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GOTZMANN MONOMIAL IDEALS

SATOSHI MURAI

Abstract. A Gotzmann monomial ideal of a polynomial ring is a mono-
mial ideal which is generated in one degree and which satisfies Gotz-
mann’s persistence theorem. Let R = K[x1, . . . , xn] denote the polyno-
mial ring in n variables over a field K and Md the set of monomials of
R of degree d. A subset V ⊂ Md is said to be a Gotzmann subset if the
ideal generated by V is a Gotzmann monomial ideal. In the present pa-
per, we find all integers a > 0 such that every Gotzmann subset V ⊂ Md

with |V | = a is lexsegment (up to the permutations of the variables).
In addition, we classify all Gotzmann subsets of K[x1, x2, x3].

0. Introduction

Let K be an arbitrary field and R = K[x1, x2, . . . , xn] the polynomial ring
with deg(xi) = 1 for i = 1, 2, . . . , n. Let I = ⊕∞d=0Id be a homogeneous ideal
of R. We denote the Hilbert function of I by H(I, d), i.e., H(I, d) = dimK Id.

The minimal growth of Hilbert functions of homogeneous ideals was deter-
mined by Macaulay. Gotzmann’s persistence theorem [6] states that if an ideal
has no generator of degree i > d and if the growth of the d-th Hilbert function
is minimal, then the growth of the k-th Hilbert function is also minimal for
k > d. In the following we explain in more detail Gotzmann’s persistence
theorem.

Let n and h be positive integers. Then h can be written uniquely in the
following form, called the n-th binomial representation of h:

h =
(

h(n) + n

n

)
+

(
h(n− 1) + n− 1

n− 1

)
+ · · ·+

(
h(i) + i

i

)
,

where h(n) ≥ h(n − 1) ≥ · · · ≥ h(i) ≥ 0, i ≥ 1; see [3, Lemma 4.2.6]. Given
this representation of h, we define

h<n> =
(

h(n) + n + 1
n

)
+

(
h(n− 1) + n

n− 1

)
+ · · ·+

(
h(i) + i + 1

i

)
,
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h<<n>> =
(

h(n) + n− 1
n− 1

)
+

(
h(n− 1) + n− 2

n− 2

)
+ · · ·+

(
h(i) + i− 1

i− 1

)
.

Theorem (Minimal growth of Hilbert function). Let I be a homogeneous
ideal of R = K[x1, x2, . . . , xn]. Then one has

H(I, d + 1) ≥ H(I, d)<n−1>.(1)

This theorem was proved by Macaulay. We refer the reader to [3, §4.2] for
further information.

Theorem (Gotzmann’s Persistence Theorem [6]). Let R = K[x1, . . . , xn]
and I be a homogeneous ideal of R generated in degree ≤ d. If H(I, d + 1) =
H(I, d)<n−1>, then H(I, k + 1) = H(I, k)<n−1> for all k ≥ d.

A monomial ideal I ⊂ R is called a Gotzmann monomial ideal if I is
generated in one degree d and if I satisfies H(I, d)<n−1> = H(I, d + 1).
Instead of discussing the ideal itself, we consider its minimal set of monomial
generators.

Let A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) be elements of Zn
≥0. The

lexicographic order on Zn
≥0 is defined by A < B if the leftmost nonzero entry

of B − A is positive. Moreover, the lexicographic order on monomials of the
same degree is defined by x1

a1x2
a2 . . . xn

an < x1
b1x2

b2 . . . xn
bn if A < B on

Zn
≥0.
Let M denote the set of variables {x1, x2, . . . , xn} and Md the set of all

monomials of degree d, where M0 = {1}. For a finite set V ⊂ Md, we write
MV = {xiv | v ∈ V, i = 1, 2, . . . , n} and write |V | for the number of elements
of V .

(i) V ⊂ Md is called a lexsegment set if V is the set of the first |V | mono-
mials with respect to the lexicographic order. Denote the lexsegment
set V of K[x1, . . . , xn] in degree d with |V | = a by Lex(n, d, a).

