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ON THE SCHATTEN CLASS MEMBERSHIP OF HANKEL
OPERATORS ON THE UNIT BALL

JINGBO XIA

Abstract. A well-known theorem of K. Zhu [7] asserts that, for 2 ≤ p <
∞, the Hankel operators Hf and Hf̄ on the Bergman space L2

a(Bn, dV )

of the unit ball belong to the Schatten class Cp if and only if the mean

oscillation MO(f)(z) = {|̃f |2(z) − |f̃(z)|2}1/2 belongs to Lp(Bn, (1 −
|z|2)−n−1dV (z)). It is well known that, for trivial reasons, this theorem
cannot be extended to the case p ≤ 2n/(n + 1). This paper fills the

gap between 2n/(n + 1) and 2. More precisely, we prove that, when
2n/(n+ 1) < p < 2, the same theorem holds true.

1. Introduction

Let Bn be the open unit ball {z ∈ Cn : |z| < 1} in Cn and let dV
be the volume measure on Bn normalized in such a way that V (Bn) = 1.
Recall that the Bergman space L2

a(Bn, dV ) is defined to be the subspace {ψ ∈
L2(Bn, dV ) : ψ is analytic on Bn} of L2(Bn, dV ). Let P be the orthogonal
projection from L2(Bn, dV ) to L2

a(Bn, dV ). Given a symbol function f , the
Hankel operator Hf : L2

a(Bn, dV ) → L2
a(Bn, dV )⊥ is defined by the formula

Hf = (1− P )MfP , where Mf is the operator of multiplication by f .
As usual, we write 〈z, ζ〉 = z1ζ̄1 + · · · + znζ̄n for z = (z1, . . . , zn) and

ζ = (ζ1, . . . , ζn) in Cn. It is well known that P has K(z, ζ) = (1−〈z, ζ〉)−n−1

as its kernel, i.e.,

(Pψ)(z) =
∫
K(z, ζ)ψ(ζ)dV (ζ) =

∫
ψ(ζ)

(1− 〈z, ζ〉)n+1 dV (ζ).

Associated with K are the unit vectors {kz : |z| < 1} in L2
a(Bn, dV ), where

kz(ζ) = {K(z, z)}−1/2
K(ζ, z) =

(
1− |z|2

)(n+1)/2
/ (1− 〈ζ, z〉)n+1

.
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For any function f ∈ L2(Bn, dV ), its Berezin transform is defined to be

f̃(z) = 〈fkz, kz〉 =
∫
f |kz|2 dV.

Recall that the mean oscillation MO(f) of f is given by the formula

MO(f)(z) =
{
|̃f |2(z)−

∣∣∣f̃(z)
∣∣∣2}1/2

=
{∫ ∣∣∣f − f̃(z)

∣∣∣2 |kz|2 dV}1/2

.

Let dλ denote the Möbius-invariant measure on Bn, i.e.,

dλ(z) =
(
1− |z|2

)−n−1
dV (z).

Recall that, for 1 ≤ p < ∞, the Schatten p-class Cp consists of operators T
satisfying the condition ‖T‖p < ∞, where the norm ‖.‖p is defined by the
formula

‖T‖p = {tr (|T |p)}1/p =
{

tr
(

(T ∗T )p/2
)}1/p

.

In the study of Bergman space operators, a natural problem is to determine
the membership of Hf in Cp in terms of function-theoretical data. Indeed
there is a very rich literature on this subject (see, e.g., [1]–[3], [6], [8]). Of
particular relevance to this paper is [8], in which K. Zhu characterized the
simultaneous membership Hf ∈ Cp and Hf̄ ∈ Cp in the case p ≥ 2.

Theorem 1 ([8]). Let 2 ≤ p < ∞ and f ∈ L2(Bn, dV ). Then Hf ∈ Cp
and Hf̄ ∈ Cp if and only if MO(f) ∈ Lp(Bn, dλ).

Zhu [8] further raised the question of what happens when p < 2. It is easy to
see that this result cannot be extended to the case where p ≤ 2n/(n+1). That
is, if p ≤ 2n/(n+1), then for trivial reasons the condition MO(f) ∈ Lp(Bn, dλ)
is sufficient, but not necessary, for the simultaneous membership Hf ∈ Cp and
Hf̄ ∈ Cp. Indeed, because

MO(f)(z) ≥

{∫ ∣∣∣f − f̃(z)
∣∣∣2 (1− |z|2)n+1

(1 + |z|)2n+2
dV

}1/2

≥
(
1− |z|2

)(n+1)/2

2n+1

{
inf
α∈C

∫
|f − α|2dV

}1/2

,

when (p(n + 1)/2) − (n + 1) ≤ −1, i.e., when p ≤ 2n/(n + 1), the condition
MO(f) ∈ Lp(Bn, dλ) forces the factor infα∈C

∫
|f − α|2dV in the above ex-

pression to be 0, which implies that f is a constant a.e. on Bn. But obviously
there are non-constant functions f on Bn for which both Hf and Hf̄ are of
trace class. For example, if f is bounded and vanishes outside some {z ∈ Cn:
|z| < η}, η < 1, then both Hf and Hf̄ belong to C1. But this analysis and
Theorem 1 still leave us with the gap 2n/(n+ 1) < p < 2.
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This gap was recently filled in the special case of complex dimension n = 1.
That is, we showed in [5] that, for 1 < p < 2, the Hankel operators Hf and Hf̄

on the Bergman space L2
a(D, dA) of the unit disc belong to the Schatten class

Cp if and only if MO(f) ∈ Lp(D, (1 − |z|2)−2dA(z)). This special case gives
us the confidence that Theorem 1 can also be extended to 2n/(n+ 1) < p < 2
when n ≥ 2. The main result of the present paper, where we focus on complex
dimensions n ≥ 2, is that this is indeed true.

