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IMAGINARIES IN BEAUTIFUL PAIRS

ANAND PILLAY AND EVGUENI VASSILIEV

Abstract. We prove that if T = T eq is a stable theory (without the

finite cover property), then the theory TP of “beautiful pairs” eliminates
imaginaries if and only if no infinite group is definable in a model of T .

1. Introduction

An imaginary in a first order structure M is something of the form a/E
where a is a finite tuple from M and E is an ∅-definable equivalence relation
on Mn. It is nowadays recognized that a model-theoretic understanding of a
structure M involves not only classifying/describing the definable sets in M
(via some kind of quantifier elimination) but also classifying/describing the
imaginaries in M , up to interdefinability.

In this paper we are concerned with the question of what, if any, new
imaginaries arise when we pass from a stable theory T (without the finite
cover property) to the theory TP of “beautiful pairs” of T . We were led to
the questions dealt with in the current paper by our work [1] on lovely pairs
of models of a simple theory, and some of the preliminary work in the current
paper will be at that level of generality. It was natural to ask what, if any,
new hyperimaginaries appear in lovely pairs. But we realized that we did
not even know what new imaginaries arise, even in the most straightforward
examples, such as pairs of algebraically closed fields. Lovely pairs are the
“simple” generalization of Poizat’s “belles paires” or beautiful pairs of models
of a stable theory, which we will now describe.

Let T be a complete first order theory in the language L. Let LP be the
language obtained by augmenting L with a new unary predicate symbol P .
An (elementary) pair of models of T , or a T -pair, is a structure (M,P ) where
M |= T , and P defines an elementary substructure of M . A T -pair (M,P ) is
proper, if P (M) 6= M . To be a T -pair is clearly a first order property.

Pairs of stable structures were first studied in [5], where the central notion
is that of a beautiful pair. A T -pair (M,P ) is beautiful (belle), if P (M) is
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|T |+-saturated and any L-type over P (M) together with a finite tuple from M
is realized in M . If T is stable, then any two beautiful T -pairs are elementarily
equivalent (in LP ). It was shown in [5] that if T is stable and does not have
the finite cover property, then the (complete) theory of all beautiful T -pairs
is again stable.

We will prove:

Theorem. Let T be stable, without the finite cover property. Then the
following are equivalent:

(i) TP has elimination of imaginaries relative to T (that is any imaginary
in a model (M,P ) of TP is interdefinable with an imaginary of M |=
T ).

(ii) TP has geometric elimination of imaginaries relative to T (namely
any imaginary in (M,P ) |= TP is interalgebraic with an imaginary of
M).

(iii) No infinite group is definable in any model of T .

Our general approach to understanding imaginaries will be via canonical
bases. Our proof will make heavy use of the work [1] on lovely pairs (M,P ) of
models of a simple theory, which of course is valid in the stable case too where
lovely pairs and Poizat’s beautiful pairs coincide. In particular Proposition
7.5 in that paper, which gives a description of canonical bases in TP up to
interdefinability, will be crucial. It says, roughly speaking, that any canonical
base b ∈ (M,P )eq can be assumed to be the canonical base of a type tp(a/b)
say which is internal to P . The general theory of internality and definable
automorphism groups then yields an LP -definable group G internal to P ,
which is infinite if and only if a /∈ acl(bP ). Then we prove that if a ∈ acl(bP )
then b is interdefinable with an element of Meq. This is carried out in Section
3. We present some background and preliminary material in Section 2.

The work here does not yield an explicit description of the imaginaries
in TP (even up to interalgebraicity), although these imaginaries are clearly
closely related to “codes” for LP -definable principal homogeneous spaces for
definable groups in P . In the best of all possible worlds, the new imaginaries
will be accounted for by elements of G(M)/G(P ) for G a group that is L-
definable over P . We expect this to be more or less the case when T is the
theory of algebraically closed fields.