(ii) V ⊂ Md is called a Gotzmann set if the ideal I which is generated by
V satisfies H(I, d + 1) = H(I, d)<n−1>, where I = {0} if V = ∅. In
other words, V is a Gotzmann set if |MV | = |V |<n−1>.

(iii) V is called strongly stable if, for any monomial u ∈ V , one has xi

xj
u ∈ V

for all i and j with i < j and with xj |u.
A lexsegment set is Gotzmann and strongly stable. In general, however,

a Gotzmann set is not necessarily lexsegment. We define V ∼ V ′ if we can
obtain V ′ from V by a permutation of variables. In other words, there exists a
permutation π of {1, 2, . . . , n} such that π(V ) = V ′, where for the permutation
π = (π(1), . . . , π(n)) of {1, 2, . . . , n}, we define π(xa1

1 . . . xan
n ) = xa1

π(1) . . . xan

π(n)

and π(V ) = {π(u) | u ∈ V }.
The main result of the present paper determines all integers a > 0 such

that every Gotzmann set V of degree d with |V | = a and with gcd(V ) = 1
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satisfies V ∼ Lex(n, d, a), where gcd(V ) is the greatest common divisor of the
monomials belonging to V .

Theorem 1. Let R = K[x1, . . . , xn] be the polynomial ring in n variables
and a =

∑n−1
j=p

(
a(j)+j

j

)
the (n− 1)th binomial representation of a > 0. Then

the following conditions are equivalent:
(i) a(n− 1) = a(p).
(ii) If V ⊂ Md is a Gotzmann set with |V | = a and gcd(V ) = 1, then d

is determined by a and V ∼ Lex(n, d, a).
(iii) If V ⊂ Md is a Gotzmann set with |V | = a and gcd(V ) = 1, then d is

determined by a and V ∼ V ′ for some strongly stable set V ′ consisting
of monomials of R.

We also classify all Gotzmann sets of K[x1, x2, x3]; see Proposition 8.
Aramova, Herzog and Hibi [2] considered Gotzmann theorems for the exte-

rior algebras. Furthermore, Gasharov [5] generalized the persistence theorem
to finitely generated modules over the polynomial ring and to exterior alge-
bras. Results related to Theorem 1 have been obtain by Füredi and Griggs
[4]. They determined all integers a > 0 such that every squarefree Gotzmann
set V with |V | = a is unique up to the permutation of variables.

1. Proof of Theorem 1

Let K be an arbitrary field and R = K[x1, . . . , xn] the polynomial ring in
n variables over K. For a monomial u ∈ R and a subset V ⊂ Md, we write
uV = {uv | v ∈ V }.

Lemma 2. Let V be a set of monomials of the same degree, u = gcd(V )
and uV ′ = V . Then V is a Gotzmann set if and only if V ′ is a Gotzmann
set.

Proof. By construction, we have |V | = |V ′| and |MV | = |MV ′|. Thus the
relevant conditions are equivalent. �

We can obtain a Gotzmann set which is not a lexsegment set by multiplying
a lexsegment set by a monomial. For example, if V is a lexsegment set, then
x1x2V is not a lexsegment set, but a Gotzmann set. But this is essentially
the same as a lexsegment set. Therefore we often assume gcd(V ) = 1.

Let V be a set of monomials of degree d and u = gcd(V ). If |V | > 1, we
define V0,i = {v ∈ Md | xiu divides v} and Vd,i = V \ V0,i for i = 1, 2, . . . , n.
If |V | = 1, then we define V0,i= V and Vd,i = ∅. Note that if |V | > 1 then
Vd,i 6= ∅.

To prove the main theorem, we need some lemmas from [8].
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Lemma 3 ([8, Lemma 1.5]). Let a, b and n be positive integers. One has

a<n> + b<n> > (a + b)<n>.

