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VISCOSITY SOLUTIONS ON GRUSHIN-TYPE PLANES

THOMAS BIESKE

Abstract. This paper examines viscosity solutions to a class of fully

nonlinear equations on Grushin-type planes. First, viscosity solutions
are defined, using subelliptic second order superjets and subjets. Then,
a Grushin maximum principle is proved, and as an application, compar-

ison principles for certain types of nonlinear functions follow. This is
accomplished by establishing a natural relationship between Euclidean

and subelliptic jets, in order to use the viscosity solution technology
of Crandall, Ishii, and Lions (1992). The particular example of infi-
nite harmonic functions on certain Grushin-type planes is examined in
further detail.

1. Background and main results

In [5], viscosity solutions to a class of non-linear differential equations are
defined and Euclidean results are extended to the Heisenberg group, which is
the most elementary subelliptic environment. However, the extension of the
results still exploits the group structure. In this paper, we examine the same
class of equations, but now consider a subelliptic environment that is not a
group. In particular, we will extend the results to Grushin-type planes.

In order to construct Grushin-type planes, we begin by fixing an arbitrary
polynomial ρ : R 7→ R with degree n ≥ 1. Using this polynomial, we consider
the vector fields on R2 given by

X1 =
∂

∂x
, X2 = ρ(x)

∂

∂y
, X3 = ρ′(x)

∂

∂y
, . . . , Xn+2 = ρ(n)(x)

∂

∂y
.

Observe that applying the Lie Bracket yields

[X1, Xj ] = Xj+1 for j = 2, . . . , n+ 1.

Clearly, at all points {X1, X2, . . . , Xn+2} generates R2. Endow R
2 with an

inner product (singular at points where ρ(x) = 0) so that X1 and X2 are
orthonormal. This vector space, which we shall denote by gn, is the underlying
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manifold of a Grushin-type plane, denoted by Gn. We shall also denote the
coordinates of an arbitrary point p in Gn by p = (x, y), the coordinates of
a fixed point p0 in Gn by p0 = (x0, y0), and use the notation p − p0 for
(x − x0, y − y0). In addition, at each point p0, there is a unique smallest
integer rp0 ∈ {0, 1, . . . n} so that ρ(rp0 )(x0) 6= 0. Note that rp = 0 except on
the vertical lines x = x0 where ρ(x0) = 0.

Even though Gn is not a group, it is a metric space with the natural metric
being the Carnot-Carathéodory distance, which is defined for the points p and
q by

dC(p, q) = inf
Γ

∫ 1

0

‖γ′(t)‖dt,

where the set Γ is the set of all curves γ such that γ(0) = p, γ(1) = q and γ′(t)
is in span{X1(γ(t)), X2(γ(t))} . By Chow’s theorem (see, for example, [4])
any two points can be connected by such a curve, which means that dC(p, q)
is an honest metric. Using this metric, we can define a Carnot-Carathéodory
ball of radius r centered at a point p0 by

B = B(p0, r) = {p ∈ Gn : dC(p, p0) < r} ;

similarly, we shall denote a bounded domain in Gn by Ω.
The Carnot-Carathéodory metric behaves differently on lines on which ρ(x)

vanishes. In particular, the estimate for this distance changes on these lines.
Using Theorem 7.34 from [4] we obtain the local estimate at p0

(1.1) dC(p0, p) ∼ |x− x0|+ |y − y0|1/(rp0+1).

Observe that if ρ(x0) 6= 0, then the metric is locally Riemannian because
rp0 = 0.

Having established the basic structure on Gn, our attention turns to differ-
entiation and calculus. Given a smooth function f on Gn, and a multi-index
I = (i1, i2, . . . , in+2), the derivative XIf is defined by

XIf = Xi1
1 X

i2
2 . . . X

in+2
n+2 f.

The function f is Ck if XIf is continuous for all multi-indices I such that

(1.2) d(I) ≡ i1 + i2 + 2i3 + 3i4 + · · ·+ (n+ 1)in+2 ≤ k.
In light of the Carnot-Carathéodory metric, the important first and second
order derivatives that we will consider are given by

∇0f(p) = (X1f(p), X2f(p))

and(
D2f(p)

)?
=
(

X1X1f(p) 1
2 (X1X2f(p) +X2X1f(p))

1
2 (X1X2f(p) +X2X1f(p)) X2X2f(p)

)
.

It should also be noted that, for any open set O ⊂ Gn, the function f is
in the horizontal Sobolev space HW 1,q(O) if f , X1f and X2f are in Lq(O).
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Replacing Lq(O) by Lqloc(O), the space HW 1,q
loc (O) is defined similarly. The

space HW 1,q
0 (O) is the closure in HW 1,q(O) of smooth functions with com-

pact support.
Using these derivatives, the class of equations we consider is given by

F
(
p, u(p),∇0u(p),

(
D2u(p)

)?)
= 0,

where the continuous function

F : Gn × R× gn × S2 7→ R

satisfies
F (p, r, η,X) ≤ F (p, s, η, Y )

when r ≤ s and Y ≤ X (that is, F is proper; see [7]). Recall that S2 is the
set of 2 × 2 real symmetric matrices. An example of this type of equation is
the quasilinear horizontal q-Laplacian

div
(
‖∇0u‖q−2∇0u

)
= X1

((
X2

1u+X2
2u
)(q−2)/2

X1u
)

+X2

((
X2

1u+X2
2u
)(q−2)/2

X2u
)

for 2 < q < ∞. Formally taking the limit as q → ∞ yields the horizontal
infinite Laplacian

∆0,∞f =
2∑

i,j=1

XifXjfXiXjf =
〈
∇0f,

(
D2f

)?∇0f
〉
.

