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HILBERT MATRIX ON BERGMAN SPACES

E. DIAMANTOPOULOS

Abstract. The Hilbert matrix acts on Bergman spaces by multiplica-

tion on Taylor coefficients. We find an upper bound for the norm of the
induced operator.

1. Introduction

The Hilbert matrix H with entries ai,j = 1
i+j+1 for i and j positive integers

induces an operator by multiplication on sequences,

H : (an)n≥0 →

( ∞∑
k=0

ak
n+ k + 1

)
n≥0

.

For 1 < p <∞, Hilbert’s Inequality [HLP, p. 226]

(1)

( ∞∑
n=0

∣∣∣∣∣
∞∑
n=0

ak
n+ k + 1

∣∣∣∣∣
p)1/p

≤ π

sin(π/p)

( ∞∑
n=0

|an|p
)1/p

,

implies that H induces a bounded operator on lp spaces of p−summable se-
quences. Moreover, the constant π/ sin(π/p) is best-possible and the norm of
H is

‖H‖lp→lp =
π

sin(π/p)
, 1 < p <∞.

The Hilbert matrix also induces a transformation H on spaces of analytic
functions by its action on Taylor coefficients defined by

H :
∞∑
n=0

anz
n →

∞∑
n=0

∞∑
k=0

ak
n+ k + 1

zn,
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for those analytic functions f(z) =
∑∞
n=0 anz

n for which the coefficients

An =
∞∑
k=0

ak
n+ k + 1

, n = 0, 1, . . .

converge.
The operator H has been studied on Hardy spaces. In [DS] we proved that

H is a bounded operator on the Hardy spaces Hp, p > 1, and for 2 ≤ p <∞
we found the following upper bound for its norm (see [DS, Th. 1.1]):

(2) ‖H‖Hp→Hp ≤
π

sinπ/p
.

We also proved that for functions f such that f(0) = 0 the same estimate
holds for 1 < p < 2.

In this article we prove that H is a bounded operator on the Bergman
spaces Ap, 2 < p < +∞, of analytic functions f on the unit disc for which

‖f‖pAp =
∫
D

|f(z)|pdm(z) < +∞,

where dm(z) = (1/π)dxdy is the normalized Lebesgue measure on unit disc.
We also provide norm estimates on those spaces. More precisely we show:

Theorem 1. The operator H is bounded on Bergman spaces Ap, 2 < p <
+∞, and satisfies:

(i) If 4 ≤ p <∞ and f ∈ Ap, then

‖H(f)‖Ap ≤
π

sin(2π/p)
‖f‖Ap .

(ii) If 2 < p < 4 and f ∈ Ap, then

‖H(f)‖Ap ≤
(

27−p

9(p− 2)
+ 24−p

)1/p
π

sin(2π/p)
‖f‖Ap .

(iii) If 2 < p < 4 and f ∈ Ap with f(0) = 0, then

‖H(f)‖Ap ≤
(p

2
+ 1
)1/p π

sin(2π/p)
‖f‖Ap .

The proof of this result will be given in Section 3 and involves the repre-
sentation of H, used in [DS] to prove (2), in terms of weighted composition
operators for which we can estimate the Bergman space norms. It uses a
representation similar to one developed by A. G. Siskakis to prove that the
Cesàro operator is bounded on the Hardy and Bergman spaces, respectively
([Sis1], [Sis2]). P. Galanopoulos [Ga] exploited the same representation to
prove that the Cesàro operator is bounded on Dirichlet spaces.
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1.1. Integral form of H. We consider the operator

(3) S(f)(z) =
∫ 1

0

f(t)
1− tz

dt.

This operator is well defined on Bergman spaces. Indeed, using [Vu, Corollary,
p. 755] we have

(4) |f(z)| ≤
(

1
1− |z|2

)2/p

‖f‖Ap

for p > 2 and f ∈ Ap, and hence

|S(f)(z)| ≤

∫ 1

0
1

(1−t)2/p dt

1− |z|
‖f‖Ap < +∞.