Theorem 2. Let 2n/(n+ 1) < p < 2 and f ∈ L2(Bn, dV ). Then we have
Hf ∈ Cp and Hf̄ ∈ Cp if and only if MO(f) ∈ Lp(Bn, dλ).

When 2n/(n + 1) < p < 2, the “easy” and “hard” directions in the proof
are the exact opposite of the corresponding directions for the case 2 ≤ p <∞.
In other words, the difficulty in the proof of Theorem 2 is to show that the
condition MO(f) ∈ Lp(Bn, dλ) is necessary for Hf ∈ Cp and Hf̄ ∈ Cp, while
the sufficiency of this condition is trivial.

Indeed, when p/2 ≤ 1, we have 〈|Hf |pkz, kz〉 ≤ 〈|Hf |2kz, kz〉p/2 = ‖Hfkz‖p.
Now ‖Hfkz‖2 = ‖fkz‖2−‖Pfkz‖2 ≤ ‖fkz‖2−|〈Pfkz, kz〉|2 = {MO(f)(z)}2.
Obviously, MO(f̄) = MO(f). Thus

tr
(
|Hf |p +

∣∣Hf̄

∣∣p) =
∫ 〈(

|Hf |p +
∣∣Hf̄

∣∣p) kz, kz〉 dλ(z)(1.1)

≤ 2
∫
{MO(f)(z)}p dλ(z)

(see pages 115–117 in [7]). Therefore, when p ≤ 2, the condition MO(f) ∈
Lp(Bn, dλ) implies Hf ∈ Cp and Hf̄ ∈ Cp. This proves the “if” part of
Theorem 2.

The proof of the “only if” part of Theorem 2 amounts to reversing inequal-
ity (1.1) up to a constant multiple under the condition p > 2n/(n+ 1). Since
the reversal of (1.1) in the case of complex dimension n = 1 was accomplished
in [5], one would naturally expect the same method to work in complex dimen-
sions n ≥ 2. In this sense one might consider this paper as a generalization of
[5] to the high-dimensional case.

It has been suggested that generalizations of this kind can range anywhere
from a trivial exercise to a breakthrough. While certainly not a breakthrough,
it is not clear where on this scale the present paper fits. This is because the
method in [5] works only if one has the right decomposition scheme for the
domain in question. When the domain is the unit disc, this scheme requires
the circular sectors

(1.2)

{
reiθ : 1− 2−k < r < 1, 2−k(j − 1) < θ ≤ 2−kj

}
,{

reiθ : 1− 2−k < r ≤ 1− 2−k−1, 2−k(j − 1) < θ ≤ 2−kj
}
,
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where 1 ≤ j ≤ 2k and k ≥ 1, and three other types of sectors generated by
these [5, pp. 3561–3562]. The non-trivial part of this particular generalization
lies in the search for the right analogue of these sets in the case of complex
dimensions n ≥ 2. It is quite clear that the dyadic decomposition 1− 2−k <
r ≤ 1 − 2−k−1 is still the right one for the radial direction of the unit ball.
But it is far from obvious what the high-dimensional analogue of (1.2) should
look like in the spherical directions.

As it turns out, in complex dimensions n ≥ 2, the right spherical decompo-
sition does not involve the Euclidian metric or any other isotropic metric as
one might extrapolate from (1.2). Rather, the right spherical decomposition
involves the anisotropic metric

(1.3) d(u, v) = |1− 〈u, v〉|1/2 , u, v ∈ ∂Bn,
on the unit sphere. Given u, v ∈ ∂Bn, v has a component v⊥ orthogonal to u
with |v⊥| = (1 − |〈u, v〉|2)1/2. If n = 1, then, of course, |v⊥| = 0. But when
n ≥ 2, |v⊥| can be as large as on the order of |1 − 〈u, v〉|1/2 = d(u, v). This
explains why [5] provides no hint for the right spherical decomposition for the
high-dimensional case: the anisotropic nature of this decomposition reveals
itself only in complex dimensions n ≥ 2. Indeed our decision to publish the
case n ≥ 2 is mainly based on such considerations. As expected, once the
right decomposition is found, the rest of the proof works in much the same
way as it did in [5]. But the details are more complicated here.

The rest of the paper is organized as follows. Section 2 contains the afore-
mentioned decomposition and other necessary preliminaries. The main part
of the proof consists of Lemmas 6 and 7, which are collected in Section 3.

2. Decomposing the ball

For any u in the unit sphere ∂Bn = {z ∈ Cn : |z| = 1} and a > 0, define

(2.1) β(u, a) = {v ∈ ∂Bn : |1− 〈u, v〉| < a} .
Let dσ denote the surface measure on ∂Bn = S2n−1 normalized so that
σ(∂Bn) = 1. Then

dV = 2nr2n−1dr dσ.

Fundamental to our subsequent estimates are the following facts about β(u, a):

Lemma 3.

(i) Let 0 < a ≤ 1. If u, v ∈ ∂Bn and β(u, a) ∩ β(v, a) 6= ∅, then

β(v, a) ⊂ β(u, 9a).