For a more complete discussion of the q-Laplacian and the infinite Laplacian
see [1], [5], [9].

Within this environment, we first will define solutions to the equation

F
(
p, u(p),∇0u(p),

(
D2u(p)

)?)
= 0

in the viscosity sense. In order to achieve this goal, we must define the subel-
liptic jets. (For a thorough discussion of jets, the interested reader is directed
to [7].) Given a function f : Gn 7→ R, it is natural to consider inequalities
based on the Taylor expansion. Namely, we consider the following inequali-
ties:

f(p) ≤ f(p0) + (x− x0)η1 +
1

ρ(x0)
(y − y0)η2(1.3)

+
1
2

(x− x0)2X11 +
1

2ρ(x0)2
(y − y0)2X22

+ (x− x0)(y − y0)
(

1
ρ(x0)

X12 −
ρ′(x0)

2ρ(x0)2
η2

)
+ o

(
dC(p0, p)2

)
as p→ p0 when rp0 = 0,
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f(p) ≤ f(p0) + (x− x0)η1 +
2

ρ′(x0)
(y − y0)X12 +

1
2

(x− x0)2X11(1.4)

+ o
(
dC(p0, p)2

)
as p→ p0 when rp0 > 0.

If ρ′(x0) = 0, we consider the term 2
ρ′(x0) (y − y0)X12 in Equation (1.4) to be

zero.
Given an open set O ⊂ Gn and a function f : O 7→ R, define the second

order superjet of f at p0, denoted J2,+f(p0), as follows:

(η,X) ∈ J2,+
O f(p0)⇐⇒ p, p0 ∈ O and (1.3) holds (rp0 = 0)

or

(η,X) ∈ J2,+
O f(p0)⇐⇒ p, p0 ∈ O and (1.4) holds (rp0 > 0).

The second order subjet of u at p0, denoted J2,−u(p0), is defined by

J2,−
O f(p0) = −J2,+

O (−f)(p0).

Using these jets, we can define viscosity solutions to our class of functions.

Definition 1. Let O be an open set in Gn and let u : O 7→ R. If u is
upper semi-continuous and

F (p, u(p), η,X) ≤ 0 for all p ∈ O and all (η,X) ∈ J2,+
O u(p),

then u is a viscosity subsolution of F (p, u(p),∇0u(p), (D2u(p))?) = 0.
If u is lower semi-continuous and

F (p, u(p), η,X) ≥ 0 for all p ∈ O and all (η,X) ∈ J2,−
O u(p),

then u is a viscosity supersolution of F (p, u(p),∇0u(p), (D2u(p))?) = 0.
The function u is a viscosity solution if it is both a viscosity subsolution

and a viscosity supersolution.

In order to use the machinery of [7] to prove comparison principles, a
relationship between Euclidean and subelliptic jets must be established. This
is accomplished through the following lemma.

Main Lemma. Let the points p, p0 ∈ R2 be denoted by p = (x, y) and
p0 = (x0, y0). Let η ∈ R2 and X ∈ S2. Also, let 〈·, ·〉E denote the Euclidean
inner product in R2. Then define the standard Euclidean superjet, denoted
J2,+
] , by

J2,+
] u(p0) =

{
(η,X) : u(p) ≤ u(p0) + 〈η, p− p0〉E

+
1
2
〈X(p− p0), p− p0〉E + o (〈p− p0, p− p0〉E) as p→ p0

}
.
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If η and X are defined by

η = (η1, η2) and X =
(
X11 X12

X12 X22

)
,

define the gn vector
η̃ = η1X1 + ρ(x0)η2X2

and the symmetric matrix Y by(
X11 ρ(x0)X12 + 1

2ρ
′(x0)η2

ρ(x0)X12 + 1
2ρ
′(x0)η2 ρ(x0)2X22

)
.

Then, given (η,X) ∈ J2,+

] u(p0), we have (η̃, Y ) ∈ J2,+
u(p0).

This lemma is the key to proving comparison principles. The first compar-
ison principle involves strictly monotone elliptic equations. Such equations
satisfy the following properties:

σ(r − s) ≤ F (p, r, η,X)− F (p, s, η,X),

|F (p, r, η,X)− F (q, r, η,X)| ≤ w1(dC(p, q)),

|F (p, r, η,X)− F (p, r, η, Y )| ≤ w2(‖Y −X‖),
|F (p, r, η,X)− F (p, r, ν,X)| ≤ w3(|‖η‖ − ‖ν‖|),

where σ > 0 is a constant and the functions wi : [0,∞] 7→ [0,∞] satisfy
wi(0+) = 0 for i = 1, 2, 3. The appropriate comparison principle is given
below.

Theorem 1.1. Let F satisfy the above properties. Let u be an upper semi-
continuous subsolution and v a lower semi-continuous supersolution to

F
(
p, f(p),∇0f(p),

(
D2f(p)

)?)
= 0

in a domain Ω so that

lim sup
q→p

u(q) ≤ lim inf
q→p

v(q)

when p ∈ ∂Ω, where both sides are not ∞ or −∞ simultaneously. Then

u(p) ≤ v(p)

for all p ∈ Ω.