Let h be a positive integer and h =
∑n

j=i

(
h(j)+j

j

)
the nth binomial repre-

sentation of h. Let α = max{0,max{k ∈ Z | h −
(
k+n

n

)
> 0}}. We denote

h−
(
α+n

n

)
by h̄(n). In other words:

(i) If h = 1, then h̄(n) = 0.
(ii) If h > 1 and i = n, then h̄(n) =

(
h(n)+n−1

n−1

)
.

(iii) If h > 1 and i < n, then h̄(n) =
∑n−1

j=i

(
h(j)+j

j

)
.

Lemma 4 ([8, Lemma 2.2]). Let V be a Gotzmann set of monomials of
degree d and h = |V |. Then, for i = 1, 2, . . . , n, we have

h
(n−1) ≤ |Vd,i| ≤ h<<n−1>>.(2)

Lemma 5 ([8, Lemma 2.3]). Let V be a Gotzmann set of monomials of
degree d with gcd(V ) = 1 and with V 6= Md. Let Mi = M \ {xi}. Then there
exists an integer 1 ≤ i ≤ n such that:

(i) Vd,i is a Gotzmann set of K[x1, . . . , xi−1, xi+1, . . . , xn], V0,i is a Gotz-
mann set of K[x1, . . . , xn] and |Vd,i| < |V |<<n−1>>.

(ii) xiVd,i ⊂ MiV0,i.

Lemma 6. Let V be a Gotzmann set of monomials of degree d. If gcd(V ) =
1 and

(
α+n−1

n−1

)
< |V | ≤

(
α+1+n−1

n−1

)
, then we have d = α+1 and gcd(V0,i) = xi

if |V | > 1.

Proof. We use induction on |V |. In the case when |V | = 1 we have V =
{1} = M0. Thus we may assume |V | > 1 and n > 1. By Lemma 5 we may
take V0,i as a Gotzmann set. Since V = V0,i ∪ Vd,i and Vd,i 6= ∅, we can use
induction.

Let u = gcd(V0,i) and V ′ = 1
uV0,i. Lemma 4 says(

α− 1 + n− 1
n− 1

)
< |V0,i| = |V | − |Vd,i| ≤

(
α + n− 1

n− 1

)
.

Thus, by induction, we have V ′ ⊂ Mα. On the other hand, we have MV0,i ⊃
xiVd,i by Lemma 5. Thus, for any v ∈ Vd,i, we have xiv ∈ MV0,i = uMV ′.
Therefore u divides xiv. By the definition of V0,i it follows that xi divides
u. Thus u/xi divides v and all elements of V are divisible by u/xi. Since
gcd(V ) = 1, we have u = xi. Thus V0,i = xiV

′ ⊂ Mα+1. Therefore we have
d = α + 1. �

Lemma 6 says that the degree of the generators of a Gotzmann set V with
gcd(V ) = 1 is determined by |V |. Furthermore, if V is a Gotzmann set with
|V | =

(
α+n
n−1

)
and gcd(V ) = 1, then V = Mα+1.
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Proof of Theorem 1. (i)⇒(ii): Let a = a(n − 1) = a(n − 2) = · · · = a(p).
We use induction on |V |. If |V | = 1, then V = {1} since gcd(V ) = 1. Thus
V is a lexsegment set. If n − 1 = p, then V = Md by Lemma 6. Thus
we may assume p < n − 1 and |V | > 1. By Lemma 5, we may assume
|Vd,i| < |V |<<n−1>> and that Vd,i is a Gotzmann set. Hence, by Lemma 4,
|V0,i| and |Vd,i| are of the form

|Vd,i| =
n−2∑
j=p

(
a + j

j

)
+ b and |V0,i| =

n−1∑
j=p+1

(
a− 1 + j

j

)
+

(
a + p− 1

p

)
+ c

with 0 ≤ b <
(
a+p−1

p−1

)
and 0 < c ≤

(
a+p−1

p−1

)
.