(ii) There exist constants 0 < α1 < α2 < ∞ which depend only on the
complex dimension n such that the inequality

α1a
n ≤ σ (β(u, a)) ≤ α2a

n

holds for all u ∈ ∂Bn and 0 < a ≤ 1.
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Proof. Obviously,
β(u, a) = Q(u,

√
a),

where
Q(ζ, δ) = {η ∈ ∂Bn : d(ζ, η) < δ}

with d being defined by (1.3). By [4, Proposition 5.1.2], d satisfyies the
triangle inequality. Therefore, if Q(u,

√
a) ∩ Q(v,

√
a) 6= ∅, then β(v, a) =

Q(v,
√
a) ⊂ Q(u, 3

√
a) = β(u, 9a), which proves (i). Note that the value of

σ(β(u, a)) = σ(Q(u,
√
a)) is independent of the choice of u in ∂Bn. Hence (ii)

follows immediately from Proposition 5.1.4 of [4]. �

Lemma 4. Suppose that 0 < b ≤ a ≤ 1/9. Suppose that u ∈ ∂Bn and
v1, . . . , vN ∈ ∂Bn satisfy the conditions that β(u, a) ∩ β(vj , b) 6= ∅ for every
1 ≤ j ≤ N and β(vi, b) ∩ β(vj , b) = ∅ if 1 ≤ i < j ≤ N . Then we have the
bound N ≤ (α2/α1)·9n ·(a/b)n, where α1 and α2 are the constants that appear
in Lemma 3(ii).

Proof. Since b ≤ a, Lemma 3(i) tells us that β(vj , b) ⊂ β(u, 9a) for every
1 ≤ j ≤ N . By the disjointness of the β(vj , b)’s and by Lemma 3(ii), we have

Nα1b
n ≤

N∑
j=1

σ (β(vj , b)) = σ

 N⋃
j=1

β (vj , b)

 ≤ σ(β(u, 9a)) ≤ α2(9a)n.

The conclusion follows from this inequality. �

We now decompose ∂Bn according to the facts provided by Lemma 3. Let
any integer k ≥ 20 be given. By the lower bound in Lemma 3(ii) and by
virtue of the fact that σ(∂Bn) < ∞, there is a maximal finite subset {uk,1,
. . . , uk,m(k)} of ∂Bn such that

(2.2) β
(
uk,i, 2−k/9

)
∩ β

(
uk,j , 2−k/9

)
= ∅ if 1 ≤ i < j ≤ m(k).

The term “maximal” means, of course, that if u ∈ ∂Bn, then β(u, 2−k/9) ∩
β(uk,j , 2−k/9) 6= ∅ for some j ∈ {1, . . . ,m(k)}. By Lemma 3(i), this implies
that if u ∈ ∂Bn, then β(u, 2−k/9) ⊂ β(uk,j , 2−k) for some j ∈ {1, . . . ,m(k)}.
Hence

(2.3)
m(k)⋃
j=1

β
(
uk,j , 2−k

)
= ∂Bn.

For the rest of the paper, uk,1, . . . , uk,m(k) will denote the points in ∂Bn chosen
above. Keep in mind that these points satisfy conditions (2.2) and (2.3).

For any k ≥ 20 and 1 ≤ j ≤ m(k), define the sets

Tk,j =
{
ru : 1− 2−k ≤ r < 1− 2−k−1, u ∈ β

(
uk,j , 2−k

)}
,(2.4)

Qk,j =
{
ru : 1− 2−k ≤ r < 1− 2−k−2, u ∈ β

(
uk,j , 92 · 2−k

)}
.(2.5)
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Our selection of the points uk,j ensures that

(2.6)
∞⋃
k=20

m(k)⋃
j=1

Tk,j =
{
z ∈ Cn : 1− 2−20 ≤ |z| < 1

}
.

Furthermore, it follows from the definition of dλ and Lemma 3(ii) that

(2.7) sup
k,j

λ (Tk,j) ≤ sup
k,j

2(k+1)(n+1)V (Tk,j) <∞.

To simplify notation, we will write |E| for the volume V (E) of any Borel set
E ⊂ Bn. As usual, when |E| > 0, the mean value of f on E will be denoted
by fE , i.e., fE =

∫
E
f dV/|E|. Furthermore, we will use the notation

(2.8) V (f ;E) =
1
|E|

∫
E

|f − fE |2 dV,

which we think of as the “variance” of f over the set E.
Throughout the paper, universal constants will be denoted by C1, C2, . . . ,

which may represent different values in the proofs of different lemmas. Let us
emphasize that these are constants which do not depend on anything other
than n and p, and some of them may even be independent of n or p or both.

Suppose that E1, . . . , Em are subsets of a set X which have the property
that, for any 1 ≤ j ≤ m, the cardinality of the set

{i ∈ {1, . . . ,m} : Ei ∩ Ej 6= ∅}
is at most N . Then there exists a partition

{1, . . . ,m} = P1 ∪ · · · ∪ PN+1

of the index set {1, . . . , m} such that, for any Pν , if i, j ∈ Pν and i 6= j,
then Ei∩Ej = ∅. This follows from an induction argument on the cardinality
m of the index set. In fact, this is trivial if m ≤ N + 1. Now suppose that
j ≥ N + 1 and that the set {1, . . . , j} has a partition P j1 , . . . , P jN+1 with
the desired property. Since Ej+1 intersects at most N of the Ei’s, there is
a µ ∈ {1, . . . , N + 1} such that Ej+1 ∩ Ei = ∅ if i ∈ P jµ. Thus if we set
P j+1
ν = P jν for ν 6= µ and P j+1

µ = P jµ ∪ {j + 1}, then P j+1
1 , . . . , P j+1

N+1 is a
desired partition for {1, . . . , j, j + 1}.