The second comparison principle involves Jensen’s auxiliary function used
in the proof of uniqueness for infinite harmonic functions (see [9]). This func-
tion is defined by

Fε(η,X) = min
{
‖η‖2 − ε2,−〈Xη, η〉

}
,

where ε is a positive real number.



898 THOMAS BIESKE

Theorem 1.2. Let u be an upper semi-continuous subsolution and v a
lower semi-continuous supersolution to

Fε

(
∇0f(p),

(
D2f(p)

)?)
= 0

in a domain Ω so that

lim sup
q→p

u(q) ≤ lim inf
q→p

v(q)

when p ∈ ∂Ω, where both sides are not ∞ or −∞ simultaneously. Then

u(p) ≤ v(p)

for all p ∈ Ω.

This comparison principle produces a corollary, whose proof is similar to
that of the theorem.

Corollary 1.3. Let ε be a positive real number. Then a comparison
principle for

Hε(η,X) = min
{
ε2 − ‖η‖2,−〈Xη, η〉

}
holds as in the theorem.

Using the Theorem and the Lemma and letting ε → 0, we obtain a com-
parison principle for infinite harmonic functions:

Theorem 1.4. Let u be an upper semicontinuous subsolution and v be a
lower semicontinuous supersolution of

∆0,∞u = 0

in a domain Ω such that if p ∈ ∂Ω, then

lim sup
q→p

u(q) ≤ lim sup
q→p

v(q),

where both sides are not −∞ or +∞ simultaneously. Then, for all p ∈ Ω,

u(p) ≤ v(p).

This paper is organized as follows. Section 2 is concerned with formulating
Taylor’s Theorem on Grushin-type planes. Section 3 defines second order jets
on Grushin-type planes and proves needed properties. Section 4 establishes a
Grushin maximum principle, and Section 5 proves various comparison prin-
ciples. The paper ends with Section 6, which focuses on a specific class of
Grushin-type planes and examines infinite harmonic functions there.
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2. Taylor polynomials

In order to proceed, our attention must turn to Taylor polynomials. There
are two forms of the Taylor polynomial on the Grushin plane, depending on
the location of the base point. The following proposition formalizes this fact.

Proposition 2.1. Let f : Gn 7→ R be a C2 function. Let p0 be denoted
by (x0, y0). If rp0 = 0 (that is, ρ(x0) 6= 0), then

f(p) = f(p0) + (x− x0)X1f(p0) +
1

ρ(x0)
(y − y0)X2f(p0)

+
1
2

(x− x0)2X2
1f(p0) +

1
2ρ(x0)2

(y − y0)2X2
2f(p0)

+ (x− x0)(y − y0)
1

2ρ(x0)

(
X1X2f(p0) +X2X1f(p0)− ρ′(x0)

ρ(x0)
X2f(p0)

)
+ o

(
dC(p0, p)2

)
.

If rp0 6= 0 (that is, ρ(x0) = 0), then

f(p) = f(p0) + (x− x0)X1f(p0) + (y − y0)
1

ρ(rp0 )(x0)
Xrp0+2f(p0)

+
1
2

(x− x0)2X2
1f(p0) + o

(
dC(p0, p)2

)
.

Proof. Case 1: rp0 = 0.
Define the polynomial P (p) by

P (p) = f(p0) + (x− x0)X1f(p0) +
1

ρ(x0)
(y − y0)X2f(p0)

+
1
2

(x− x0)2X2
1f(p0) +

1
2ρ(x0)2

(y − y0)2X2
2f(p0)

+ (x− x0)(y − y0)
1

2ρ(x0)

(
X1X2f(p0)+X2X1f(p0)− ρ

′(x0)
ρ(x0)

X2f(p0)
)
.

Then computation shows that the following equations hold:

X1P (p) = X1f(p0) + (x− x0)X2
1f(p0)

+ (y − y0)
1

2ρ(x0)

(
X1X2f(p0) +X2X1f(p0)− ρ′(x0)

ρ(x0)
X2f(p0)

)
,

X2P (p) = ρ(x)×
(

1
ρ(x0)

X2f(p0) +
1

ρ(x0)2
(y − y0)X2

2f(p0)

+ (x− x0)
1

2ρ(x0)

(
X1X2f(p0) +X2X1f(p0)

−ρ
′(x0)
ρ(x0)

X2f(p0)
))

,
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X1X2P (p) =
ρ(x)

2ρ(x0)

(
X1X2f(p0) +X2X1f(p0)− ρ′(x0)

ρ(x0)
X2f(p0)

)
+
ρ′(x)
ρ(x)

X2P (p),

X2X1P (p) =
ρ(x)

2ρ(x0)

(
X1X2f(p0) +X2X1f(p0)− ρ′(x0)

ρ(x0)
X2f(p0)

)
,

X1X1P (p) = X2
1f(p0),

X2X2P (p) = ρ(x)2 1
ρ(x0)2

X2
2f(p0).

Evaluation at p0 and recalling the relation

X3 = [X1, X2] =
ρ′(x0)
ρ(x0)

X2

gives XIP (p0) = XIf(p0) for d(I) ≤ 2. By Theorem 4.10 in [4], f(p)− P (p)
is O(dC(p0, p)3), and so it is o(dC(p0, p)2).