Now, given f(z) =
∑∞
n=0 anz

n in Ap, let fN (z) =
∑N
n=0 anz

n. We see that

H(fN )(z) =
∞∑
n=0

N∑
k=0

ak
n+ k + 1

zn

=
∞∑
n=0

N∑
k=0

∫ 1

0

tn+k dtakz
n

=
∞∑
n=0

∫ 1

0

fN (t)(tz)n dt

= S(fN )(z),

so H is well defined on polynomials. Also, for z ∈ D and p > 2 we see that∣∣∣∣∣S(f)(z)−
∞∑
n=0

N∑
k=0

ak
n+ k + 1

zn

∣∣∣∣∣ ≤
∫ 1

0
|f(t)− fN (t)| dt

1− |z|

≤

∫ 1

0
1

(1−t)2/p dt

1− |z|
‖f − fN‖Ap .

Thus, as N →∞, the series
∞∑
n=0

N∑
k=0

ak
n+ k + 1

zn

converges and defines an analytic function

H(f)(z) = S(f)(z) =
∫ 1

0

f(t)
1− tz

dt,

which is in the Bergman spaces Ap, p > 2.
In the next section we derive the expression of H in terms of weighted

composition operators mentioned above. In Section 3, we prove that H is



1070 E. DIAMANTOPOULOS

bounded on Bergman spaces Ap for p > 2 and we give norm estimates. Fi-
nally, in Section 4, using the natural isometric isomorphism between A2 and
Dirichlet space D, we prove that H is not bounded on A2.

2. H in terms of composition operators

In this section we show how H can be written as an average of certain
weighted composition operators.

Every analytic function φ : D→ D induces a bounded composition operator
Cφ : f → f ◦ φ on Ap for 1 ≤ p ≤ +∞; the norm of this operator satisfies
[CM, p. 127]

(5) ‖Cφ‖Ap ≤
(

1 + |φ(0)|
1− |φ(0)|

)2/p

.

In addition, if w(z) is a bounded analytic function, then the weighted com-
position operator

Cw,φ(f)(z) = w(z)f(φ(z))
is bounded on each Ap. This is the only property of this operator that we will
use.

The connection between the Hilbert matrix and composition operators
arises as follows. For z ∈ D and 0 < r < 1 we define

(6) Cr(f)(z) =
∫ r

0

f(t)
1

1− tz
dt

and we see that
H(f)(z) = lim

r→1
Cr(f)(z).

Given z ∈ D we choose the path of integration

t(s) = tz(s) =
rs

r(s− 1)z + 1
, 0 ≤ s ≤ 1,

and changing variables in (6) we obtain

Cr(f)(z) =
∫ r

0

f(t)
1

1− tz
dt

=
∫ 1

0

f(t(s))
1

1− t(s)z
t′(s) ds

=
∫ 1

0

r

r(s− 1)z + 1
f

(
rs

r(s− 1)z + 1

)
ds.

Now let f ∈ Ap, p > 2. For every z ∈ D and 0 ≤ s ≤ 1 let

hr(s) =
r

r(s− 1)z + 1
f

(
rs

r(s− 1)z + 1

)
=

r

r(s− 1)z + 1
f(φr,s(z)),
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where φr,s(z) = rs/(r(s− 1)z + 1) is an analytic self-map of the unit disc.
Since

|r(s− 1)z + 1| ≥ 1− |z|, 0 ≤ s, r ≤ 1,
we have

r

|r(s− 1)z + 1|
≤ 1

1− |z|
≤ 2

1− |z|2
.

By (4) we have

|f ◦ φr,s(z)| ≤
(

1
1− |z|2

)2/p

‖f ◦ φr,s(z)‖Ap ,

and using (5) we obtain

‖f ◦ φr,s(z)‖Ap ≤
(

1 + |φr,s(0)|
1− |φr,s(0)|

)2/p

‖f‖Ap

=
(

1 + rs

1− rs

)2/p

‖f‖Ap

≤
(

1 + s

1− s

)2/p

‖f‖Ap .

The above estimates give

|hr(s)| ≤
2

(1− |z|2)1+2/p

(
1 + s

1− s

)2/p

‖f‖Ap .

