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FOLNER NUMBERS AND FOLNER TYPE CONDITIONS
FOR AMENABLE SEMIGROUPS

BY
ZHUOCHENG YANG!

As well-known, the Felner condition for semigroups does not imply the left
amenability. In 1964, Namioka gave two sufficient conditions of Felner type
for a semigroup to be left amenable. He asked the question whether they are
necessary. In this paper we show that these conditions are not necessary for
left amenability by studying in details the Folner number of a semigroup. We
also prove that for a semidirect product of two semigroups satisfying the
strong Foelner condition, the two Namioka-Felner conditions are equivalent to
the strong Falner condition. We answer in this paper a problem of Klawe on
the homomorphic images of a semigroup with the strong Felner condition.
Some general properties of Felner numbers and Felner type conditions are
also studied.

1. Introduction

Let S be a semigroup, and let m(S) be the Banach space of bounded
real-valued functions on § with the supremum norm. A linear functional
p € m(S)* is called a mean if u is positive and ||| = 1. A mean p is left
invariant if p(f) = p(l,f) for all f € m(S) and s € S, where /,f € m(S) is
defined by (/,f)(s;) = f(ss,), s; € S. A semigroup is left amenable if it has a
left invariant mean. For general properties of left amenable semigroups, see
Day [3] and [4].

For subsets A, B of S and s € S, we define

A-B={w|ue Adand v € B},
sA = {sulu € A} and As = {us|u € A}.

We denote by 42 = 4 - 4, and so on. x4 is used to denote the characteristic
function of 4. And if 4 is finite, then |4| will be its cardinality.

Consider the following Felner type conditions on S:

(A) There exists a number k, 0 < k <1, such that for any elements
81,...,8, of S (not necessarily distinct), there is a finite subset 4 of S
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FOLNER NUMBERS AND FGLNER TYPE CONDITIONS 497
satisfying

1 n

L 14\ 54| < kl4].

i+1

(B) Given any finite subset F of S, and any number ¢ > 0, there exists a
finite subset A of S, such that for each s € F, |4\ s4| < ¢|4].

We call condition (A) the weak Folner condition (WFC) and condition (B),
as in [1] and [8], the strong Felner condition (SFC). When S is a group, Felner
[5] proved that both WFC and SFC are equivalent to the amenability of S.
Frey [6] introduced the condition FC, which is equivalent to SFC when § is
left cancellative (see [1]):

(FC) Given any finite subset F of S, and any number & > 0, there exists a
finite subset A of S, such that for each s € F, |s4\ 4| < ¢|4].

He proved that if S is left amenable, the FC holds, but the converse is not true
(see Namioka [9] for an elegant proof of this fact). In general, SFC is sufficient
for the left amenability (LA) of S (cf. [1], also [9]). However, it is not necessary
(see Klawe [8] for an example). Also WFC is not sufficient for LA (see
Namioka [9] and also see our Theorem 2.3). In 1964, Namioka gave two
sufficient conditions stronger than WFC. We will refer to them as the weak
and strong Namioka-Felner conditions.

(WNFC) There exists a number k, 0 < k < 1, such that for any elements
S1sees Sy S{s..., 8, of S, there is a finite subset 4 of S satisfying

n
% Y 5,4 N siA| 2 k|A].
i+1
(SNFC) There exists a number k, 0 < k < 1/2, such that for any elements
S$15-.., 5, of S, there is a finite subset 4 of S satisfying

n

% }:1|A \s5;4| < k|4].
Namioka [9] proved that SNFC implies WNFC and WNFC implies LA. In
fact he showed that if SNFC holds for k then WNFC holds for 1 — 2k. Also
it is easy to see that if WNFC holds for k, then SNFC(WFC) holds for 1 — k.
Namioka [9, p. 26] posted the problem whether those conditions are necessary;
i.e.,, whether LA implies WNFC or SNFC.

The following diagram summarizes the known implications among the

various Felner-type conditions for a semigroup mentioned above.

SFC = SNFC = WNFC = WFC

LA™ =FC
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We prove in §4 that LA » WFC. This answers negatively Namioka’s
problem (same as what he conjectured). Notice that this also shows that WFC
is not weaker than FC.

Motivated by WFC and SNFC, James Wong [14] defined the Feglner
number ¢(S) for an arbitrary semigroup S to be the infimum of all numbers
k < 1 such that WFC holds. Clearly ¢(S) < 1 and ¢(S) < 1/2 correspond to
WPFC and SNFC, respectively. Furthermore, ¢(S) = 0 is equivalent to SFC as
we will show in Proposition 2.1.