Case 2: rp0 6= 0. The proof is similar to the above case, except that now
X2 is the zero vector. �

We point out that by equation (1.1), y − y0 is O(dC(p0, p)rp0+1). Thus, in
the case rp0 > 1 this term is technically part of the error. However, in order
to maintain a connection with the cases rp0 ≤ 1, this term must be included.
This connection will be necessary in the next section. Before proceeding to
the next section, we rewrite the Taylor polynomial for the case rp0 > 0 in a
way that emphasizes the symmetry. Namely,

f(p) = f(p0) + (x− x0)X1f(p0) +
1
2

(x− x0)2X2
1f(p0)

+
2

ρ′(x0)
(y − y0)

1
2

(X1X2f(p0) +X2X1f(p0)) + o
(
dC(p0, p)2

)
.

We write this with the understanding that if ρ′(x0) = 0, then the y−y0 term
is to be treated as a zero term. This is consistent with the Taylor polynomial,
for if ρ(x0) = ρ′(x0) = 0 (that is, if rp0 ≥ 2), the vector fields X2 and X3 are
zero, resulting in X2X1 and X1X2 also being zero.

Having constructed Taylor polynomials in the proper form, we define subel-
liptic jets in Gn.

3. Subelliptic jets

Let S2 be the set of all real 2 × 2 symmetric matrices. Let η ∈ gn and
X ∈ S2 be given by

η = η1X1 + η2X2 and X =
(
X11 X12

X12 X22

)
.
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Given a function u : Gn 7→ R, consider the following inequalities:

u(p) ≤ u(p0) + (x− x0)η1 +
1

ρ(x0)
(y − y0)η2(3.1)

+
1
2

(x− x0)2X11 +
1

2ρ(x0)2
(y − y0)2X22

+ (x− x0)(y − y0)
(

1
ρ(x0)

X12 −
ρ′(x0)

2ρ(x0)2
η2

)
+ o

(
dC(p0, p)2

)
as p→ p0 when rp0 = 0.

u(p) ≤ u(p0) + (x− x0)η1 +
2

ρ′(x0)
(y − y0)X12(3.2)

+
1
2

(x− x0)2X11 + o
(
dC(p0, p)2

)
as p→ p0 when rp0 > 0.

Again, if ρ′(x0) = 0, we consider the term 2
ρ′(x0) (y− y0)X12 in equation (3.2)

to be zero.
Given an open set O ⊂ Gn and a function u : O 7→ R, define the second

order superjet of u at p0, denoted J2,+u(p0), as follows:

(η,X) ∈ J2,+
O u(p0)⇐⇒ p, p0 ∈ O and (3.1) holds (rp0 = 0)

or

(η,X) ∈ J2,+
O u(p0)⇐⇒ p, p0 ∈ O and (3.2) holds (rp0 > 0).

The second order subjet of u at p0, denoted J2,−u(p0), is defined by

J2,−
O u(p0) = −J2,+

O (−u)(p0).

Following [7], we define the closure of a jet by

J
2,+
u(p0) = {(η,X) : ∃(pn, ηn, Xn) so that (ηn, Xn) ∈ J2,+u(pn)

and (pn, u(pn), ηn, Xn)→ (p0, u(p0), η,X)}.

Having formally defined the concept of subelliptic jet on the Grushin plane,
the following proposition characterizes the jets in terms of test functions that
touch from above or below. This proposition and its proof are an extension
of Crandall [6].

Proposition 3.1. Let u, h, and O be as above. Define the set

Ku,p0 =
{(
∇0φ(p0),

(
D2φ(p0)

)?)
: u− φ has a local max at p0

}
.

Then we have the equality

J2,+
O u(p0) = Ku,p0 .
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Proof. Let p0 be the local maximum of u− φ. Then, for p near p0,

u(p)− φ(p) ≤ u(p0)− φ(p0),

and so
u(p) ≤ u(p0) + φ(p)− φ(p0).

Then Proposition 2.1 yields

Ku,p0 ⊂ J2,+
O u(p).

In order to show the reverse inclusion, a function φ with a strict maximum
at p0 that has the appropriate derivatives will be constructed. Define the
function a : Gn 7→ R by

a(p) = x4 + y4

for p = (x, y). This function is C2 and satisfies a(p0 − p) = O(dC(p0, p)4) at
every point p0.

We will first consider the case when rp0 > 0. We define the function z(r)
using a pair (η,X) ∈ J2,+

O u(p0) by setting z(r) equal to

sup
(
u(p)− u(p0)− (x− x0)η1 −

2
ρ′(x0)

(y − y0)X12 −
1
2

(x− x0)2X11

)+

,

where the sup is taken over all p ∈ O such that a(p− p0) ≤ r.
We proceed as in [5] to construct a C2 function ζ : Gn 7→ R so that

XI(ζ(p− p0))(p0) = 0

for all multi-indices I with d(I) ≤ 2. Define the function φ : Gn 7→ R by

φ(p) = ζ(p− p0) + a(p− p0) + (x− x0)η1

+
2

ρ′(x0)
(y − y0)X12 +

1
2

(x− x0)2X11.

With this definition, φ(p0) = 0, and so

u(p)− φ(p)− u(p0) + φ(p0) + s = s+ u(p)− ζ(p− p0)− a(p− p0)

− (x− x0)η1 −
2

ρ′(x0)
(y − y0)X12

− 1
2

(x− x0)2X11 − u(p0).

