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Abstract. We will show that the Camassa-Holm equation possesses
periodic traveling wave solutions with spikes, i.e., peaks where the first

derivative is unbounded. Moreover, we will show that such a solution

can be chosen to be ρ-periodic for arbitrarily small ρ > 0.
This family of solutions (parametrized by ρ) has the important prop-

erty that, for q ∈ [1, 3), ‖u′0‖Lq(T) is uniformly bounded above and be-
low, where u0 is the initial data. Using this property with q = 2 we are
able to prove that the corresponding Cauchy problem is not locally well-

posed in the Sobolev space H1(T). Similarly, we will show ill-posedness
in the corresponding Lq Sobolev space, W 1,q(T), for any q ∈ [1, 3).

1. Introduction

In this paper, we consider the following partial differential equation:

(1.1) ∂tu− ∂t∂2
xu+

3
2
∂x
(
u2
)
− 1

2
∂3
x

(
u2
)

+
1
2
∂x
(
(∂xu)2

)
= 0,

which is formally equivalent to

(1.2) ∂tu− ∂2
x∂tu+ 3u∂xu− 2∂xu∂2

xu− u∂3
xu = 0.

This equation, which now is generally called the Camassa-Holm equation
(CH), was derived in different ways by and Fokas and Fuchssteiner [4] and by
Camassa and Holm [1].

We will also study the corresponding periodic initial value problem, namely

(1.3)
{
∂tu− ∂t∂2

xu+ 3
2∂x

(
u2
)
− 1

2∂
3
x

(
u2
)

+ 1
2∂x
(
(∂xu)2

)
= 0,

u(x, 0) = u0(x),

where t ∈ R and x ∈ T.
We will say that an initial value problem is locally well-posed in a Banach

space E if for every r > 0 there exists T > 0 such that
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(i) for each u0 = u0(x) ∈ B(0, r) .= {ϕ ∈ E | ‖ϕ‖E ≤ r} there exists
a unique solution u = u(x, t) ∈ C([−T, T ] : E) of the initial value
problem;

(ii) the map from B(0, r) into C([−T, T ] : E) given by u0 7→ u is uniformly
continuous.

The definition implies, in particular, that for each t ∈ [−T, T ], u0 7→ u(t)
is a uniformly continuous map from B(0, r) into E, where u(t) is understood
to mean u(−, t).

Remarks. (1) One can also think of u0 7→ u as a map from E into⋃
T>0 C([−T, T ] : E).
(2) Another common definition of well-posedness requires only continuous

dependence on the initial data, not uniformly continuous dependence.

Constantin and Escher proved in [2] that (1.3) is locally well-posed in the
Sobolev spaceH3. More recently, it has been shown (see [7] and [13]) that (1.3)
is locally well-posed in the Sobolev space Hs for every s > 3/2. (Throughout
this paper Hs will be understood to mean Hs(T).)

It is not known whether (1.3) is well-posed in Hs for any s ≤ 3/2, but
some existence and uniqueness results have been proven for the space H1.
Constantin and Escher showed in [2] that a unique global weak solution exists
for initial data u0 ∈ H1 under the additional assumption that u0 − ∂2

xu0 is
a positive Radon measure. Their method involved approximating u0 by a
sequence un0 ∈ C∞ and taking a limit of the corresponding solutions un of
(1.3).

More recently, Xin and Zhang showed in [15] that a global weak solution
(not necessarily unique) exists for any initial data u0 ∈ H1 by using solutions
of a certain viscous problem, which converge to a solution of (1.3).

Our main result in this paper is that the periodic CH equation is not well-
posed in H1. More specifically:

Theorem 1.1. There exists a ball B(0, r) ⊂ H1(T) such that for every
T > 0 the map from B(0, r) to C([−T, T ] : H1(T)) given by u0 7→ u, where u
solves (1.3), is not uniformly continuous.

The proof of Theorem 1.1 will rely heavily on traveling wave solutions of
the Camassa-Holm equation, i.e., solutions of the form

(1.4) u(x, t) = f(x− σt),

where σ is a constant. Substituting (1.4) into (1.1), we see that the profile f
must be a solution of

(1.5) −σf ′ + σf ′′′ +
3
2
d

dx

(
f2
)
− 1

2
d3

dx3

(
f2
)

+
1
2
d

dx

(
(f ′)2

)
= 0;
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hence

(1.6) 2σf ′′ − 2σf + 3f2 − d2

dx2

(
f2
)

+ (f ′)2 = M

for a constant M .
In Section 2 we will construct solutions to (1.6) with certain special prop-

erties; these will then be used in Section 3 to prove Theorem 1.1.

2. Traveling waves with unbounded slope

We’ll begin with a brief overview of known types of traveling wave solutions
to the Camassa-Holm equation. The simplest is the non-periodic function
u = σe−|x−σt| for any σ ∈ R.