Lemma 5. Let 1 < p ≤ 2 and let f ∈ L2(Bn, dV ) be such that Hf ∈ Cp
and Hf̄ ∈ Cp. Then

∞∑
k=20

m(k)∑
j=1

{V (f ;Qk,j)}p/2 <∞.

Proof. We begin the proof with the inequality

(2.9) C1 |Qk,j |−1 ≤ |1− 〈z, ζ〉|−n−1 ≤ C2 |Qk,j |−1 if z, ζ ∈ Qk,j .
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To prove this, observe that C32−(n+1)k ≤ |Qk,j | ≤ C42−(n+1)k by (2.5) and
Lemma 3(ii). On the other hand, we have 2−k−2 ≤ |1−〈z, ζ〉| ≤ (2 + 93) ·2−k
when z, ζ ∈ Qk,j . Indeed the lower bound holds because 1− |z| ≤ |1− 〈z, ζ〉|.
For the upper bound, we write z = ru and ζ = ρv with u, v ∈ β(uk,j , 92 ·2−k)
and 1− 2−k ≤ r, ρ < 1− 2−k−2. Then

|1− 〈z, ζ〉| ≤ |1− rρ|+ rρ |1− 〈u, v〉| ≤ 2 · 2−k + |1− 〈u, v〉| .
Since u ∈ β(uk,j , 92 · 2−k), it follows from Lemma 3(i) that β(u, 93 · 2−k) ⊃
β(uk,j , 92 · 2−k), which contains v. Therefore |1 − 〈u, v〉| ≤ 93 · 2−k. This
proves (2.9).

For any k ≥ 20 and 1 ≤ j ≤ m(k), define the integral operator

(Kk,jψ) (z) = χQk,j (z)
∫
Qk,j

f(ζ)− f(z)
(1− 〈z, ζ〉)n+1ψ(ζ) dV (ζ), ψ ∈ L2 (Bn, dV ) .

Set q = p/(p− 1). Because q ≥ 2, we have ‖Kk,j‖q ≤ ‖Kk,j‖2 and

‖Kk,j‖2q ≤ ‖Kk,j‖22(2.10)

=
∫
Qk,j

∫
Qk,j

|f(ζ)− f(z)|2

|1− 〈z, ζ〉|2n+2 dV (ζ) dV (z)

≤ C2
2

∫
Qk,j

∫
Qk,j

|f(ζ)− f(z)|2

|Qk,j |2
dV (ζ) dV (z)

= 2C2
2V (f ;Qk,j) .

For any L ≥ 20, let

KL =
L∑

k=20

m(k)∑
j=1

ck,jKk,j ,

where
ck,j = {V (f ;Qk,j)}(p−2)/2

in the case V (f ;Qk,j) > 0 and ck,j = 0 in the case V (f ;Qk,j) = 0. We claim
that

(2.11) ‖KL‖q ≤ C5

 L∑
k=20

m(k)∑
j=1

{V (f ;Qk,j)}p/2
1/q

.

To prove this, we note that the intersection Qk,j∩Qk′,i can be non-empty only
when k′ ∈ {k − 1, k, k + 1}. Also, if Qk,j ∩Qk′,i 6= ∅, then β(uk,j , 92 · 2−k) ∩
β(uk′,i, 92 ·2−k′) 6= ∅, which guarantees β(uk,j , 93 ·2·2−k) ⊃ β(uk′,i, 2−k

′
/9) by

virtue of Lemma 3(i). And for each fixed k′, the β(uk′,i, 2−k
′
/9)’s are pairwise

disjoint. Thus, according to Lemma 4, for any given (k, j), the total number
of pairs (k′, i) such that Qk,j ∩Qk′,i 6= ∅ is at most

N = 3 ·
[
(α2/α1) · 9n ·

(
93 · 2/(1/9)

)n]
= 3 ·

[
(α2/α1) · 95n · 2n

]
.
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According to the paragraph preceding the lemma, there exists a partition

{(k, j) : 20 ≤ k ≤ L, 1 ≤ j ≤ m(k)} = PL,1 ∪ · · · ∪ PL,N+1

of the index set such that, for any ν ∈ {1, . . . , N + 1}, if (k, j), (k′, j′) ∈ PL,ν
and (k, j) 6= (k′, j′), then Qk,j ∩ Qk′,j′ = ∅. Thus, for each 1 ≤ ν ≤ N + 1,
the subspaces {L2(Qk,j , dV ) : (k, j) ∈ PL,ν} are mutually orthogonal. Let

AL,ν =
∑

(k,j)∈PL,ν

ck,jKk,j , 1 ≤ ν ≤ N + 1.

Then, by (2.10),

‖AL,ν‖qq =
∑

(k,j)∈PL,ν

cqk,j ‖Kk,j‖qq

≤ C6

∑
(k,j)∈PL,ν

cqk,j {V (f ;Qk,j)}q/2

= C6

∑
(k,j)∈PL,ν

{V (f ;Qk,j)}(q(p−2)/2)+(q/2)

= C6

∑
(k,j)∈PL,ν

{V (f ;Qk,j)}p/2 .

Now (2.11) follows from the identity KL = AL,1 + · · ·+AL,N+1 and the fact
that N depends only on the complex dimension n.