By the construction of ζ, this gives

u(p)− φ(p)− u(p0) + φ(p0) + s ≤ 0

in the region s ≤ a(p− p0). Thus, u− φ has a strict local maximum at p0. In
addition, computation of the derivatives gives ∇0φ(p0) = η and D2(φ(p0))? =
X, so that

J2,+
O u(p) ⊂ Ku,p0 .

The case where rp0 = 0 is similar and omitted. �
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Due to the subelliptic structure of the Grushin plane on lines, where we
have ρ(x) = 0, the maximum principle of Crandall, Ishii, and Lions [7] is
not readily available. The next lemma shows explicitly how any traditional
Euclidean superjet gives rise to a subelliptic superjet, so that the machinery
of [7] may be employed.

Main Lemma. Let the points p, p0 ∈ R2 be denoted by p = (x, y) and
p0 = (x0, y0). Let η ∈ R2 and X ∈ S2. Also, let 〈·, ·〉E denote the Euclidean
inner product in R2. Define the standard Euclidean superjet, denoted J2,+

] ,
by

J2,+
] u(p0) =

{
(η,X) : u(p) ≤ u(p0) + 〈η, p− p0〉E +

1
2
〈X(p− p0), p− p0〉E

(3.3)

+ o (〈p− p0, p− p0〉E) as p→ p0

}
.

If η and X are defined by

η = (η1, η2) and X =
(
X11 X12

X12 X22

)
,

define the gn vector by

η̃ = η1X1 + ρ(x0)η2X2

and the symmetric matrix Y by(
X11 ρ(x0)X12 + 1

2ρ
′(x0)η2

ρ(x0)X12 + 1
2ρ
′(x0)η2 ρ(x0)2X22

)
.

Then, given (η,X) ∈ J2,+

] u(p0), we have (η̃, Y ) ∈ J2,+
u(p0).

Proof. Case 1: (η,X) ∈ J2,+
] u(p0).

We will consider the case where rp0 > 0. The other case is similar and
omitted. First, we observe that if β is o(〈p− p0, p− p0〉E) then equation (1.1)
leads to

β

dC(p0, p)2
∼ β

〈p− p0, p− p0〉E
× |x− x0|2 + |y − y0|2

|x− x0|2 + |y − y0|2/(rp0+1)
,

and so β is o(dC(p, p0)2). Also by equation (1.1), y− y0 is O(dC(p, p0)rp0+1).
In particular, (x− x0)(y − y0) and (y − y0)2 are o(dC(p, p0)2).

Using these estimates, we expand equation (3.3) to obtain

u(p) ≤ u(p0) + (x− x0)η1 + (y − y0)η2 +
1
2

(x− x0)2X11 + o
(
dC(p, p0)2

)
.

The result then follows from equation (3.2) and the fact that ρ(x0) = 0.

Case 2: (η,X) ∈ J2,+

] u(p0).
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Given (η,X) ∈ J2,+

] u(p0), there is a sequence {pn, ηn, Xn} ∈ Ω×gn×S2 so
that (ηn, Xn) ∈ J2,+

] u(pn) and {pn, u(pn), ηn, Xn} → (p0, u(p0), η,X). Now,
(ηn, Xn) can be identified with (η̃n, Yn) ∈ J2,+u(pn). By construction, η̃n → η̃
and Yn → Y . Thus, (pn, u(pn), η̃n, Yn) → (p0, u(p0), η̃, Y ) and so we have
(η̃, Y ) ∈ J2,+

u(p0). �

4. Maximum principle

We begin by stating a lemma analogous to Lemma 3.1 of [7]. The proof is
similar and omitted.

Lemma 4.1. Let u be an upper-semicontinuous function in Ω and v a
lower-semicontinuous function in Ω. For τ > 0, p = (x1, y1) and q = (x2, y2)
let the function ϕ(p, q) be defined by

ϕ(p, q) ≡ 1
2

(x1 − x2)2 +
1
4

(y1 − y2)4

and let the function Mτ be defined by

Mτ = sup
Ω×Ω

(u(p)− v(q)− τϕ(p, q)) .

Let pτ = (xτ1 , y
τ
1 ) and qτ = (xτ2 , y

τ
2 ) be so that

lim
τ→∞

(Mτ − (u(pτ )− v(qτ )− τϕ(pτ , qτ ))) = 0.

Then,

(4.1) lim
τ→∞

τϕ(pτ , qτ ) = 0

and

(4.2) lim
τ→∞

Mτ = u (p∗)− v (p∗) = sup
Ω

(u(p)− v(p))

whenever p∗ is a limit point of pτ as τ 7→ ∞.

Using the function ϕ(pτ , qτ ), we compute some important vectors and ma-
trices that are dependent upon the Euclidean derivatives. We begin by defin-
ing the vectors Υpτ and Υqτ by

Υpτ ≡
(

(xτ1 − xτ2)
ρ (xτ1) (yτ1 − yτ2 )3

)
and Υqτ ≡

(
(xτ1 − xτ2)

ρ (xτ2) (yτ1 − yτ2 )3

)
.