2. Preliminaries

We will now recall the definition and some properties of “lovely pairs”
of simple structures from [1], prove some technical lemmas, and also recall
some facts from stability theory. Lovely pairs give a common generalization
of Poizat’s beautiful pairs of stable structures [5] and the “generic” pairs of
supersimple SU-rank 1 structures [6]. We assume that our base theory T is
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complete, simple and has quantifier elimination. Many of the results below
have simpler proofs in the stable or strongly minimal case (or the case of
ACF), but we will try to state and/or prove them in the most general setting.

For any set A in (M,P ), P (A) denotes A ∩ P , the “P -part” of A. When
dealing with a group G which is definable in L with parameters from P , we will
use notation G(P ) to denote the P -part of G. For a simple T and κ ≥ |T |+,
a T -pair (M,P ) is called κ-lovely, if it satisfies

(i) (κ-extension property) for any L-type p ∈ S(A), where |A| < κ, some
non-forking extension of p to A ∪ P (M) is realized in M ;

(ii) (κ-coheir property) for any L-type p ∈ S(A), where |A| < κ, if p does
not fork over P (A), then it is realized in P (M).

A pair is called lovely, if it is |T |+-lovely. In the stable case, κ-lovely
pairs are exactly the “κ-beautiful” pairs, with the obvious definition of κ-
beautiful. Any two lovely T -pairs are elementarily equivalent. Any T -pair
can be embedded in a lovely one. If T has finite and definable D(−, φ)-
ranks (equivalent to non-finite cover property in the stable case), then any
sufficiently saturated model of the (complete) theory TP of all lovely T -pairs
is again a lovely pair, and TP is simple. We assume that T = T eq and has finite
and definable D(−, φ)-ranks, and that we are working in a saturated model
(M,P ) of TP (which will be a lovely pair), and we will assume elimination of
hyperimaginaries (which holds in the stable case). Although some of the facts
below hold in a more general setting, this assumption makes some arguments
and notation simpler. One can still work with hyperimaginaries, and in this
case, acl should be changed to bdd and stp to Lstp.

We should also point out that when working in a pair (M,P ), aclL and
dclL are taken in M = Meq, while aclLP and dclLP are taken in (M,P )eq,
which may contain new sorts.

Letters a, b, c, . . . may denote tuples (possibly infinite, but of small length)
of imaginaries. We may also view sets as tuples, and use set or tuple notation
interchangeably. Given a ∈ M , we let cP (a) = Cb(tpL(a/P (M))) (in [1] it
was denoted by ac). Then cP (a) is a definably closed small subset of P (M)
(since we assume that T = T eq). By â we denote (a, cP (a)). We call a set A

P -independent, if A |̂
L

P (A)P (M). Clearly, â is always P -independent.
Notice also that cP (a) ⊂ dclLP (a) (any LP -automorphism fixes P (M) set-

wise, and if it also fixes a pointwise, then it fixes tpL(a/P (M))). Clearly, we
also have â ⊂ dclLP ( a).

Fact 2.1 (see [1, Lemma 3.8]).

(i) If A and B are P -independent and qftpLP (A) = qftpLP (B), then
tpLP (A) = tpLP (B).

(ii) tpLP (a) = tpLP (a′) iff tpL(a, cP (a)) = tpL(a′, cP (a′)).
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Notice that since any subset of P is P -independent, (i) implies that any
relation on P (M) definable in a lovely pair (M,P ) with parameters in P (M)
is actually definable in the model P (M) of T over the same parameters. In
particular the imaginaries coming from quotients of tuples from P (M) by
equivalence relations LP -definable over P (M) are interdefinable with “old”
imaginaries from P (M)eq. So, P (M)eq computed in LP and in L will be
identified.

We have the following characterization of independence (non-forking) in
TP .

Fact 2.2 (see [1, Proposition 7.3]). The following are equivalent:

(i) A |̂
LP
C B;

(ii) A |̂
L

C∪P (M)B and ÂC |̂
L

ĈB̂C;

(iii) A |̂
L

C∪P (M)B and cP (AC) |̂
L

cP (C)cP (BC).

The next fact reduces canonical bases in TP to canonical bases of some
special kind of types.