Since Lemma 5 (ii) says MV0,i ⊃ xiVd,i, we have MV = MV0,i ∪ MiVd,i.
Also, since this union is disjoint, by Lemmas 3 and 5, we have

|MV | = |MV0,i|+ |MiVd,i|

=
{ n−2∑

j=p

(
a + j

j

)}[+1]

+
{ n−1∑

j=p

(
a− 1 + j

j

)}[+1]

+ b<p−1> + c<p−1>

≤
n−1∑

j=p+1

(
a + j

j

)
+

(
a + p

p

)
+ {b + c}

<p−1>

= |V |<n−1>.

Lemma 3 implies that the above inequality becomes an equality if and only if
b = 0 or c = 0. Thus b = 0.

Therefore we have |V0,i| =
(
a+n−1

n−1

)
. Thus V0,i= xiM

d−1. Moreover,
|Vd,i| =

∑n−2
j=p

(
a(j)+j

j

)
and Vd,i is a Gotzmann set of n − 1 variables. Then,

by induction, Vd,i is a lexsegment set after a proper permutation of variables.
We may assume that Vd,i is a lexsegment set of K[x2, . . . , xn] and i = 1. Since
Vd,1 is a lexsegment set of K[x2, . . . , xn], V = x1V0,1 ∪ Vd,1 = x1M

d−1 ∪ Vd,1

is a lexsegment set.

(ii)⇒(iii): Since lexsegment sets are strongly stable, the direction (ii)⇒(iii)
is obvious.

(iii)⇒(i): In the case when a(n−1) > a(p), we will construct a Gotzmann
set that is not strongly stable. By assumption, we have a(n−1) > a(p). Thus
there exists 1 ≤ k ≤ n−2 such that a(k+1) > a(k). Let Vn−1 = xnMa(n−1) =
un−1M

a(n−1). Denote {x1, x2, . . . , xj} by M≤j . Inductively we define Vj as
follows:

• If j 6= k, then Vj = ujM
a(j)

≤j+1, where uj = uj+1
xj+1

1+a(j+1)−a(j)

xj+2
.

• If j = k, then Vk = ukM
a(k)

≤k+1, where uk = uk+1x1
xk+1

a(k+1)−a(k)

xk+2
.
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Let V =
⋃n−1

j=p Vj . If i > j, then we have Vj ∩ Vi = ∅ since Vj has no element
that is divisible by ui. Thus V =

⋃n−1
j=p Vj is a disjoint union. Therefore,

|V | =
∑n−1

j=p |Vj | =
∑n−1

j=p

(
a(j)+j

j

)
= a. Moreover, since uj+1|xj+2

xj+1
uj , we have

ui| xi+1
xj+1

uj for i > j. Since ui ∈ K[x1, xi+1, xi+2, . . . , xn], for i > j we have

xi+1Vj = xi+1ujM
a(j)

≤j+1 ⊂ uiM
a(i)+1

≤i+1 ⊂ M≤i+1Vi.

Hence, we have MV =
⋃n−1

j=p MVj =
⋃n−1

j=p M≤j+1Vj . This union is also dis-
joint. Thus we have |MV | =

∑n−1
j=p

(
a(j)+1+j

j

)
= a<n−1> and V is a Gotzmann

set.
Next, we will prove that V is not strongly stable. Let u′ = uk+1/xk+2 ∈

K[xk+2, . . . , xn]. Since a(k + 1) > a(k), we have deg(u′) = deg(uk) − 1 −
{a(k + 1)− a(k)} ≤ d− 2. Let d0 = deg(u′). We will prove that u′x1

d−d0 and
u′xk+1

d−d0 do not belong to V , i.e., that u′xd−d0
1 /∈ Vj and u′xk+1

d−d0 /∈ Vj

for all j.

(i) For j = k, since Vk = x1x
a(k+1)−a(k)
k+1 u′M

a(k)

≤k+1, we have u′xd−d0
1 /∈ Vk

and u′xk+1
d−d0 /∈ Vk.

(ii) For any j < k, xj+1 divides every monomial u ∈ Vj . Since u′ ∈
K[xk+1, . . . , xn], it follows that u′xd−d0

1 /∈ Vj and u′xk+1
d−d0 /∈ Vj .