In Section 2 of this paper, we investigate some general properties of ¢(S)
and competely determine ¢(S) for all finite semigroups and cancellative
semigroups. In Section 3 we obtain, by some combinatorial computations, two
inequalities for ¢(S) related to the cancellation behavior of S. One of them is
the main tool to solve Namioka’s problem.

In [8], Klawe studied amenability of the semidirect product of two semi-
groups and she was able to construct a left amenable semigroup not satisfying
SFC. In Section 4, we show that Klawe’s semigroup has Felner number 1,
which answers Namioka’s problem. Then we give some necessary and suffi-
cient conditions for a semidirect product to be left amenable. We also answer
negatively a problem of Klawe [8, p. 102]): whether a homomorphic image of a
semigroup satisfying SFC also satisfies SFC.

The last section of this paper is devoted to the Felner number of a
semidirect product. We prove by the inequality we obtain in Theorem 3.3 and
3.9 that there is a large collection of semidirect products which are left
amenable and have Folner number 1. We also show that for those semigroups
the two Namioka-Felner conditions are in fact equivalent to SFC. But the
problem of whether they are always equivalent is still open.

This paper will form part of my thesis under the supervision of Professor
Anthony T. Lau. I am most indebted to Professor Lau for his valuable
suggestions and encouragement.

2. Felner numbers

In this section we give a formula for Felner numbers of finite semigroups
related to the numbers of minimal right ideals. Then we show that the Folner
number of a cancellative semigroup S is 0 or 1 according as S is left amenable
or not.

We follow Wong [14] for the definition of Felner number of a semigroup.
Let S be a semigroup and 0 < k < 1. We say that S has property (F,) if for
any sy,..., s, € S (not necessarily distinct), there is a finite (nonempty) subset
A of S such that

n

-}; Y 14\ 5,A4| < k|A|.
i=1



FOLNER NUMBERS AND FOLNER TYPE CONDITIONS 499
The Folner number of S is defined by
@(S) = inf{k|0 < k < 1 and S has property (F;)}.
¢(S) is well-defined since every semigroup has property (F)).
By the definition we can see that WFC < ¢(S) < 1 and SNFC & ¢(S) <

1/2. Also it is easy to see that SFC implies ¢(.S) = 0. Our first result is about
the converse (compare with Wong [14], Theorem 2.2(1)).

PROPOSITION 2.1. Let S be a semigroup. If @(S) = 0, then S satisfies SFC.

Proof. Let F= {s,,...,5,} be any finite subset of S, and & > 0. Since
¢(S) = 0, there exists a finite subset 4 of S, such that

1 €
P > 14\s4] < 4l
i=1

Therefore |4\ 5,4| <e|d| forall i,1 <i<n.O

PROPOSITION 2.2. Let S be a semigroup. If there are n disjoint right ideals
I,....,I,in S, then (S) = (n — 1)/n.

Proof. Pick s; € I, for i = 1,..., n. For any finite subset 4 of S, the sets
5,4 are mutually disjoint. So £}'_;|4 N s5,4| < A|. This implies that

1 ¢ n-1
3T 14\s4] 2 24 o
i=1

THEOREM 2.3. If S is a finite semigroup, then (S) =1 — 1/n, where n is
the number of minial right ideals of S.

Proof. By Proposition 2.2, ¢(S)=1-1/n. On the other hand, let
I,..., I, be the n minimal right ideals of S, and 4 = U]_,I,. Since any two
minimal right ideals in a finite semigroup have the same cardinality, we have
|A| = n|I,|. For any s € S, s4 is a right ideal, so it contains a minimal right
ideal I,. Thus |4 N sA| = |I,| = n"!|4|, and

|[A\s4| < (1 - 1/n)|4]|. O

COROLLARY 2.4. For a finite semigroup S, the following are equivalent:
(1) S is left amenable;

(2) @(S) = 0 (S satisfies SFC):

(3) @(S) < 1/2 (S satisfies SNFC).
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Proof. A finite semigroup is left amenable if and only if it contains a
unique minimal right ideal (see [11]). O

COROLLARY 2.5([9]). There are semigroups which satisfy WFC but are not
left amenable.