For p > 2 the right-hand side of the latter inequality is an integrable function
of s. By Lebesgue’s dominated convergence theorem we conclude that

H(f)(z) =
∫ 1

0

1
(s− 1)z + 1

f

(
s

(s− 1)z + 1

)
ds,

that is, we can express H as an integral mean

H(f)(z) =
∫ 1

0

Tt(f)(z) dt

of the family of weighted composition operators

Tt(f)(z) = ωt(z)f(φt(z)),

where
ωt(z) =

1
(t− 1)z + 1

and
φt(z) =

t

(t− 1)z + 1
.

It is easy to see that ωt is a bounded function for 0 < t < 1, and that φt is
a self-map of the disc. Thus, the operator Tt : Ap → Ap, 1 ≤ p < +∞, is
bounded on Ap for every 0 < t < 1.
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3. Proof of the Theorem

We first obtain estimates for the norms of the weighted composition oper-
ators Tt.

Lemma 2. Let 2 < p < +∞. Then:

(i) If 4 ≤ p < +∞ and f ∈ Ap, then

‖Tt(f)‖Ap ≤
t2/p−1

(1− t)2/p
‖f‖Ap .

(ii) If 2 < p < 4 and f ∈ Ap, then

‖Tt(f)‖Ap ≤
(

27−p

9(p− 2)
+ 24−p

)1/p
t2/p−1

(1− t)2/p
‖f‖Ap .

Proof. We can easily check that

ωt(z)2 =
1

t(1− t)
φ′t(z)

Let f ∈ Ap, p > 2. Using the last equation we obtain

‖Tt(f)‖pAp =
∫
D

|ωt(z)|p|f(φt(z))|p dm(z)

=
∫
D

|ωt(z)|p−4|ωt(z)|4|f(φt(z))|p dm(z)

=
1

(t(1− t))2

∫
D

|ωt(z)|p−4|f(φt(z))|p|φ′t(z)|2 dm(z)

=
1

(t(1− t))2

∫
φt(D)

|ωt(φ−1
t (z))|p−4|f(z)|p dm(z)

= I.

We now consider two cases.
First, suppose that p ≥ 4. We compute

φ−1
t (z) =

z − t
(1− t)z

and

ωt(φ−1
t (z)) =

1
(t− 1)φ−1

t (z) + 1
=
z

t
.

Hence

I ≤
‖f‖pAp

tp−2(1− t)2
.
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Next, assume that 2 < p < 4. Then

I =
1

t2(1− t)2

∫
φt(D)

|ωt(φ−1
t (w))|p−4|f(w)|p dm(w)

=
1

t2(1− t)2

∫
φt(D)

∣∣∣w
t

∣∣∣p−4

|f(w)|p dm(w)

=
1

tp−2(1− t)2

∫
φt(D)

|w|p−4|f(w)|p dm(w)

≤ 1
tp−2(1− t)2

∫
D

|w|p−4|f(w)|p dm(w).

The last integral is well defined near the origin, since∫
D

|w|p−4 dm(w) =
2

p− 2
<∞, p > 2.

We write∫
D

|w|p−4|f(w)|p dm(w) =
∫
|w|<1/2

+
∫

1/2≤|w|<1

|w|p−4|f(w)|p dm(w),

and we estimate∫
|w|<1/2

|w|p−4|f(w)|p dm(w) ≤
∫
|w|<1/2

|w|p−4

(1− |w|2)2
dm(w)‖f‖pAp

≤ 1
(1− (1/2)2)2

∫
|w|<1/2

|w|p−4 dm(w)‖f‖pAp

=
27−p

9(p− 2)
‖f‖pAp ,

and ∫
1/2≤|w|<1

|w|p−4|f(w)|p dm(w) ≤
(

1
2

)p−4 ∫
1/2≤|w|<1

|f(w)|p dm(w)

≤ 24−p
∫
D

|f(w)|p dm(w)

= 24−p‖f‖pAp .