(iii) For any j > k, uj does not divide u′. Since uj ∈ K[xj+1, . . . , xn],
uj does not divide u′x1

d−d0 and u′xk+1
d−d0 . Thus u′xd−d0

1 /∈ Vj and
u′xk+1

d−d0 /∈ Vj .

However, if there is a strongly stable set V ′ with V ′ ∼ V , then either xd−d0
1 u′ ∈

V or xd−d0
k+1 u′ ∈ V must be satisfied since x1xk+1

d−d0−1u′ ∈ Vk ⊂ V . Thus V
is not strongly stable. �

Definition 7. Let V be a Gotzmann set and |V | =
∑n−1

j=p

(
a(j)+j

j

)
the

(n − 1)th binomial representation. By Theorem 1, if a(p) = a(n − 1), then
V must be a lexsegment set. We call |V | an nth lexnumber, or simply a
lexnumber, if a(p) = a(n− 1).

Example 1. Here are some lexnumbers for n = 3, 4, 5.

n = 3: 1, 2, 3, 5, 6, 9, 10, 14, 15, 20, 21, 27, 28, 35, 36, 44, 45, 54, 55, 65, 66,
77, 78, 90, 91, 104, 105, . . .

n = 4: 1, 2, 3, 4, 7, 9, 10, 16, 19, 20, 30, 34, 35, 50, 55, 56, 77, 83, 84, 112, . . . ,
n = 5: 1, 2, 3, 4, 5, 9, 12, 14, 15, 25, 31, 34, 35, 55, 65, 104, 105, . . . ,

For fixed d, there are only {d(n− 1) + 1} lexnumbers, since there are (n− 1)
lexnumbers between

(
t+n−1
n−1

)
and

(
t+n
n−1

)
.
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2. Gotzmann sets in three variables

In this section we consider Gotzmann sets with a few variables. If n = 1,
then all sets V are Gotzmann sets. If n = 2, we can easily show that V is
a Gotzmann set if and only if V = ∅ or V = Md, provided we assume that
gcd(V ) = 1. We consider the case n = 3 in Proposition 8.

We define a map πi :
⊕∞

d=0 Md → Z n−1
≥0 by setting

πi(xa1
1 . . . xan

n ) = (a1, . . . , ai−1, ai+1, . . . , an).

It follows that πi|Md is injective.
Let V be a set of monomials of degree d and let u = xa1

1 xa2
2 . . . xan

n be a
monomial of degree d. We say that a monomial v = xb1

1 xb2
2 . . . xbn

n with degree
d is under u for i if bj ≤ aj for all j 6= i. We call u a fixed empty element of
V for i if u /∈ V and any monomial which is under u for i does not belong to
V .

Note that u is a fixed empty element of V for i if and only if πi(u) /∈
πi(M tV ) for t ≥ 0. Also, if u is a fixed empty element of V for i, then any
monomial v which is under u for i is also a fixed empty element of V for i.

Proposition 8. Let V ⊂ R be a set of monomials of degree d with
gcd(V ) = 1. If V is a Gotzmann set, then any monomial v /∈ V is a fixed
empty element of V for some i and |V | >

(
d−1+n−1

n−1

)
. Moreover, if n = 3,

then these conditions are equivalent.

Proof. The inequality |V | >
(
d−1+n−1

n−1

)
follows from Lemma 6.

We use induction on |V |. If |V | = 1, then V = {1}. Thus, in this case, the
conditions are satisfied. Hence we may assume |V | > 1. By Lemma 5, there
exists i such that V0,i and Vd,i are Gotzmann sets and MiV0,i ⊃ xiVd,i.

Let w = xa1
1 xa2

2 . . . xan
n be a monomial of degree d. We will prove that if

w /∈ V then w is a fixed empty element of V for some j. We consider two
cases:

Case I: If xi divides w, then w ∈ V0,i. By induction, there exists j such
that w is a fixed empty element of V0,i for j. Thus for any v 6= w which is
under w for j, we have v /∈ V0,i. Hence we have to prove that v /∈ Vd,i.