Under the assumption Hf ∈ Cp and Hf̄ ∈ Cp of the lemma, we have

[Mf , P ] = [Mf , P ]P + [Mf , P ] (1− P ) = Hf −
(
Hf̄

)∗ ∈ Cp.
Furthermore,

‖[Mf , P ]‖p ‖KL‖q(2.12)

≥ tr ([Mf , P ]KL)

=
L∑

k=20

m(k)∑
j=1

ck,j

∫
Qk,j

∫
Qk,j

|f(ζ)− f(z)|2

|1− 〈z, ζ〉|2n+2 dV (ζ) dV (z)

≥ C2
1

L∑
k=20

m(k)∑
j=1

ck,j

∫
Qk,j

∫
Qk,j

|f(ζ)− f(z)|2

|Qk,j |2
dV (ζ) dV (z)

= 2C2
1

L∑
k=20

m(k)∑
j=1

ck,jV (f ;Qk,j)

= 2C2
1

L∑
k=20

m(k)∑
j=1

{V (f ;Qk,j)}p/2 ,
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where we used (2.9) and the definition of ck,j . Since [Mf , P ] ∈ Cp, the con-
clusion of the lemma follows from (2.11) and (2.12). �

We conclude this section with the recollection of the following elementary
fact, which will be used in the paper without further reference: If ω is a
probability measure and if ϕ ∈ L2(ω), then∫ ∣∣∣∣ϕ− ∫ ϕdω

∣∣∣∣2 dω ≤ ∫ |ϕ− c|2dω for any c ∈ C.

3. Reconstructing MO(f)

To control the kernel function |kz|2, we need another family of subsets of
Bn. Given any k ≥ 20 and 1 ≤ j ≤ m(k), we define

Fk,j =
{

(`, i) : ` > k, 1 ≤ i ≤ m(`), β
(
u`,i, 2−`

)
∩ β

(
uk,j , 9 · 2−k

)
6= ∅
}

and

(3.1) Sk,j = Qk,j
⋃ ⋃

(`,i)∈Fk,j

Q`,i

 .

Obviously,

Sk,j ⊃
{
ru : 1− 2−k ≤ r < 1, u ∈ β

(
uk,j , 9 · 2−k

)}
.

This implies that

(3.2) |1− 〈z, ζ〉| ≥ 2−k−1 if z/|z| ∈ β
(
uk,j , 2−k

)
and ζ ∈ Bn\Sk,j .

Indeed, given a ζ = ρv ∈ Bn\Sk,j , there are two possibilities. Either ρ <
1 − 2−k, which implies |1 − 〈z, ζ〉| ≥ 1 − ρ ≥ 2−k and, therefore, (3.2). Or
ρ ≥ 1 − 2−k, which necessitates v /∈ β(uk,j , 9 · 2−k). In the latter case we
write z = ru with 0 < r < 1 and u ∈ β(uk,j , 2−k). According to Lemma 3(i),
β(u, 2−k) ⊂ β(uk,j , 9 · 2−k). Hence v /∈ β(u, 2−k), i.e., |1−〈u, v〉| ≥ 2−k. Now
for any 0 ≤ t < 1, 0 ≤ a < 1 and θ ∈ R, we have∣∣1− taeiθ∣∣2 = t

∣∣1− aeiθ∣∣2 + (1− t)
(
1− ta2

)
≥ t
∣∣1− aeiθ∣∣2 .

Hence
|1− 〈z, ζ〉| ≥ √rρ |1− 〈u, v〉| ≥ √rρ · 2−k.

If r ≥ 1− 2−20, then, of course, |1− 〈z, ζ〉| ≥ 2−1 · 2−k. If r < 1− 2−20, then
|1− 〈z, ζ〉| ≥ 1− r ≥ 2−20. In any case, (3.2) holds as promised.

Suppose that E and F are measurable subsets of Bn such that |E∩F | > 0.
Then

|fE − fE∩F | =
∣∣∣∣∫
E∩F

(fE − f) dV
∣∣∣∣ /|E ∩ F |

≤ (|E|/|E ∩ F |)
∫
E

|fE − f | dV/|E|.
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By the Cauchy-Schwartz inequality, we have

|fE − fE∩F | ≤ (|E|/|E ∩ F |)
√
V (f ;E).

Therefore

|fE − fF | ≤ |fE − fE∩F |+ |fE∩F − fF |(3.3)

≤ |E|
|E ∩ F |

√
V (f ;E) +

|F |
|E ∩ F |

√
V (f ;F ).

Lemma 6. Let 1 ≤ p ≤ 2 and f ∈ L2(Bn, dV ) be such that
∞∑
k=20

m(k)∑
j=1

{V (f ;Qk,j)}p/2 <∞.

Then
∞∑
k=20

m(k)∑
j=1

{V (f ;Sk,j)}p/2 <∞.

Proof. Given k ≥ 20 and 1 ≤ j ≤ m(k), it follows from (2.8) and (3.1) that

V (f ;Sk,j) ≤
1
|Sk,j |

∫
Sk,j

∣∣f − fQk,j ∣∣2 dV
≤ |Qk,j |
|Sk,j |

V (f ;Qk,j) +
∑

(`,i)∈Fk,j

|Q`,i|
|Sk,j |

· 1
|Q`,i|

∫
Q`,i

∣∣f − fQk,j ∣∣2 dV.
By (2.5) and Lemma 3(ii),

|Q`,i| ≤ C12−(n+1)` and |Sk,j | ≥ |Qk,j | ≥ C22−(n+1)k.