We conclude that for 2 < p < 4,

I ≤
(

27−p

9(p− 2)
+ 24−p

)
t2−p

(1− t)2
‖f‖pAp ,

which is the desired result. �

For the proof of the Theorem we need some classical identities for the Beta
and Gamma functions; see, for example, [WW]. The Beta function is defined
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by

B(u, v) =
∫ +∞

0

xu−1

(x+ 1)u+v
dx =

∫ 1

0

su−1(1− s)v−1 ds,

for u, v such that <(u) > 0, <(v) > 0. The value B(u, v) can be expressed in
terms of Gamma function as

B(u, v) =
Γ(u)Γ(v)
Γ(u+ v)

.

Moreover, the Gamma function satisfies the functional equation

Γ(z)Γ(1− z) =
π

sinπz
,

for non-integral complex numbers z.
Now we can complete the proof of Theorem 1. Let f ∈ Ap. We have from

the continuous version of Minkowski’s inequality

‖H(f)‖Ap =
(∫

D

|H(f)(z)|p dm(z)
)1/p

=

(∫
D

∣∣∣∣∫ 1

0

Tt(f)(z) dt
∣∣∣∣p dm(z)

)1/p

≤
∫ 1

0

(∫
D

|Tt(f)(z)|p dm(z)
)1/p

dt

=
∫ 1

0

‖Tt(f)‖Ap dt.

Using Lemma 2 for p ≥ 4 we conclude

‖H(f)‖Ap ≤
∫ 1

0

t2/p−1(1− t)−2/p dt‖f‖Ap

= B

(
2
p
, 1− 2

p

)
‖f‖Ap

= Γ
(

2
p

)
Γ
(

1− 2
p

)
‖f‖Ap (Γ(1) = 1),

=
π

sin(2π/p)
‖f‖Ap .

Analogously, for 2 < p < 4 and f ∈ Ap we have

‖H(f)‖Ap ≤
(

27−p

9(p− 2)
+ 24−p

)1/p ∫ 1

0

t2/p−1

(1− t)2/p
dt‖f‖Ap

=
(

27−p

9(p− 2)
+ 24−p

)1/p
π

sin(2π/p)
‖f‖Ap .
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Now, consider f ∈ Ap, 2 < p < 4 with f(0) = 0, and write f(z) = zf0(z).
The function f0 is a Bergman space function and satisfies

‖f0‖Ap ≤
(p

2
+ 1
)1/p

‖f‖Ap .

Indeed, this estimate is a special case of a result on Ap−inner functions [HKZ,
Corollary 3.23]. However, it is also possible to give an elementary proof.

Lemma 3. For every analytic function f ,∫
D

|f(z)|p dm(z) ≤
(p

2
+ 1
)∫

D

|zf(z)|p dm(z).

Proof. Let C > 1. We compute∫
D

|f(z)|p dm(z)− C
∫
D

|zf(z)|p dm(z) =
∫ 1

0

(r − Crp+1)
∫ 2π

0

|f(reiθ)|p dθ dr

=
∫ 1

0

(r − Crp+1)Mp
p (f, r) dr

= D.

The real function σ(r) = r−Crp+1 is positive for r ∈ (0, C−1/p) and negative
for r ∈ (C−1/p, 1). In addition, it is well known that Mp

p (f, r) is a nonde-
creasing function of r [Du, Theorem 1.6]. Hence, in order for D to be ≤ 0, it
is enough to choose C such that the following inequality holds:

−
∫ 1

C−1/p
(r − Crp+1) dr ≥

∫ C−1/p

0

(r − Crp+1) dr

or, equivalently, ∫ 1

0

(r − Crp+1) dr ≤ 0.

From the last inequality we get the condition C ≥ p/2 + 1. �

Now we compute

H(f)(z) =
∫ 1

0

1
(t− 1)z + 1

f

(
t

(t− 1)z + 1

)
dt

=
∫ 1

0

t

((t− 1)z + 1)2
f0

(
t

(t− 1)z + 1

)
dt

=
∫ 1

0

1
t
φt(z)2f0(φt(z)) dt

=
∫ 1

0

St(f0)(z) dt,
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where

St(g)(z) =
1
t
φt(z)2g(φt(z)), g ∈ Ap,

and φt(z) = t/((t− 1)z + 1). An easy computation shows that

φt(z)2 =
t

1− t
φ′t(z), z ∈ D, 0 < t < 1.