For the periodic case, a greater variety of traveling wave solutions exist. For
example, [3] showed that the CH equation has C∞ periodic traveling waves.
Another type of solution can be defined explicitly as follows: Pick any r > 0
and let

fr(x) =
ex + e−x

er + e−r

for all x ∈ [−r, r], and fr(x + 2kr) = fr(x) for every k ∈ Z. Then for
every σ ∈ R, u(x, t) = σfr(x − σt) is a solution to (1.1) with period 2r. (In
particular, if r = 1/(2n) for some positive integer n, then fr : T→ R.)

This function is similar to the non-periodic wave u = σe−|x−σt|, in that
both have peaks with a “corner”, i.e., points where ∂xu is discontinuous but
bounded (and in fact (∂xu)2 is continuous, with removable singularities).

Our main focus in this section is to construct traveling wave solutions
with “spikes”—that is to say peaks where the derivative goes to infinity. For
simplicity, we will only consider traveling waves with unit speed, i.e., solutions
of (1.6) with σ = 1. Other traveling waves can then be obtained by the well-
known scaling property of the CH equation: if u = u(x, t) is a solution of
(1.1), then uλ(x, t) .= λu(x, λt) is a solution as well for any λ ∈ R.

Let us start by unpacking equation (1.6) a little (cf. [3]). For a given
function f , let S ⊂ R be the largest open set on which f is C∞ (i.e., the
complement of the singular support of f). Then on S, (1.6) is equivalent to

(2.1) 2f ′′ − 2f + 3f2 − 2ff ′′ − (f ′)2 = M.

If we multiply by f ′, (2.1) is equivalent on the set S̃ .= {x ∈ S | f ′(x) 6= 0} to

Mf ′ = 2f ′f ′′ − 2ff ′ + 3f2f ′ − 2ff ′f ′′ − (f ′)3

=
d

dx

[
(f ′)2 − f2 + f3 − f(f ′)2

]
which is to say

(f − 1)(f ′)2 = f3 − f2 −Mf + L(2.2)

= (f − a)(f − b)(f − c)(2.3)
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for constants L, a, b, and c. Then the coefficient of f2 in (2.2) implies that
a+ b+ c = 1. Conversely if a+ b+ c = 1 then (2.3) holds for some M and L.

We can now prove the following result:

Proposition 2.1. For any ρ > 0 sufficiently small, there is a periodic
solution f of (1.5) with period ρ, such that f ≤ 1 and sup |f − 1| → 0 as
ρ→ 0. Furthermore,

(2.4) C1ρ ≤ ‖f ′‖qLq([0,ρ]) ≤ C2ρ

for any q ∈ [1, 3), where C1, C2 are positive constants independent of ρ; and

(2.5) f ′ < 0 on (0, ρ/2) and f ′ > 0 on (ρ/2, ρ).

Proof. For convenience let us first write f = 1 − g, a = 1 + A, b = 1 − ε,
and c = ε− 1−A, so (2.3) becomes

(2.6) g(g′)2 = (g +A)(ε− g)(A+ 2− ε− g).

Fix any A > 0 and ε0 ∈ (0, 1 + A/2). Then for any ε ∈ (0, ε0) we have
ε < A + 2 − ε, and hence the right hand side of (2.6) is positive for all
g ∈ (0, ε).

Now if, for some x0 ∈ R, we prescribe g(x0) = y0 ∈ (0, ε) and take g′ > 0,
then (2.6) will have an increasing local solution, with

(2.7) g′ =
√

(g +A)(ε− g)(A+ 2− ε− g)/g

Clearly there exists x̃0 < x0 such that g(x̃0) = 0 (since g′ > 0 and g′ →∞ as
g → 0) and without loss of generality we can take x̃0 = 0, i.e., g(0) = 0.

If we write
dx

dg
=
√

g

(g +A)(ε− g)(A+ 2− ε− g)
,

we see that the inverse of g is given explicitly by

g−1(y) =
∫ y

0

√
t

(t+A)(ε− t)(A+ 2− ε− t)
dt

=
∫ y

0

ß(t)
√
t√

ε− t
dt,

where

ß(t) .=
1√

(t+A)(A+ 2− ε− t)
.
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Note that 0 < c1 ≤ ß(t) ≤ c2 for all t ∈ [0, ε], with c1
.= 1/

√
(A+ ε0)(A+ 2)

and c2
.= 1/

√
A(A+ 2− 2ε0). Now for every y ∈ (0, ε),

g−1(y) ≤ c2
√
ε

∫ y

0

(ε− t)−1/2dt

= 2c2ε− 2c2
√
ε
√
ε− y

≤ 2c2ε.

In other words, there is some positive real number, let us say ρ/2 ≤ 2c2ε, such
that g(ρ/2) = ε.