COROLLARY 2.6. Let S be a semigroup, h a homomorphism of S onto a finite
semigroup. Then ¢(S) = @(h(S)).

Proof. If h(S) has n minimal right ideals, then S admits at least n disjoint
right ideals. By Proposition 2.2, ¢(S) =1 — 1/n = ¢(h(S)). O

It is well known (see [3]) that a homomorphic image of a left amenable
semigroup is also left amenable. It would be desirable if Corollary 2.6 holds
for arbitrary A. Unfortunately, this is not true in general. An example that
¢(S) = 0 but p(h(S)) = 1is given in §4.

If G is a group, then ¢(G) = 0 or 1 according to G is amenable or not [14,
Theorem 2.2(3)]. This is also true for cancellative semigroups. In other words,
the Folner number of a cancellative semigroup never takes values other than 0
and 1.

THEOREM 2.7. If S is a cancellative semigroup, then @(S) = 0 or 1 accord-
ing as S is left amenable or not.

Proof. If S is left amenable, then ¢(S) = 0 since now SFC is equivalent to
FC (see [1)).

Suppose S is not left amenable.

Case (i). S has two disjoint right ideals I, and I,. Take s, € I, and
s, € I,. 5,1, and 5,1, are disjoint right ideals contained in I,. Also 5,1, and
s,I, are disjoint right ideals contained in I,. Thus we have got four disjoint
right ideals. Inductively, for any positive integer n, we can find 2" disjoint
right ideals in S. By Proposition 2.2, ¢(S) = 1.

Case (ii). Any two right ideals of S have nonempty intersection. By
Dubreil’s theorem [2, p. 36], S can be embedded into a group G, such that

G={wlx,yeSs}.

By a theorem of Frey (See Pier [10, Prop. 23.32]), G is not amenable. Hence
¢(G) = 1. Suppose (S) <k <1, and take x; 7%, x5 %,..., X, ' € G,
where x;, y; € S. We prove first that there exists an element s € S such that
X y7 Y, ..., x, ;7% are all in S. By induction, suppose that there exists
s’ € 8, such that x;y7l’,..., x,_1 ;418" € S. By the structure of G, y, s’
can be written as ab~!, where a, b € S. Let s = s’b. Then

Xy s =(xy7%)besS forisn-—1,

and x,y; s = x,a € S.
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Write s; = x,;”'s. Notice that s;s™! = x,y,! for 1 < i < n. By the assump-
tion @(S) < k < 1, there is a finite subset of 4 of S, such that

n
% Y |4\ s,4| < k|A|.
i=1
It follows that

% i1|(A U s4)\ s;s71(4 U s4)|

b

= |AUsA| - % (4 Usd)Ns;s (4 U sd)
i=1

n
< IAUsAI—-}'-ZMns,.Al
i=1
1 n
=4 Usd| - |4] + . L 14\ 54|
i=1

< |4 Usd| - (1 - k)]
< |4 U sd| —1—;—k|AUsA|'

SERLIVIVE

This means ¢(G) < (1 + k)/2 < 1, which contradicts the fact that ¢(G) = 1.
m]

COROLLARY 2.8. For a cancellative semigroup S, the following are equiv-
alent:

(i) S is left amenable;

(i) @(S) = 0 (S satisfies SFC);

(i) @(8) < 1 (S satisfies WFC).

Let S be a semigroup having the finite intersection property for right ideals;
i.e, any two right ideals of S have nonempty intersection (e.g. any left
amenable semigroup has this property). We can define an equivalence relation
R on S by

SRt & Ax € §, sx = tx.

The set S/(R) of the R-equivalence classes forms a right cancellative semi-
group—the right cancellative quotient of S. We refer the readers to [7] for
more details about the semigroup S/(R). Whenever S/(R) exists, S is left
amenable if and only if S/(R) is left amenable [13], and ¢(S) = 0 if and only
if @(S/(R)) = 0 ([1] and [8)).
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THEOREM 2.9. Let S be a semigroup with the finite intersection property for
right ideals. Then @(S) < @(S/(R)).

Proof. This follows from the proof of Theorem 4 in Argabright and Wilde
[1].O

We are unable to prove the equality in Theorem 2.9. This gives rise to the
open problem of whether the strict inequality can hold.

3. Folner number and left cancellation

For a right cancellative semigroup S, @(S) =0 if and only if S is left
amenable and left cancellative ([1] and [8]). In this section we will see that
@(S) really depends on the left cancellativity of S. The first result is how ¢(S)
relates to the size of left cancellative classes.