If j = i then xi|v, and thus v /∈ Vd,i.
If j 6= i, we may assume that xi does not divide v since if xi|v then v /∈ Vd,i.

Let v = xb1
1 xb2

2 . . . xbn
n 6= w. Since xi|w and xi 6 |v, we have bi + 1 ≤ ai. Thus

for any xk|v, xi

xk
v is under w for j. Hence we have xi

xk
v 6∈ V0,i and xiv /∈ MV0,i.

Since MiV0,i ⊃ xiVd,i, we have v /∈ Vd,i.

Case II: If xi does not divide w, then by induction there exists j 6= i such
that w is a fixed empty element of Vd,i for j. Since j 6= i, for any v which is
under w for i, v cannot be divided by xi. Thus we have v /∈ V0,i ∪ Vd,i = V .
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Next, in the case when n = 3, we will prove that these conditions are
equivalent. Let u = xa1

1 xa2
2 xa3

3 be a fixed empty element of V for i. Assume
that i = 1. Since xa1+1

1 xa2−1
2 xa3

3 and xa1+1
1 xa2

2 xa3−1
3 are under u for 1 and

u /∈ V , we have x1u = xa1+1
1 xa2

2 xa3
3 /∈ MV . By the same reasoning, for each

1 ≤ i ≤ 3, if u is a fixed empty element of V for i, then xiu is a fixed empty
element of MV for i. Let

Ui(V ) = {u 6∈ V : u is a fixed empty element of V for i}.

Then any element v ∈ xiUi(V ) is also a fixed empty element of MV for i.
We will show xiUi(V ) ∩ xjUj(V ) = ∅ if i 6= j. If xiu = xju

′ ∈ xiUi(V ) ∩
xjUj(V ), then the monomials

xai
i x

aj

j xak

k , xai+1
i x

aj−1
j xak

k , . . . , x
ai+aj

i x0
jx

ak

k

are under u for i. Also, the monomials

xai−1
i x

aj+1
j xak

k , xai−2
i x

aj+2
j xak

k , . . . , x
aj+ai

j xak

k , x
aj+ai+1
j xak−1

k , . . . , xd
j

are under u′ for j. Hence we can take {(aj + 1) + (d− aj)} monomials which
do not belong to V . Thus we have |V | ≤ |Md| − (d + 1) =

(
d+1
2

)
. However

the assumption says |V | >
(
d+1
2

)
. This is a contradiction. Thus we have

xiUi(V ) ∩ xjUj(V ) = ∅.
Hence, if V has l fixed empty elements, then MV has at least l fixed empty

elements. Thus we have

|MV | ≤
(

d + 3
2

)
− l =

(
d + 2

2

)
+

(
d + 2− l

1

)
.

Moreover, by the minimal growth of the Hilbert function (1), we have

|MV | ≥ |V |<2> =
{(

d + 2
2

)
− l

}
<2> =

{(
d + 1

2

)
+

(
d + 1− l

1

)}
<2>.

Therefore |MV | = |V |<2>. Thus V is a Gotzmann set. �

Example 2. To understand the meaning of Proposition 8, drawing a pic-
ture of the monomials is useful. (A similar idea can be found in [7].) In the
picture below, all monomials of degree 4 in K[x1, x2, x3] are displayed. The
monomial x4

1 is in the lower left corner, x4
3 is in the lower right corner, and x4

2

is at the top. The black dots denote monomials in V and the empty circles
denote monomials which are missing from V . For example, figure (1) means
that x4

1, x3
1x2, x2

1x
2
2 and x1x

3
2 are missing. In the picture below, we classify all

Gotzmann sets V in K[x1, x2, x3] with gcd(V ) = 1 and |V | =
(
4+2
2

)
− 4 = 11

up to permutations.
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By Proposition 8, each connected component of empty circles must be at a
corner. Also, the numbers of empty circles must be equal to or less than the
degree of the elements of V .

(1) (2) (3) (4)
x

4

2

x
4

1
x

4

3

(5) (6) (7) (8)

(9) (10)
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