It follows that

‖St(g)‖pAp =
1
tp

∫
D

|φt(z)|2p|g(φt(z))|p dm(z)

=
1
tp

∫
D

|φt(z)|2p−4|φt(z)|4|g(φt(z))|p dm(z)

≤ t2−p

(1− t)2

∫
D

|φt(z)|2p−4|g(φt(z))|p|φ′t(z)|2 dm(z)

=
t2−p

(1− t)2

∫
φt(D)

|w|2p−4|g(w)|p dm(w)

≤ t2−p

(1− t)2

∫
φt(D)

|g(w)|p dm(w)

≤ t2−p

(1− t)2

∫
D

|g(w)|p dm(w)

=
t2−p

(1− t)2
‖g‖pAp .

Hence

‖St(g)‖Ap ≤
t2/p−1

(1− t)2/p
‖g‖Ap .

For the norm of H we compute

‖H(f)‖Ap ≤
(∫ 1

0

t2/p−1

(1− t)2/p
dt

)
‖f0‖Ap

=
π

sin(2π/p)
‖f0‖Ap

≤
(p

2
+ 1
)1/p π

sin(2π/p)
‖f‖Ap ,

which is the desired result. The proof of Theorem 1 is complete.

4. H is not bounded on A2

Let D be the usual Dirichlet space of analytic functions on the unit disc
with square summable derivative. The following result is well known.
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Lemma 4. Each bounded linear functional on the Bergman space A2 can
be associated to a function g ∈ D (by the pairing 〈f, g〉 =

∑∞
n=0 anbn) and the

association is an isometric isomorphism of the spaces.

This yields the following result.

Proposition 5. There is no bounded linear operator T : A2 → A2 satis-
fying

T (ξn)(0) =
1

n+ 1
, n = 0, 1, 2, . . . ,

where ξn(z) = zn.

Proof. Suppose, to the contrary, that there exists such an operator T . Us-
ing the pairing that defines an isometric isomorphism between (A2)∗ and D,
we find that the adjoint operator T ∗ : D → D is bounded and satisfies

(7) 〈T (f), g〉 = 〈f, T ∗(g)〉,

for every f ∈ A2, g ∈ D. We choose g ≡ 1 and write

T ∗(1)(z) =
∞∑
n=0

cnz
n,

as the Taylor series of T ∗(1) ∈ D. Using (7) for f = ξn and g ≡ 1 we have

1
n+ 1

= T (ξn)(0)

= 〈T (ξn), 1〉
= 〈ξn, T ∗(1)〉
= cn,

for every n = 0, 1, 2, . . .. Hence

T ∗(1)(z) =
∞∑
n=0

1
n+ 1

zn,

but this function is not in D. �

Now we consider the integral

H(f) =
∫ 1

0

f(t)
1

1− tz
dt.

This integral is well defined for polynomials, and polynomials are dense in A2.
It is not known if the last integral is well defined for all f ∈ A2. In any case,
from Proposition 5 we obtain:

Corollary 6. H is not bounded on A2.
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Proof. We apply Proposition 5 and note that

H(ξn)(0) =
1

n+ 1
, n = 0, 1, 2, . . . �

Final remarks. We do not know if the inequalities in the theorem are
sharp. In Hardy spaces Hp, 1 < p < ∞, using the Hollenbeck-Verbitsky
Theorem [HV], we can verify that the upper bound (2) for the norm of H is
equal to the fraction π/(sin (π/p)), without any additional constants. There
is no evidence that the same is true for Bergman spaces.
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[Vu] D. Vukotić, A sharp estimate for Apα functions in Cn, Proc. Amer. Math. Soc. 117
(1993), 753–756. MR 93d:46042

[WW] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Math-

ematical Library, Cambridge University Press, Cambridge, 1978. MR 97k:01072

Taskou Papageorgiou 8, 54631 Thessaloniki, Greece

E-mail address: epdiamantopoulos@hotmail.com