THEOREM 3.1. Let S be a right cancellative semigroup. If there exist distinct
elements sy, S,,...,5,, of S, and r € S, such that rs, =rs, = ...rs,,, then
¢(S)=1/3 - 1/6n.

Proof. Suppose S has property (F,) for some k € (0,1] (see the beginning
of §2). We are going to prove k > 1/3 — 1/6n. By (F,) we know that there
exists a finite subset A4 of S such that

2n
3.1) (nlA\rAl + ):|A\sA|) < k|A]|.

i=1

Define f: § = Z* by f = £2%,x,-14, Where 5,4 C Sis the setof all x € §
such that s,x € 4. Let W, = {a € 4|f(a) =j} for 0 <j < 2n. Let T =
and

2n
T,= {yeA|y=s,a forsomeae |J W, andi € {1,...,2n}},

mm=j

for j=1,...,2n. Finally, let S; = ;)\ T, j=0,1,...,2n— 1 and §,, =
T2n

Since S; € (U?Z,5,w;) N 4, it is not difficult to see that

.—1 .
W) 2715 for j 2 1,
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by the definition of f. Thus we have

2n 2n
(32) YlA\sAd| = YA\ 4|
=1 i=1
2n
=2n|d| — Y |A N s 4|
i=1
=2n|4] - Y f(a)
acA
2n 2n
=2n Y |W)| - ¥ jIW)|
Jj=0 Jj=1
> E(zn—f)|W| > %2 ’|S|
Jj=1 Jj=1

Also since T} = A NU?"5,4, S, C A\ 5;A4 for all i=1,...,2n. Thus we
have the inequality

2n
2 1A\ s, 4| 2 2n|S,|,
i=1
and hence by (3.2),
2n
(3.3) 5 ANl 2 niSy] + 1 5 22is).
i=1 j=1

Now consider |4 \ r4|. We claim that for j > 1,

(34) 17S;\ U rSml < I il -

m=j+1

Suppose x € rS; \U,,,,jHrS Then thereis s € S; with x = rs, where s = 5, a

for some i, and a € A with f(a) = j. Here the equahty holds since s & T}, ;.
Thus there are j distinct s; such that s;a € A. Also those s;a are d1stmct by
right cancellation of S. Since

2n
rs,a=rs;a=x¢& U rs,= rT .y,
m=j+1

those s;a are all in S;. Now we have proved that for any x € rS; \Um_j+1rS
there are at least ] elements s € §;, such that rs = x. ThlS gives (3.4).
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Summing up for j = 0,1,...,2n, we obtain

2n 1 2n 1
Ir4| < |rSol + X 715 < 1Sl + ) 715
j=1 j=1
and
2n 1
(3.5) |AN\rA| = |A| — |r4| = 21(1 - 7)|sj|.
-

Finally, from (3.1), (3.3) and (3.5),

2n
kj4| = 31; n|A\rd| + Z|A\s,.A|)
i=1
L 22 1-L)s) + s +l§2”_js
= In nj=1 7 | jI n| S| 2j=-1 j | jl
1 i 1
= 3| niSel + X (n - 7)isi
j=1
1 2 1 1,1
> 5 X (n-3)ist = (3 + 5 Mbs
j=0

ie, k>1/3-1/6n.0

It can be seen in the proof that for an arbitrary semigroup S, the same result
also holds with the additional condition that s,,..., s,, belong to different
right cancellative classes. In other words, for any a € S, i # j implies s,a # s;a.

COROLLARY 3.2. For any semigroup S, if ¢(S) # 0, then ¢(S) = 1/6.

Proof. We may assume that S is left amenable. By Lemma 2.1 in [8], there
exist r,s,t € S with rs = rt but sx # tx for any x € S. Now our theorem
applies with n = 1.0

If there is a subset in S having a sort of “uniform cancellation property”,

we can get a much sharper inequality for ¢(S) which will be used to solve
Namioka’s problem.

THEOREM 3.3. Suppose S is a right cancellative semigroup. If there exists a
finite subset F in S such that

@ |Fl=nx2,
(i) Vr,s,tE€F, rs=rt,
(iii) Vr,r,€ F,Vs,t € S,rs =rt e rs=rt,
then (S) =1 - 1/n.
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We divide the proof into some lemmas.

LeMMA 3.4. For any positive integer m > 2, the set F™ also has properties

().

