

dt ≥

(∫ π/2

0
dt
) 3

2

(∫ π/2

0
z(t) dt

) 1
2
≥

(
(π/2)3∫ π/2

0
z(t) dt

) 1
2

.

Squaring the two sides, we get

λ ≥ π3

8r2
∫ π/2

0
z(t) dt

.

Now ∫ π
2

0

z(t) dt =
∫ π

2

0

[1 + δξ(t)] dt =
π

2
(1− δ),

by (6) in Theorem 2.1. Therefore

λ ≥ π2

4r2(1− δ)
and λ ≥ π2

4r2
+

1
2
(n− 1)κ. �
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