Note that Υpτ is the Euclidean derivative of ϕ(pτ , qτ ) with respect to pτ
twisted at pτ using the Main Lemma and that Υqτ is the negative of the Eu-
clidean derivative of ϕ(pτ , qτ ) with respect to qτ twisted at qτ using the Main
Lemma. Next, we consider the matrix D2ϕ(pτ , qτ ) of second order Euclidean



VISCOSITY SOLUTIONS ON GRUSHIN-TYPE PLANES 905

derivatives. A straightforward computation shows that (D2ϕ(pτ , qτ ))2 +
D2ϕ(pτ , qτ ) equals

3 0 −3 0
0 3 (yτ1 − yτ2 )2 + 18 (yτ1 − yτ2 )4 0 −3 (yτ1 − yτ2 )2 − 18 (yτ1 − yτ2 )4

−3 0 3 0
0 −3 (yτ1 − yτ2 )2 − 18 (yτ1 − yτ2 )4 0 3 (yτ1 − yτ2 )2 + 18 (yτ1 − yτ2 )4


and we shall denote this matrix by C.

We now proceed as in [7]. Let u be a viscosity subsolution and v a viscosity
supersolution to F (p, f(p),∇0f(p), (D2f(p))?) = 0. Denote the points p and
s by p = (x1, y1) and q = (x2, y2) and let (pτ , qτ ) = ((xτ1 , y

τ
1 ), (xτ2 , y

τ
2 )) be the

maximum point of
u(p)− v(q)− τϕ(p, q)

in Ω×Ω. By the Euclidean maximum principle of semicontinuous functions [7],
there are subsequences pτi → p0 and qτi → p0. Passing to the subsequence,
we shall denote these points by pτ and qτ , respectively. In addition, there
exist S2 matrices Xτ and Y τ , denoted by

Xτ =
(
X11 X12

X12 X22

)
and Y τ =

(
Y11 Y12

Y12 Y22

)
,

so that

(τDϕp(pτ , qτ ), Xτ ) ∈ J2,+

euclu(pτ ) and (−τDϕq(pτ , qτ ), Y τ ) ∈ J2,−
euclv(qτ ).

The matrices Xτ and Y τ satisfy the estimate

(4.3) 〈Xτ ε, ε〉E − 〈Y
τκ, κ〉E ≤ τ 〈Cχ, χ〉E

for any vectors ε and κ in R2, where 〈·, ·〉E is the standard Euclidean inner
product and the vector χ is defined by χ = (ε, κ). Using the Main Lemma,
we obtain

(τΥpτ ,X τ ) ∈ J2,+
u(pτ ) and (τΥqτ ,Yτ ) ∈ J2,−

v(qτ ),

where the matrices X τ and Yτ are defined by

X τ =
(

X11 ρ(xτ1)X12 + 1
2ρ
′(xτ1)(yτ1 − yτ2 )3

ρ(xτ1)X12 + 1
2ρ
′(xτ1)(yτ1 − yτ2 )3 ρ(xτ1)2X22

)
,

Yτ =
(

Y11 ρ(xτ2)Y12 + 1
2ρ
′(xτ2)(yτ1 − yτ2 )3

ρ(xτ2)Y12 + 1
2ρ
′(xτ2)(yτ1 − yτ2 )3 ρ(xτ2)2Y22

)
.

The elements of the subelliptic jets also satisfy important estimates given
by the following lemma.

Lemma 4.2. The vectors Υpτ and Υqτ satisfy

(4.4) |‖Υqτ ‖2 − ‖Υpτ ‖2| = O(ϕ(pτ , qτ )2).
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In addition, with the usual ordering, the matrix X τ is smaller than the matrix
Yτ with an error term. In particular, X τ ≤ Yτ + Rτ , where Rτ → 0 as
τ →∞.

Proof. A straightforward computation shows

‖Υqτ ‖2 − ‖Υpτ ‖2 = (yτ1 − yτ2 )6
(
ρ (xτ2)2 − ρ (xτ1)2

)
.

The vector difference estimate then follows from the definition of ϕ and the
fact that (ρ(xτ2)2 − ρ(xτ1)2) is O(xτ1 − xτ2).

We now focus on the matrix difference estimate. Using the definitions of
X τ and Yτ , we write 〈X τ ε, ε〉 − 〈Yτκ, κ〉 as〈

Xτ

(
ε1

ρ (xτ1) ε2

)
,

(
ε1

ρ (xτ1) ε2

)〉
−
〈
Y τ
(

κ1

ρ (xτ2)κ2

)
,

(
κ1

ρ (xτ2)κ2

)〉
+

1
2

(yτ1 − yτ2 )3 (ρ′ (xτ1) ε1ε2 − ρ′ (xτ2)κ1κ2) .

Using equation (4.3) we obtain

(4.5) 〈X τ ε, ε〉−〈Yτκ, κ〉 ≤ τ 〈Cχ, χ〉E+
1
2

(yτ1−yτ2 )3(ρ′(xτ1)ε1ε2−ρ′(xτ2)κ1κ2),

where χ = (ε1, ρ(xτ1)ε2, κ1, ρ(xτ2)κ2). Computing the inner product, we con-
clude

(4.6) 〈X τ ε, ε〉 − 〈Yτκ, κ〉

≤ τ
(

3 (yτ1 − yτ2 )2 + 18 (yτ1 − yτ2 )4
)

(ρ (xτ1) ε2 − ρ (xτ2)κ2)2

+ 3τ(ε1 − κ1)2 +
1
2

(yτ1 − yτ2 )3 (ρ′ (xτ1) ε1ε2 − ρ′ (xτ2)κ1κ2) .