Fact 2.3 (see [1, Proposition 7.5]). Let B be an elementary substruc-
ture of (M,P ), a ∈ M . Let d = Cb(stpL(a/B ∪ P (M)) (so d ∈ M),
e = Cb(tpLP (a/B)) and e′ = Cb(tpLP (d/B)). Then

(i) e′ ∈ dclLP (e);
(ii) e ∈ bddLP (e′);
(iii) if T is stable, then e ∈ dclLP (e′).

By [3], for any (hyper)imaginary e in TP , there is a real tuple a and a
model (M,P ), such that if c = Cb(tpLP (a/M)), we have e ∈ dclLP (c) and c ∈
aclLP (e) (resp. c ∈ bddLP (e)). Since the tuple d above is in aclL(B ∪ P (M)),
we get the following characterization of imaginaries in TP .

Fact 2.4. Assume T is stable. Then for any imaginary e in TP there is a
real tuple d and a model B such that d ∈ aclL(B ∪ P (M))),
e ∈ dclLP (Cb(tpLP (d/B))) and Cb(tpLP (d/B)) ⊂ aclLP (e).

The next three lemmas deal with some properties of algebraic/definable
closure in TP .

Lemma 2.5.

(i) aclLP (a) ∩M = aclL(â);
(ii) dclLP (a) ∩M = dclL(â).

Proof. (i) First we will show that aclLP (a) ∩ P (M) = aclL(cP (a)). Let

b ∈ aclLP (a) ∩ P (M). Then b |̂
L

cP (a)â. Assume b 6∈ aclL(cP (a)). Then b 6∈
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aclL( â). So there is an infinite sequence (bi|i ∈ ω) of realizations of tpL(b/â),

such that (bi|i ∈ ω) |̂
L

cP (a)â. By the coheir property, we may assume that bi ∈
P (M) for any i ∈ ω. Then for any i ∈ ω, âbi is P -independent, and realizes
the same quantifier free LP -type as âb (which is also P -independent). Then
by Fact 2.1 (i), tpLP (b/a) has infinitely many realizations, a contradiction.

Now, take any e ∈ M\P (M) such that e ∈ aclLP (a), but e 6∈ aclL(â).
Then cP (eâ) ⊂ dclLP (eâ) ∩ P (M) ⊂ aclLP (â) ∩ P (M) = aclL(cP (a)). So, eâ

is P -independent, namely eâ |̂
L

cP (a)P (M). Take a Morley sequence (ei|i ∈
ω) in tpL(e/aclL(â). Since e 6∈ aclL(â), this sequence is infinite. By the

extension property, we may assume that (ei|i ∈ ω) |̂
L

âP (M). Then eiâ are
P -independent, with the same quantifier free LP -type as eâ. So, again by
Fact 2.1 (i), tpLP (e/a) has infinitely many realizations, a contradiction.

(ii) First we show that dclLP (a) ∩ P (M) = dclL(â) ∩ P (M). Let b ∈
dclLP (a) ∩ P (M). By (i), b ∈ aclL(cP (a)). If b 6∈ dclL(â), then there is
b′ ≡Lâ b′, b′ 6= b. Then b′ ∈ aclL(cP (a)) (a subset of P (M)). But then bâ and
b′â have the same quantifier free LP -type and are P -independent, so by Fact
2.1(i) they have the same LP -type, contradicting b ∈ dclLP (a).

Now, let e ∈ M\P (M), e ∈ dclLP (a) but e 6∈ dclL(â). Let e′ 6= e be
such that e ≡Lâ e′. By (i), both e and e′ are in aclL(â), so eâ and e′â are
both P -independent. Note that since e 6∈ P (M), e 6∈ aclL(cP (a)). Then also
e′ 6∈ aclL(cP (a)). But aclL(â)∩P (M) = aclLP (a)∩P (M) = aclL(cP (a)). So,
e′ 6∈ P (M). Thus, by Fact 2.1(i) again, e and e′ realize the same LP -type
over a, contradicting e ∈ dclLP (a). �

Lemma 2.6.

(i) Any LP -algebraically closed subset of M (= Meq) is P−independent.
(ii) If A ⊂M is P -independent, then aclLP (A) ∩M = aclL(A).

(Note that it follows that any LP -algebraically closed subset of Meq is P -
independent.)