Setting C3 = C1/C2, we have

V (f ;Sk,j) ≤ V (f ;Qk,j)(3.4)

+ C3

∑
(`,i)∈Fk,j

2−(n+1)(`−k) 1
|Q`,i|

∫
Q`,i

∣∣f − fQk,j ∣∣2 dV.
Let us consider a pair (`, i) ∈ Fk,j for a moment. Pick an x ∈ β(uk,j ,
9 · 2−k) ∩ β(u`,i, 2−`), which is possible since the intersection is non-empty
by the definition of Fk,j . Then there is a chain of indices {(t, i(t)) : k ≤ t ≤ `}
such that (`, i(`)) = (`, i), (k, i(k)) = (k, j), and x ∈ β(ut,i(t), 2−t) if k < t ≤ `.
This implies that

Qt,i(t) ∩Qt+1,i(t+1) ⊃ Tt+1,i(t+1) if k ≤ t < `.

Indeed, since β(ut,i(t), 9 ·2−t)∩β(ut+1,i(t+1), 2−t−1) contains x, it follows from
Lemma 3(i) that β(ut+1,i(t+1), 2−t−1) ⊂ β(ut,i(t), 92·2−t). The above assertion
now follows from (2.4) and (2.5). Since∣∣Tt+1,i(t+1)

∣∣ ≥ C42−(t+1)(n+1) = 2−n−1C42−(n+1)t,



HANKEL OPERATORS ON THE UNIT BALL 923

we have |Qt,i(t)|/|Qt,i(t) ∩Qt+1,i(t+1)| ≤ 2n+1C1/C4. By (3.3), we now have∣∣fQt,i(t) − fQt+1,i(t+1)

∣∣ ≤ C5

({
V
(
f ;Qt,i(t)

)}1/2 +
{
V
(
f ;Qt+1,i(t+1)

)}1/2
)

if k ≤ t < `. Therefore∣∣fQk,j − fQ`,i ∣∣2 ≤
(
`−1∑
t=k

∣∣fQt,i(t) − fQt+1,i(t+1)

∣∣)2

≤

(
2C5

∑̀
t=k

{
V
(
f ;Qt,i(t)

)}1/2

)2

≤ 4C2
5 (1 + `− k)

∑̀
t=k

V
(
f ;Qt,i(t)

)
,

where the last inequality results from the Cauchy-Schwarz inequality. Let

Gk,j;`,i =
{

(ν, h) : k ≤ ν ≤ `, 1 ≤ h ≤ m(ν), β(uν,h, 2−ν) ∩ β(u`,i, 2−`) 6= ∅

and β(uν,h, 2−ν) ∩ β(uk,j , 9 · 2−k) 6= ∅
}
.

Then the choice of (t, i(t)) guarantees that (t, i(t)) ∈ Gk,j;`,i for all k ≤ t ≤ `.
Therefore

(3.5)
∣∣fQ`,i − fQk,j ∣∣2 ≤ 4C2

5 (1 + `− k)
∑

(ν,h)∈Gk,j;`,i

V (f ;Qν,h) .

Substituting 2|f − fQ`,i |2 + 2|fQ`,i − fQk,j |2 for |f − fQk,j |2 in (3.4), it now
follows from (3.5) that

V (f ;Sk,j) ≤ V (f ;Qk,j) + C6 (Ak,j +Bk,j) ,

where

Ak,j =
∑

(`,i)∈Fk,j

2−(n+1)(`−k)V (f ;Q`,i) ,

Bk,j =
∑

(`,i)∈Fk,j

2−(n+1)(`−k)(1 + `− k)
∑

(ν,h)∈Gk,j;`,i

V (f ;Qν,h) .

Since (`, i) ∈ Gk,j;`,i, we obviously have Ak,j ≤ Bk,j . Therefore

(3.6) V (f ;Sk,j) ≤ V (f ;Qk,j) + 2C6Bk,j .

Let us estimate Bk,j . First of all, if we set C7 = supm≥0 2−m/2(1 +m), then

(3.7) Bk,j ≤ C7

∑
(`,i)∈Fk,j

∑
(ν,h)∈Gk,j;`,i

2−(n+1/2)(`−k)V (f ;Qν,h) .

Now, for each pair (ν, h) with ν ≥ k, if ν ≤ ` and β(uν,h, 2−ν)∩β(u`,i, 2−`) 6= ∅,
then β(uν,h, 9 · 2−ν) ⊃ β(u`,i, 2−`) by Lemma 3(i). Since the sets{

β
(
u`,i, 2−`/9

)
: 1 ≤ i ≤ m(`)

}
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are pairwise disjoint, Lemma 4 tells us that, for each ` ≥ ν, the cardinality
of the set {i : 1 ≤ i ≤ m(`), β(u`,i, 2−`) ∩ β(uν,h, 2−ν) 6= ∅} is at most
(α2/α1) · 9n · ((9 · 2−ν)/(2−`/9))n = C82n(`−ν). Hence, if we set

Gk,j =
{

(ν, h) : ν ≥ k, 1 ≤ h ≤ m(ν), β
(
uν,h, 2−ν

)
∩ β

(
uk,j , 9 · 2−k

)
6= ∅
}
,

then a change of the order of summation in (3.7) yields

Bk,j ≤ C7

∑
(ν,h)∈Gk,j

V (f ;Qν,h)
∞∑
`=ν

2−(n+1/2)(`−k)(3.8)

× card
{
i : β

(
u`,i, 2−`

)
∩ β

(
uν,h, 2−ν

)
6= ∅
}

≤ C7C8

∑
(ν,h)∈Gk,j

V (f ;Qν,h)
∞∑
`=ν

2−(1/2)(`−k) · 2−n(`−k) · 2n(`−ν)

= C9

∑
(ν,h)∈Gk,j

V (f ;Qν,h) 2−n(ν−k)
∞∑
`=ν

2−(1/2)(`−k)

≤ C10

∑
(ν,h)∈Gk,j

V (f ;Qν,h) 2−n(ν−k).