On the other hand,

g−1(y) ≥ c1√
ε

∫ y

0

t1/2dt(2.8)

=
2c1
3
√
ε
t3/2

∣∣∣∣y
0

=
2c1
3
√
ε
y3/2,

so that ρ = 2g−1(ε) ≥ 4c1
3 ε. Moreover, if we set

x1
.= g−1(ε/2) ≥ 2c1

3
√
ε
(ε/2)3/2 =

(
c1

3
√

2

)
ε,

then for all x ∈ [0, x1], g(x) ≤ ε/2 implies ε− g(x) ≥ g(x), and hence

g′(x) ≥
√
ε− g
c2
√
g

≥ 1/c2.

Therefore, since f ′(x) = −g′(x),

‖f ′‖qLq([0,ρ/2]) ≥ ‖g
′‖qLq([0,x1])(2.9)

≥ c−q2 x1

≥ c3ρ,

where we used x1 ≥
(

c1
3
√

2

)
ε and ε ≥ ρ

4c2
.

On the other hand, for x ∈ [x1, ρ/2],

g′(x) ≤
√
ε− g
c1
√
g
≤ 1
c1
,
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and for y ∈ (0, ε/2) we can calculate

g−1(y) ≤ c2

√
2
ε

∫ y

0

t1/2dt

=
2c2
√

2
3
√
ε
y3/2,

which implies

(2.10) g(x) ≥
(

3
2c2
√

2

√
εx

)2/3

= c4
(
εx2
)1/3

for all x ∈ [0, x1], and

g′(x) ≤
√
ε− g
c1
√
g

≤
√
ε

c1

√
c4 (εx2)1/3

= c5

( ε
x

)1/3

.

So we have shown

g′(x) ≤ max
(

1
c1
, c5

( ε
x

)1/3
)

for all x ∈ (0, ρ/2], and therefore

‖f ′‖qLq([0,ρ/2]) = ‖g′‖qLq([0,ρ/2])(2.11)

≤ c−q1 ρ+ cq5

∫ ρ/2

0

εq/3x−q/3dx

= c−q1 ρ+
cq5

1− q/3
εq/3(ρ/2)1−q/3

≤ c6ρ,

where we used the fact that q < 3 and ε ≤ 3
4c1
ρ.

Until now we have only been dealing with the function g : [0, ρ/2] → R.
Now let us extend this function to g : [−ρ/2, ρ/2] → R by defining g(−x) =
g(x). Furthermore, we can then extend g to a periodic function with period
ρ, by assigning g(x + np) = g(x) for every integer n 6= 0 and for all x ∈
[−ρ/2, ρ/2]. (Note that g is C1 at x = ρ/2, with g′(ρ/2) = 0.)

The period of g is

ρ = 2
∫ ε

0

√
t

(t+A)(ε− t)(A+ 2− ε− t)
dt,(2.12)
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which depends continuously on ε, and we know that 4c1
3 ε ≤ ρ ≤ 4c2ε. Hence

for any ρ sufficiently small, there will always be a corresponding value of
ε ∈ (0, ε0).

The estimate (2.4) follows immediately from (2.9) and (2.11). Also, it is
obvious from the construction that f ′ < 0 on (0, ρ/2), f ′ > 0 on (ρ/2, ρ), and
sup |f − 1| = sup |g| = ε→ 0 as ρ→ 0.

It still remains to show that f = 1 − g satisfies (1.6). We will start by
showing that

2f ′′ − 2f + 3f2 − d2

dx2

(
f2
)

+ (f ′)2

is a measurable function. This is equivalent to showing that the expression

2f ′′ − d2

dx2
(f2) =

d

dx
(2f ′ − 2ff ′)

=
d

dx
(2gg′)

is a measurable function (since clearly f and f ′ are measurable functions, and
hence −2f + 3f2 + (f ′)2 is as well).

We know that on the interval (0, ρ/2), gg′ is continuous and satisfies

(2.13) gg′ =
√
g(g +A)(ε− g)(A+ 2− ε− g).

So as x → 0+, g(x) → 0, and hence g(x)g′(x) → 0 by (2.13). Similarly,
g(x)g′(x) → 0 as x → 0−. So g(x)g′(x) is continuous at x = 0, and by
periodicity it is continuous everywhere. But we also know that gg′ is smooth
except on a discrete set, so d

dx (2gg′) is a measurable function, as desired.
Hence the left hand side of (1.6) is a measurable function. We already

know that on the set S̃ = R−{nρ/2 | n ∈ Z}, f is smooth, satisfies (2.3), and
has f ′ 6= 0. Therefore f satisfies (1.6) on this set, and in fact everywhere, (in
the distribution sense). �

Remark 2.2. In this paper we are mainly interested in ρ small; a word
could be said, however, about ρ large. It is fairly easy to show from (2.12)
that ρ becomes arbitrarily large if we take ε sufficiently close to 1+A/2. (Note
that this necessarily means taking ε0 close to 1 + A/2 as well, which affects
the constants c1, c2, . . .)