Proof. (i) Follows from cP (A) ⊂ aclLP (A) ∩ P (M).
(ii) Follows from Lemma 2.5, since cP (A) ⊂ aclL(P (A)). �

Lemma 2.7. For any A ⊂M ,
(i) aclLP (A ∪ P (M)) ∩M = aclL(A ∪ P (M));
(ii) dclLP (A ∪ P (M)) ∩M = dclL(A ∪ P (M)).

Proof. The right to left inclusions are clear. Now, by Lemma 2.5, for any
small B ⊂ P (M) we have

dclLP (AB) ∩M = dclL(ÂB) = dclL(ABcP (AB)) ⊂ dclL(AP (M)),

and

aclLP (AB) ∩M = aclL(ÂB) = aclL(ABcP (AB)) ⊂ aclL(AP (M)). �
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The following notion plays an important role in our proofs. Let p(x,A) be
a complete type over a set A in a simple theory T (with elimination of hy-
perimaginaries), and Σ(y,A) a partial type over A. We say that p is (almost)
Σ-internal, if there is B ⊃ A and a |= p(x,A) such that a |̂ AB and there is a
tuple e of realizations of Σ(y,A) such that a ∈ dcl(eB) (resp. a ∈ acl(eB)).

The following is a well-known fact from stability theory, due to Hrushovski,
which we will apply when the theory is TP and Σ is P .

Fact 2.8 (see [4, Theorem 7.4.8]). Let T be stable, p(x,A) a Σ(y,A)-
internal stationary type. Let G = Aut(p/A ∪ Σ) be the group of all of auto-
morphisms of the monster model fixing A and all realizations of Σ pointwise,
restricted to the realizations of p. Then

(i) G is finite iff a ∈ acl(Ae) for some tuple e of realizations of Σ.
(ii) There is an A-type-definable group (in T eq) acting A-type-definably

on p, so that this group together with its action on p are isomorphic
to the group G acting on p.

(iii) Let Q be the set of all realizations of Σ(y,A), and Qeq be the set of all
imaginaries coming from quotients of tuples in Q. Then the A-type-
definable group in (ii) is definably isomorphic to a group type-definable
in Qeq over parameters in Q.

Since type-definable groups are intersections of definable groups, the exis-
tence of an infinite type-definable group implies the existence of an infinite
definable group (in the same sort, over the same parameters).

The following fact, proved in [2, Theorem 1.2], allows one to “transform”
an almost Σ-internal type into a Σ-internal type.

Fact 2.9. Let T be simple (with elimination of hyperimaginaries), A alge-
braically closed in T eq, and p = tp(a/A) almost Σ(y,A)-internal. Then there
is an imaginary e ∈ dcl(aA) such that a ∈ acl(e) and tp(e/A) is Σ-internal.
More precisely, e is a finite set of realizations of p.

3. Definability of groups and elimination of imaginaries

In this section we prove the main theorem. But we try to work at as
general a level as possible. So the blanket assumption for this section is that
T = T eq is a simple theory with finiteness and definability of all Dφ-ranks. In
particular the assumption holds for T = T eq stable with non-fcp. We work in
a large saturated model (M,P ) of TP , which we know is a lovely (beautiful)
pair.

Lemma 3.1. Suppose T to be stable and that no infinite group is definable
in a model of T . Then for any set B and a possibly infinite tuple a in (M,P ),
a ∈ aclL(B ∪ P (M)) implies a ∈ aclLP (Cb(stpLP (a/B)) ∪ P (M)).
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Proof. We may assume that the tuple a is finite, since in any stable theory
Cb(stp(a/A)) is interdefinable with

⋃
a′⊂a finite Cb(stp(a

′/A)). Now assume
that a ∈ aclL(B ∪ P (M)), let B0 = Cb(stpLP (a/B)), and assume that a 6∈
aclLP (B0 ∪ P (M)). Clearly, tpLP (a/B0) is stationary and almost P -internal
(i.e., Σ(y) = P (y)). Then by Fact 2.9, there is an LP -imaginary e such that
e ∈ dclLP (aB0), a ∈ aclLP (eB0), and tpLP (e/B0) is P -internal. Clearly,
e 6∈ aclLP (B0 ∪ P (M)). Then, since TP is stable, by Fact 2.8, there is an
infinite group G LP -definable in P (M)eq over parameters in P (M). But then
G is actually L-definable in P (M)eq (a model of T eq), a contradiction. �

Lemma 3.2. Suppose T eliminates hyperimaginaries. Let a be a (possibly
infinite) tuple in M and b = Cb(stpLP (a/b)), and a ∈ aclLP (bP (M)). Let
d = CbLP (ab/P (M)). Let B be an LP -algebraically closed subset of the (real

part of) M such that b ∈ dclLP (B) and a |̂
LP
b B.

(i) d is (LP -)interdefinable with a (possibly infinite) tuple in P (M). So
we may assume d ∈ P (M).

(ii) Let c = Cb(tpL(ad/B)). Then c ∈ dclLP (b) and b ∈ aclLP (c). If T is
stable, then b ∈ dclLP (c).

Proof. (i) Follows from d ∈ P (M)eq.
(ii) First note that since B is LP -algebraically closed in M = Meq, it is

P -independent, and so is Bd. Now, a ∈ aclLP (bP (M)), so a ∈ aclLP (bd) ⊂
aclLP (Bd). So, a ∈ aclLP (Bd) ∩M = aclL(Bd). Let pb = tpLP (a/b), rB =
tpLP (a/B) (so implies a non-forking extension of pb to bB), qB = tpL(ad/B).
So, c = Cb(qB).

Claim 1. c ∈ dclLP (b).

Proof. We need to show that whenever B′ ≡LPb B, we have Cb(qB) =
Cb(qB′) (with the obvious meaning of qB′). Since we can always find B′′ ≡LPb
B such that B′′ |̂

LP
b BB′, we may assume that B |̂

LP
b B′. Then, since pb is

an amalgamation base we can find a′ |= pb with a′ |̂
LP
b BB′ and a′B ≡LPb

a′B′ ≡LPb aB. Take d′ ∈ P (M) such that a′d′B′ ≡LPb adB. Note that
d ∈ dclLP (ab), so

a′d′B ≡LPb a′d′B′ ≡LPb adB.

Now, a′d′ |̂
LP
b BB′, so since b is in the LP -definable closure of each of B and

B′, we have a′d′ |̂
LP
B BB′ and a′d′ |̂

LP
B′ BB

′. But since B and B′ are both
P -independent and L-algebraically closed, B̂ = B and B̂′ = B′. So, by Fact
2.2, a′d′ |̂

L

BBB
′ and a′d′ |̂

L

B′BB
′. Hence a′d′ realize a common non-forking

extension of qB and qB′ . Thus Cb(qB) = Cb(qB′), as needed. �

Claim 2. b ∈ aclLP (c). If T is stable, then b ∈ dclLP (c).
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Proof. Note that b = Cb(pb) = Cb(rB). Also recall that ĉ ⊂ aclLP (c).

So, it suffices to prove that if B′ ≡LPaclL(ĉ) B and B′ |̂
LP
aclL(ĉ)B, then rB and

rB′ have a common non-forking extension. Now, B′ |̂
LP
aclL(ĉ)B implies that

B′ |̂
L

aclL(ĉ)B, so, since qB |aclL(ĉ) is an amalgamation base (in the sense of L),
qB and qB′ have a common non-forking extension. Extend it non-forkingly
(in the sense of L) to a type q′ over B̂B′. Let a′d′ realize q′. Since d ∈ P (M)

and both B and B′ are P -independent, we have (by transitivity) d′ |̂
L

P (B)B̂B
′

and d′ |̂
L

P (B′)B̂B
′. So, d′ |̂

L

P (B̂B′)B̂B
′, and by the coheir property, we may

assume that d′ ∈ P (M). By Fact 2.2, d′ is then LP -independent from B̂B′

over each of B = B̂ and B′ = B̂′. Since a′ ∈ aclL(Bd′) and a′ ∈ aclL(B′d′),
the same is true for a′. Also, each of a′d′B and a′d′B′ is P -independent and
has the same quantifier free LP -type as adB (which is also P -independent).
So, by Fact 2.1, a′B ≡LP a′B′ ≡LP aB. Thus a′ realizes a common non-
forking extension of rB and rB′ . To show the second statement of the claim,
it suffices to show that (assuming T is stable) if B′ ≡LPc B then rB and rB′
have a common non-forking extension. By stability of T , qB and qB′ have a
common non-forking extension, and then exactly as above, we find a common
non-forking extension of rB and rB′ . �

Lemma 3.3. If there is an infinite group G definable in T , then TP does
not have geometric elimination of imaginaries. That is, there is some element
of (M,P )eq which is not interalgebraic with any element of M = Meq.

Proof. Assume G is an infinite group defined over some c (in a sufficiently
saturated model of T ). We may assume that c ∈ P (M). Take a generic

element g ∈ G(M) such that g |̂
L

c P (M). Now, if g0 ∈ G(P ), then g |̂
L

c g0, so

by genericity of g, we have g·g0 |̂
L

c g0. On the other hand, g·g0 |̂
L

c,g0
P (M), and

hence g ·g0
|̂ L
c P (M). Thus for any g′ ∈ g ·G(P ), g′ |̂

L

c P (M). Consider an LP -
imaginary gP representing the coset g ·G(P ) (its canonical parameter). Then

gP ∈ dclLP (g, c). Note that since c ∈ P (M), g |̂
L

c P (M) implies g |̂
LP
c P (M).

So also gP |̂
LP
c P (M). Since g ·G(P ) is a large set, we may also assume that

g is not LP -algebraic over gP , c (we will only need g |̂
L

c P (M), which holds
for any element of g ·G(P )).

Let a be any real element (i.e., imaginary in Meq = M). We need to
show that a is not interalgebraic with gP . Assume a is interalgebraic with
gP . In particular, a ∈ aclLP (g, c). But by Lemma 2.6, since g |̂

L

c P (M),
aclLP (g, c) ∩M = aclL(g, c). So, a ∈ aclL(g, c).
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Case 1. If g is not in aclL({a}∪P (M)), then g 6∈ aclL(a, cP (g, a, c)). Take
a Morley sequence (gi|i ∈ ω) in tpL(g/a, cP (g, a, c)). Choose it L-independent
from P (M) over a, cP (g, a, c) (by the extension property). Then for any
i ∈ ω cP (gi, a, c) = cP (g, a, c), so by Lemma 2.1, tpLP (gi/a, c) = tpLP (g/a, c).
Hence also tpLP (giP /a, c) = tpLP (gP /a, c), where giP is the canonical param-
eter of the coset gi · G(P ). Now, since g 6∈ aclL(a, cP (g, a, c)), the gi’s are
algebraically independent over P , i.e., gi 6∈ aclL({gj |j 6= i} ∪ P (M)) for any
i ∈ ω. Thus they are in different G(P )-cosets, and hence all giP ’s are distinct.
This shows that gP is not in aclLP (a), a contradiction.

Case 2. Assume g ∈ aclL({a}∪P (M)). We know that a ∈ aclL(g, c) and g
is L-independent from P (M) over c. Thus g ∈ aclL(a, c). So, g ∈ aclLP (gP , c),
a contradiction. �

We can now deduce the main result of this paper:

Theorem 3.4. Let T = T eq be stable without the finite cover property,
and let TP be the theory of beautiful (lovely) T -pairs. Then the following are
equivalent:

(i) TP has elimination of imaginaries.
(ii) TP has geometric elimination of imaginaries.
(iii) No infinite group is definable in a model of T .

Proof. (i) implies (ii) is immediate. (ii) implies (iii) is Lemma 3.3.
(iii) implies (i): Let e ∈ (M,P )eq. By Fact 2.4, Lemma 3.1 and Lemma 3.2,

there is some real tuple c such that e ∈ dcl(c) and c ∈ acl(e) (in (M,P )). Let
c′ be a code (in M = Meq) for the (finite, so definable in M) set of conjugates
of c over e. Then e is interdefinable with c′. �
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