It is elementary that if 0 < r ≤ 1 and am ≥ 0, then (
∑
am)r ≤

∑
arm. Since

p/2 ≤ 1, applying this to (3.8), we obtain

B
p/2
k,j ≤ C

p/2
10

∑
(ν,h)∈Gk,j

{V (f ;Qν,h)}p/2 2−n(ν−k)p/2.

Thus∑
k,j

B
p/2
k,j ≤ C

p/2
10

∑
k,j

∑
(ν,h)∈Gk,j

{V (f ;Qν,h)}p/2 2−n(ν−k)p/2

= C
p/2
10

∑
ν,h

{V (f ;Qν,h)}p/2
∑

20≤k≤ν

2−n(ν−k)p/2 card(Hν,h;k),

where, for any 20 ≤ k ≤ ν,

Hν,h;k =
{
j : 1 ≤ j ≤ m(k), β(uk,j , 9 · 2−k) ∩ β(uν,h, 2−ν) 6= ∅

}
.

If j ∈ Hν,h;k, then Lemma 3(i) tells us that β(uk,j , 92 · 2−k) ⊃ β(uν,h, 2−ν)
and, therefore, β(uk,j , 93 · 2−k) ⊃ β(uk,j′ , 9 · 2−k) ⊃ β(uk,j′ , 2−k/9) for any
other j′ ∈ Hν,h;k. It follows from (2.2) and Lemma 4 that card(Hν,h;k) ≤ C11.
Hence ∑

k,j

B
p/2
k,j ≤ C12

∑
ν,h

{V (f ;Qν,h)}p/2
∑

20≤k≤ν

2−n(ν−k)p/2(3.9)

≤ C13

∑
ν,h

{V (f ;Qν,h)}p/2 .
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Since p/2 ≤ 1, it follows from (3.6) that

{V (f ;Sk,j)}p/2 ≤ {V (f ;Qk,j)}p/2 + (2C6)p/2Bp/2k,j .

Combining this with (3.9), the lemma is established. �

What we have done thus far is valid for all 1 < p ≤ 2; in fact, it can even
be extended to the case p = 1 with minor changes only in the proof of Lemma
5. But for our next lemma, the requirement p > 2n/(n + 1) is absolutely
indispensable.

Lemma 7. Suppose that 2n/(n+1) < p ≤ 2. Suppose that f ∈ L2(Bn, dV )
and that

∞∑
k=20

m(k)∑
j=1

{V (f ;Sk,j)}p/2 <∞.

Then MO(f) ∈ Lp(Bn, dλ).

Proof. By (2.6) and (2.7), to prove that MO(f) ∈ Lp(Bn, dλ), it suffices to
show that

(3.10)
∑
k,j

sup
z∈Tk,j

{MO(f)(z)}p <∞.

Fix a pair of k, j and a z ∈ Tk,j for the moment. We have |kz(ζ)|2 ≤
(1− |z|2)n+1/(1− |z|2)2n+2 ≤ 2(k+1)(n+1) ≤ C1|Sk,j |−1 for all ζ ∈ Bn, where
the last inequality is due to the fact that Sk,j ⊂ {ru : 1 − 2−k ≤ r < 1,
u ∈ β(uk,j , 93 · 2−k)}. For any 20 ≤ ` ≤ k, there is an i(`) ∈ {1, . . . ,m(`)}
such that z/|z| ∈ β(u`,i(`), 2−`). We stipulate that i(k) = j, which is allowed
because z ∈ Tk,j . For any ` < k, it follows from (3.2) and the fact z/|z| ∈
β(u`+1,i(`+1), 2−(`+1)) that, if ζ ∈ S`,i(`)\S`+1,i(`+1), then

|kz(ζ)|2 ≤ 2(`+2)(2n+2)
(
1− |z|2

)n+1

≤ 2(`+2)(2n+2) · 2(n+1) · 2−(n+1)k

= 25n+5 · 2(n+1)` · 2−(n+1)(k−`)

≤ C2

∣∣S`,i(`)∣∣−1 2−(k−`)(n+1).

Recall that we have defined m(`) and S`,i only for ` ≥ 20 so far. We now set
m(19) = 1, S19,1 = Bn, and i(19) = 1. It follows from the above analysis that

|kz|2 ≤ C3

k∑
`=19

∣∣S`,i(`)∣∣−1 2−(k−`)(n+1)χS`,i(`) .

Applying this in the inequality {MO(f)(z)}2 ≤
∫
|f−fSk,j |2|kz|2dV , we obtain

(3.11) {MO(f)(z)}2 ≤ C3

k∑
`=19

2−(k−`)(n+1) 1∣∣S`,i(`)∣∣
∫
S`,i(`)

∣∣f − fSk,j ∣∣2 dV.