Therefore, the stipulation “for any ρ > 0 sufficiently small” in Proposition
2.1 could be changed to “for any ρ ∈ (0, ρ0)”, where ρ0 is any positive constant
we choose (and where it is understood that the constants C1 and C2 in (2.4)
depend on ρ0).

It is also worth noting that if we instead take ε = 1 +A/2, which is to say
that if we take b = c = −A/2 in (2.3), then the integral in (2.12) becomes
infinite; that is, we get a non-periodic function f : R → R. Note, however,
that limx→±∞ f(x) = −A/2. So if we want limx→±∞ f(x) = 0, we must take
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A = 0 rather than A > 0. In this case f is none other than the function
f(x) = e−|x+c| (which has corner-type peaks, rather than spikes).

3. Proof of Theorem 1.1

Proposition 2.1 and Remark 2.2 tell us, in particular, that for every positive
integer k there is a periodic solution fk : T→ R of (1.5) with period ρk = 1/k.
Then 0 < fk ≤ 1, so ‖fk‖qLq(T) ≤ 1, and (2.4) implies

(3.1) C1 ≤ ‖f ′k‖
q
Lq(T) ≤ C2

for any q ∈ [1, 3).
Now let us recall the definition of the Lp-Sobolev spaces on the torus:

Wm,p(T) = {h ∈ Lp(T) : h(k) ∈ Lp(T), k ≤ m},
for any nonnegative integer m and any p ∈ [0,∞), which is a Banach space
with respect to the norm

‖h‖pWm,p

.=
m∑
k=1

‖h(k)‖pLp .

In particular, Wm,2 = Hm, with equivalent norms. (Of course, Wm,p can be
defined for arbitrary m ≥ 0 and p ∈ [0,∞], but we will not use the general
definition since it will not be needed in this paper.)

So (3.1) implies that fk ∈W 1,q(T) and

‖fk‖W 1,q(T) =
(
‖fk‖qLq(T) + ‖f ′k‖

q
Lq(T)

)1/q

≤ (1 + C2)1/q .= C3.

Using these functions fk we will now prove Theorem 1.1. In fact, we will
show that (1.3) is not well-posed in the space W 1,q(T) for any q ∈ [1, 3):

Theorem 3.1. Let q ∈ [1, 3) and T > 0. Then there exist sequences
uk, vk ∈ C[R : W 1,q(T)] which solve (1.1), such that

(3.2) ‖uk0‖W 1,q ≤ C
for all k, where C > 0 is a constant independent of T , and

(3.3) ‖uk0 − vk0‖W 1,q → 0 as k →∞,
but

(3.4) ‖uk(T )− vk(T )‖W 1,q 9 0.

Proof. By the preceding discussion, we can take

uk(x, t) = fk(x− t)
for all positive integers k. Also set σk = 1 + 1

2kT and

vk(x, t) = σkfk(x− σkt).
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Then we have

‖uk0‖W 1,q = ‖fk‖W 1,q ≤ C3.

We also have

‖uk0 − vk0‖W 1,q = (σk − 1)‖fk‖W 1,q ≤ C3

2kT
,

which goes to zero as k →∞. Now at time t = T , we see from (2.5) that the
derivatives ∂xuk(x, T ) = f ′k(x − T ) and ∂xv

k(x, T ) = σkf
′
k(x − T − 1/(2k))

will never have the same sign. Therefore

|∂xuk(x, T )− ∂xvk(x, T )| ≥ |∂xuk(x, T )|

and hence

‖uk(T )− vk(T )‖W 1,q ≥ ‖∂xuk(T )− ∂xvk(T )‖Lq

≥ ‖∂xuk(T )‖Lq
= ‖f ′k‖Lq

≥ C1/q
1 . �

Remark. In the definition of local well-posedness, the existence time T
is allowed to depend on the size of the initial data. It is important, therefore,
that the uniform bound (3.2) was independent of T .
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and hereditary symmetries, Phys. D 4 (1981/82), 47–66. MR 84j:58046

[5] A. A. Himonas and G. Misio lek, The Cauchy problem for an integrable shallow-water
equation, Differential Integral Equations 14 (2001), 821–831. MR 2002c:35228

[6] , Analyticity of the Cauchy problem for an integrable evolution equation, Math.
Ann. 327 (2003), 575–584. MR 2 021 030

[7] D. Holm, S. Kouranbaeva, J. Marsden, T. Ratiu, and S. Shkoller, A nonlinear analysis

of the averaged Euler equations, preprint, 1998.
[8] D. D. Holm, J. E. Marsden, and T. S. Ratiu, The Euler-Poincaré equations and semidi-
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