Setting κ = ε, we compute that

(4.7) 〈X τ ε, ε〉 − 〈Yτ ε, ε〉

≤ τε22
(

3 (yτ1 − yτ2 )2 + 18 (yτ1 − yτ2 )4
)

(ρ (xτ1)− ρ (xτ2))2

+
1
2
ε1ε2 (yτ1 − yτ2 )3 (ρ′ (xτ1)− ρ′ (xτ2)) .

Now, (yτ1 − yτ2 )2 ≤ (ϕ(pτ , qτ ))1/2 and (ρ(xτ1) − ρ(xτ2))2 is O((ϕ(pτ , qτ ))1/2),
and so the right hand side of equation (4.7) goes to 0 as τ goes to infinity by
equation (4.1). �

5. Comparison principles

Having established a maximum principle for this environment, we proceed
to proving comparison principles for certain types of functions F . In our
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first example, we consider strictly monotone elliptic functions F . That is, we
require F to satisfy the following properties:

σ(r − s) ≤ F (p, r, η,X)− F (p, s, η,X),(5.1)

|F (p, r, η,X)− F (q, r, η,X)| ≤ w1(dC(p, q)),(5.2)

|F (p, r, η,X)− F (p, r, η, Y )| ≤ w2(‖Y −X‖),(5.3)

|F (p, r, η,X)− F (p, r, ν,X)| ≤ w3(|‖η‖ − ‖ν‖|),(5.4)

where σ > 0 is a constant and the functions wi : [0,∞] 7→ [0,∞] satisfy
wi(0+) = 0 for i = 1, 2, 3. We then formulate a comparison principle for such
functions F .

Theorem 5.1. Let F satisfy equations (5.1), (5.2), (5.3), and (5.4). Let
u be an upper semi-continuous subsolution and v a lower semi-continuous
supersolution to

F
(
p, f(p),∇0f(p),

(
D2f(p)

)?)
= 0

in a domain Ω so that

lim sup
q→p

u(q) ≤ lim inf
q→p

v(q)

when p ∈ ∂Ω, where both sides are not ∞ or −∞ simultaneously. Then

u(p) ≤ v(p)

for all p ∈ Ω.

Proof. Suppose supΩ(u − v) > 0. Using the Grushin maximum principle
from the previous section, we obtain

σ(u(pτ )− v(qτ )) ≤ F (pτ , u(pτ ), τΥpτ ,X τ )− F (pτ , v(qτ ), τΥpτ ,X τ )

= F (pτ , u(pτ ), τΥpτ ,X τ )− F (qτ , v(qτ ), τΥqτ ,Yτ )

+ F (qτ , v(qτ ), τΥqτ ,Yτ )− F (pτ , v(qτ ), τΥqτ ,Yτ )

+ F (pτ , v(qτ ), τΥqτ ,Yτ )− F (pτ , v(qτ ), τΥpτ ,Yτ )

+ F (pτ , v(qτ ), τΥpτ ,Yτ )− F (pτ , v(qτ ), τΥpτ ,X τ ).

The first term is negative since u is a subsolution and v is a supersolution.
Using equations (5.1), (5.2), (5.3), and (5.4), and Lemma 4.2, we obtain

0 < σ(u(pτ )− v(qτ )) ≤ w1(dC(pτ , qτ )) + w2(‖Rτ‖) + w3(τ |‖Υqτ ‖ − ‖Υpτ ‖|),
which goes to 0 as τ approaches ∞. �

In our second example, we consider a specific type of function F , namely,

Fε(η,X) = min
{
‖η‖2 − ε2,−〈Xη, η〉

}
,

where ε is a positive real number. Before proving a comparison principle for
such functions F , we state without proof a technical lemma from [11], which
gives a function that approximates the identity and has useful properties.
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Lemma 5.2. Let A > 1 and α > 1 be given. Then the function f : R 7→ R

given by

f(t) =
1
α

log
(
1 +A

(
eαt − 1

))
satisfies f(0) = 0, f ′(t) > 1 and f ′′(t) < 0 for all t ≥ 0. In addition, f is
invertible and 0 < f(t)− t < (A− 1)/α as A→ 1+.

We now formulate the comparison principle.

Theorem 5.3. Let u be an upper semi-continuous subsolution and v a
lower semi-continuous supersolution to

Fε
(
∇0f(p), (D2f(p))?

)
= 0

in a domain Ω so that

lim sup
q→p

u(q) ≤ lim inf
q→p

v(q)

when p ∈ ∂Ω, where both sides are not ∞ or −∞ simultaneously. Then

u(p) ≤ v(p)

for all p ∈ Ω.

Proof. Suppose supΩ(u − v) > 0. We wish to replace v by w with ‖v −
w‖L∞(Ω) small by using the previous lemma. Let w = f(v) for A close to one,
with f as in Lemma 5.2. Then let supp∈Ω(u(p)−w(p)) occur at the (interior)
point p0. Let φ ∈ C2(Ω) so that φ(p0) = w(p0) and φ(p) < w(p) for p 6= p0.
Set Φ = f−1(φ), that is, φ = f(Φ). Proceeding as in [5], we set

µ(p) = min
{
ε2
(
f ′(v(p))2 − 1

)
,−f ′′(v(p))f ′(v(p))2ε4

}
,

and obtain

min
{
∇0Φ(p0)− ε2,−∆0,∞Φ(p0)

}
≥ µ(p0) > 0.