926 JINGBO XIA

Now, for each 20 ≤ ` < k, since

z/|z| ∈ β
(
u`,i(`), 2−`

)
∩ β

(
u`+1,i(`+1), 2−`−1

)
,

we have
β
(
u`,i(`), 9 · 2−`

)
⊃ β

(
u`+1,i(`+1), 2−`−1

)
and, therefore, S`,i(`) ⊃ Q`,i(`) ⊃ T`+1,i(`+1). Since |S`,i| is on the order of
2−(n+1)` and since |T`+1,i(`+1)| is on the order of 2−(n+1)(`+1) = 2−(n+1) ·
2−(n+1)`, it follows that |S`,i(`)|/|S`,i(`) ∩ S`+1,i(`+1)| ≤ C4. A similar bound
holds for |S`+1,i(`+1)|/|S`,i(`) ∩ S`+1,i(`+1)|. Combining these bounds with
(3.3), we now have∣∣fS`,i(`) − fS`+1,i(`+1)

∣∣ ≤ C5

({
V
(
f ;S`,i(`)

)}1/2 +
{
V
(
f ;S`+1,i(`+1)

)}1/2
)
.

Thus, if ` < k, then

∣∣f − fSk,j ∣∣2 ≤
(∣∣f − fS`,i(`)∣∣+

k−1∑
t=`

∣∣fSt,i(t) − fSt+1,i(t+1)

∣∣)2

≤

(∣∣f − fS`,i(`)∣∣+ 2C5

k∑
t=`

{
V
(
f ;St,i(t)

)}1/2

)2

≤ (2 + k − `)

{∣∣f − fS`,i(`)∣∣2 + 4C2
5

k∑
t=`

V
(
f ;St,i(t)

)}
.

A substitution of this into (3.11) yields

{MO(f)(z)}2(3.12)

≤ C3

(
1 + 4C2

5

) k∑
`=19

2−(k−`)(n+1)(2 + k − `)
k∑
t=`

V
(
f ;St,i(t)

)
= C3

(
1 + 4C2

5

) k∑
t=19

V
(
f ;St,i(t)

) t∑
`=19

2−(k−`)(n+1)(2 + k − `)

≤ C3

(
1 + 4C2

5

) k∑
t=19

V
(
f ;St,i(t)

) ∞∑
ν=k−t

2−(n+1)ν(2 + ν).

We now use the condition p > 2n/(n+ 1). Because (n+ 1)(p/2)− n > 0, we
can choose an ε > 0 such that

(3.13) (n+ 1− ε)(p/2)− n > 0.

If we set

C6 =
∞∑
ν=0

2−εν(2 + ν),
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then
∞∑

ν=k−t

2−(n+1)ν(2 + ν) ≤ C62−(n+1−ε)(k−t)

in (3.12). Thus it follows from (3.12) that

{MO(f)(z)}2 ≤ C7

k∑
t=19

2−(n+1−ε)(k−t)V
(
f ;St,i(t)

)
.

Since p/2 ≤ 1, we have (
∑
at)p/2 ≤

∑
a
p/2
t if at ≥ 0. Hence

{MO(f)(z)}p ≤ Cp/27

k∑
t=19

2−(n+1−ε)(p/2)(k−t) {V (f ;St,i(t)
)}p/2

.

Recall that each pair (t, i(t)) was chosen so that z/|z| ∈ β(ut,i(t), 2−t). Thus,
if we let

Wk,j =
{

(t, h) : 20 ≤ t ≤ k, 1 ≤ h ≤ m(t),

β
(
ut,h, 2−t

)
∩ β

(
uk,j , 2−k

)
6= ∅
}
∪ {(19, 1)

}
,

then

(3.14) {MO(f)(z)}p ≤ Cp/27

∑
(t,h)∈Wk,j

2−(n+1−ε)(p/2)(k−t) {V (f ;St,h)}p/2 .

The set Wk,j is, of course, independent of the choice of z in Tk,j . In other
words, (3.14) holds for every z ∈ Tk,j . Therefore

∑
k,j

sup
z∈Tk,j

{MO(f)(z)}p
(3.15)

≤ Cp/27

∑
k,j

∑
(t,h)∈Wk,j

2−(n+1−ε)(p/2)(k−t) {V (f ;St,h)}p/2

= C
p/2
7

∑
t,h

{V (f ;St,h)}p/2
∞∑

k=max{t,20}

2−(n+1−ε)(p/2)(k−t) card (Ut,h;k) ,

where

Ut,h;k =
{
j : 1 ≤ j ≤ m(k), β(uk,j , 2−k) ∩ β(ut,h, 2−t) 6= ∅

}
for t ≥ 20 and U19,1;k = {1, . . . ,m(k)}. If k ≥ t ≥ 20 and j ∈ Ut,h;k, then
β(ut,h, 9 · 2−t) ⊃ β(uk,j , 2−k) by Lemma 3(i). Thus it follows from (2.2)
and Lemma 4 that card(Ut,h;k) ≤ C8(2−t/2−k)n = C82n(k−t) when t ≥ 20.
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Similarly, card(U19,1;k) = m(k) ≤ C92nk = 219nC92n(k−19). An application of
these bounds in (3.15) yields∑
k,j

sup
z∈Tk,j

{MO(f)(z)}p ≤ C10

∑
t,h

{V (f ;St,h)}p/2
∞∑
k=t

2−{(n+1−ε)(p/2)−n}(k−t).

Because of (3.13), the above is finite whenever∑
t,h

{V (f ;St,h)}p/2 <∞.

This proves (3.10) and completes the proof of the lemma. �

Proof of Theorem 2. Under the condition 2n/(n + 1) < p < 2, it follows
from Lemmas 5, 6 and 7 that, if Hf and Hf̄ belong to Cp, then MO(f) ∈
Lp(Bn, dλ). The converse of this was proved in the Introduction. �
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