Proof. (i) Take r € F. Then F™ = Fr™~! by (ii). But |Fr™ | = n since
S is right cancellative.

(i) This follows from the fact that r,...r,r/...r, = r" for
Fiseous Py {yeoos I € F.

(i) Forr,...r,and r{...r,€ F™ and s,t € §, if

then

1

.= s =it =1, 1,

by (iii), since rpr{" s =r...r,s=r...r,t =rr"" .0
Now let A4 be a finite subset of S. Given a positive integer m, we define an
equivalence relation ~, on 4 by

S~pteAre Fr rs=rt.

By (iii) it defines an equivalence relation. An equivalence class for the relations
~ . is called a class of level m. Denote by N,, the total number of classes of
level m in A. Since s ~, t= s~ ,,,t each class of level m + 1 is the
disjoint union of some classes of level m, and |4| > N; = N, > ... . Let

_1 EANZ]
km" n 2: lAI .

reF™

LemMA 3.5. For any (nonempty) finite subset A of S and any real number
8>1,ifk, <1, then

-1 2 )
Ny = Ny > =55~ (1= k) [1 - (1—_—,(—'”—);]|Al-

Proof. Define a function f: S = Z* by f =¥, c pmX,4 We have 0 < f(s)
< n, and the average of f on A4 is given by

o ZA6) = pr I a4l

s€A reFm™

= 7 T (1 - AN

reFm™

=n—k,n=Q-k,)n.
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Let A4, = {s€ A|f(s)>(1 - k,)n/8}, and A, = A\ A;. Then
(1-k,)nld| = X f(s)

s€A
= X f(s)+ X f(s)
S€A, SE€EA,
< nl4,| + —(—1—_—85'1)—'1|A|.
So
(3.6) 4, = (1 - %)(1 — kAl

Let C be a class of level m. Then for any r € F™, |rC| = 1. Furthermore, if
s~ ,tand r,r, € F" then rs ~, rt, by (ii). Thus (F™- C) N 4 is con-
tained in a single class of level m (maybe empty).

Suppose that there exists s € C with f(s) > 0. Then s € r;,4 for distinct
Fis Tyseeos Tysy € F™ In other words, there exist f(s) classes C;, C,,..., Cs)
of level m with ,C, = {s}. It is easy to see that those C; are disjoint. By (i1),
those classes are contained in the same class C of level 2m. For a class C’ of
level m such that (F™-C)NA+# @, C’'c Cif and only if (F"-C')N 4
C C.Forlet t, € C’' and r € F™ be such that rt, € 4, and 1, € C; C C.
Then

(F"-ChYnAcCemeCeort~, r,sr
=r2t2“t1 ~2mt29 C,C 6.
This means that the map C - C is independent of a choice of s and it is 1-1.
For every class C of level m for which C is defined, let V(C) be the number

of classes of level m contained in C. Then for any r € F™, |rC| = ¥(C). So
Y, ccf(s) < n- V(C) by the definition of f, and

—kn)n _8-V(C)

_ (1
(3.7) |CnA1|<n-V(C)( s T h

If CN A4, # @, then 3s € C with f(s) > (1 — k,,)n/8. So V(C) = f(s) >
(1 - k,,)n/8. Thus by (3.7),

V(C)-1_ V(C)-1
(38) et L 7ta)
T-k,
1-k, 1
-3 (“ V(é))

>1_k'”1— 2
) Q=-k,)n|
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And then from (3.6) and (3.8),
Nm - N2m 2 E(V(E) - 1)
C
> Y (V(C)-11Cn4, + 2}

1-% é
> cCnNn4A L |y -
zicn a2 - =]

_ 1—8k,,,[1_ . _8k )n]|A1|

82 (1 k )[ —-—k);]lAL o

Proof of Theorem 3.3. Suppose ¢(S) <1 —1/n. Then WFC holds for
some k <1 — 1/n. Choose & so that1 < 8 < yn(1 — k), and an integer / so
that

nd3 k&
(3°9) > (8 _ 1)2(1 _ k)2[(1 —k)n— 82] (1 - k)(8 - 1)

By WFC, there exists a finite subset 4 of S such that

1
T+ Dn Z Y |A\r4| <k|A|.
1-0 FZ'
Adapting the above notations, we have

1 1
H_lgokz.sk or l+1):(1 ky)=1-k.