Thus, w is a strict supersolution of Fε = 0.
Replacing v by w, we obtain

0 < µ(qτ ) ≤ Fε(Υqτ ,Yτ )− Fε(Υpτ ,X τ )

= max
{
‖τΥqτ ‖2 − ‖τΥpτ ‖2, 〈X ττΥpτ , τΥpτ 〉 − 〈YττΥqτ , τΥqτ 〉

}
.

Using Lemma 4.2, and in particular equation (4.6), we obtain the new
inequality

0 < µ(qτ ) . C max
{
τ2ϕ(pτ , qτ )2, τ2

(
τϕ(pτ , qτ )3 + ϕ(pτ , qτ )2

)}
for some finite constant C independent of τ . We arrive at a contradiction
when we let τ approach infinity and apply Lemma 4.1. �

This comparison principle produces a corollary whose proof is similar to
that of the theorem.
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Corollary 5.4. Let ε be a positive real number. Then a comparison
principle for

Hε(η,X) = min
{
ε2 − ‖η‖2,−〈Xη, η〉

}
holds as in the theorem.

We now state a lemma whose proof is identical to the corresponding lemma
found in [5]. The Euclidean version of this lemma was originally proved by
Jensen [9]. It gives an estimate on the solutions as ε→ 0.

Lemma 5.5. Let uε and uε be solutions to Fε = 0 and Gε = 0, respectively.
Given δ > 0, there exists an ε > 0 so that

uε ≤ uε ≤ uε + δ.

We then combine Theorem 5.3, Corollary 5.4, and Lemma 5.5 to obtain
the following comparison principle for infinite harmonic functions:

Theorem 5.6. Let u be an upper semicontinuous subsolution and v a
lower semicontinuous supersolution of

∆0,∞u = 0

in a domain Ω such that if p ∈ ∂Ω, then

lim sup
q→p

u(q) ≤ lim sup
q→p

v(q),

where both sides are not −∞ or +∞ simultaneously. Then, for all p ∈ Ω,

u(p) ≤ v(p).

6. Explicit calculations in a particular class of Grushin-type planes

In this section, we focus on infinite harmonic functions in the viscosity
sense. Given a domain Ω and Lipschitz boundary data given by Θ, the exis-
tence proof of a viscosity infinite function u in Ω equal to Θ on the boundary
follows that of [5]. By Theorem 5.6, such functions u are unique. We then
desire to further examine the case when ρ(x) = c(x − a)n for any n ∈ N
and a, c ∈ R with c non-zero. We shall not only exhibit a particular infinite
harmonic function, but also relate it to the fundamental solution to the q-
Laplacian. We begin by recalling that our choice of ρ(x) above produces the
following vector fields in gn:

X1 =
∂

∂x
, X2 = c(x− a)n

∂

∂y
, X3 = cn(x− a)n−1 ∂

∂y
, . . . , Xn+2 = cn!

∂

∂y
.

Motivated by [14] and [15], we define the function r : Gn 7→ R by

r(x, y) =
(
c2(x− a)2n+2 + (n+ 1)2(y − b)2

)1/(2n+2)
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for any real number b. Using the vectors X1 and X2 above, an easy calculation
shows that the function r(x, y) is in C∞(Gn \ (a, b)) ∩ C(Gn). In addition,
another routine calculation shows that in Gn \ (a, b),

∆0,∞r(x, y) = 0.

Considering the domain Ω ≡ {(x, y) ∈ Gn : 0 < r(x, y) < 1}, these facts make
it clear that the unique (viscosity) solution to

(6.1)

{
∆0,∞u = 0 in Ω,
u = r on ∂Ω

is the function r(x, y) itself.
In addition to verification by computation, we can also use the limiting

technique from [5] to show that r(x, y) is the unique viscosity solution to
equation (6.1). We begin first with the function uq : Gn 7→ R defined by

uq(x, y) = (r(x, y))(2+n−q)/(1−q).

Using computations as in [14] and [15] we can show that u2 is the fundamental
solution to the Laplacian with singularity at (a, b). In particular, u2 satisfies{

∆0,2u = 0 in Ω,
u = r on ∂Ω.

The key to the proof of this fact is the use of “polar coordinates” in Gn (see
[14], [15]). (For more recent results on polar coordinates in Carnot groups
see [2].) A routine calculation as in [14] or [15] shows that if τ > 0 and
α = (2 + n)(q − 1)/(2 + n− q), then uq ∈ Lα−τloc (Gn) but uq /∈ Lαloc(Gn).
Adapting Proposition 2.16 of [2], we obtain that kquq is the fundamental
solution to the q-Laplacian for the appropriate constant kq. In particular, uq
satisfies {

∆0,qu = 0 in Ω,
u = r on ∂Ω,

so that formally taking q →∞ produces the desired result.
Concerning the fundamental solution, it should be noted that these results

are true only when the singularity occurs at points (a, b). The results fail when
the singularity is translated to points (z, b) for z 6= a, as an easy calculation
shows that the function r̃ : Gn 7→ R

r̃(x, y) =
(
c2(x− z)2n+2 + (n+ 1)2(y − b)2

)1/(2n+2)

is not infinite harmonic when z 6= a and

∆0,q r̃(x, y)(2+n−q)/(1−q) 6= 0
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on Gn \ (z, b). In fact, the Green’s function at these points is much more
complicated. The complete formulation and related Green’s functions can be
found in [3].
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[4] A. Belläıche, The tangent space in sub-Riemannian geometry, Sub-Riemannian ge-
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