Let K = {2/|i=0,1,...,1 - 1;1 — ky> (1 — k)/8}. Then

1 l
1—k$l—+—l-§,(l—k21)

1 -
=751 (1 —ky) + 120(1 - kz,)]

1-1+I 5+ Z(l-—km)]

mek
1 1

-k
<Tlltl3 +|K|].
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This and (3.9) imply

§-1 nd*
K| 210 - k) =5~ — k> G gl = ]
Finally, by Lemma 3.5,
-1
4] = .EO(NZ: - Nyn)

=Y {N,-N,,|lmeK)
> méjx%il(l ~ km)2[1 -~ ﬁ%]m
is_Tl(lE—k)z[l Bl fzk)n]‘K' |

> |41,

>

which is a contradiction. This completes the proof of Theorem 3.3. O

COROLLARY 3.6. Let S be a right cancellative semigroup. If there exists a

finite subset F of S satisfying conditions (i)—(iii) of Theorem 3.3, then S does not
satisfy SNFC.

COROLLARY 3.7. Let S be a right cancellative semigroup. If there exists a
sequence {F,} of finite subsets of S satisfying conditions (ii) and (iii) of
Theorem 3.3, and |F,| = oo, then S does not satisfy WFC.

REMARK 3.8. The conclusion ¢(S) > 1 — 1/n is the best possible. For
consider the semigroup {a;,..., a,} with the operation a;a; = a,. It is easy to
check that this semigroup, with F equal to itself, satisfies all the conditions of
Theorem 3.3, and ¢(S) =1 — 1/n by Theorem 2.3.

For later application we need a slightly different form of Theorem 3.3.

THEOREM 3.9. Let S be a semigroup with the finite intersection property for
right ideals. Suppose S has a finite subset F with the following properties:
i |Fl=n2x=2.
(i) Vr,s,teF,rs=rt.
(iii))) Vr, r, € F,Vs,t € S, risRrit < r,sRryt.
(iv) Different elements of F belong to different right cancellative classes; i.e.,
Vr,rn€F,rnRr,=r =r,.
Then @(S) = 1 — 1/n. (See the last part of §2 for the relation R.)
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To prove Theorem 3.9, we need to change the equivalence relation ~ ,, into
~ 1. defined by

s~!te 3dre F™ rsRrt

in the proof of Theorem 3.3. All the rest works with little modification.

4. Semidirect products and left amenability

For a semigroup U, we denote by End(U) the semigroup of all endomor-
phisms of U. Similarly, Inj(U) and Sur(U) will be the semigroups of all
injective or surjective endomorphisms of U, respectively. And Aut(U) =
Inj(U) N Sur(V).

Let U and T be two semigroups, p a homomorphism of T into End(U).
The semidirect product of U by T (with respect to p) is the set UX T
associated with the multiplication (u, a)(v, b) = (up,(v), ab), denoted by
U X, T. 1t is also a semigroup.

Maria Klawe [8] initiated the study of semidirect products for amenable

semigroups. For convenience, we collect some of her results here (Propositions
4.1-4.5).

ProrosITION 4.1.  If U and T are right cancellative, sois S = U X, T. If U
and T are left cancellative, then S is left cancellative iff p(T) C Inj(U).

PROPOSITION 4.2. If U and T are left amenable and p(T) C Sur(U), then
S = U X, T is also left amenable.

ProposITION 4.3. If S = U X, T is left amenable, then U and T are left
amenable.

PrOPOSITION 4.4. If U and T satisfy SFC and p(T) C Au(T), then
S = U X, T also satisfies SFC.

PROPOSITION 4.5. If S = U X, T satisfies SFC, then U and T also satisfy
SFC.

From those results we see that if U and T are two left amenable cancellative
semigroups, p: T — Sur(U) a homomorphism such that p(7T") ¢ Inj(U), then
S = U X T is left amenable, right cancellative, but not left cancellative. So it
does not satisfy SFC (see [8] or our Theorem 3.1). The following example is
given by Klawe.

Example 4.6 [8]. Let U be the free abelian semigroup generated by the
elements {u;|i = 0,1,2,...}, and T the infinite cyclic semigroup with genera-
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tor a. Define p: T = Sur(U) by p,(u;) = u,_, if i = 1 and p,(u,) = u,. Since
p, € Inj(U), the semidirect product § = U X, T is left amenable but does not
satisfy SFC.

In the rest part of this section, we will use Klawe’s example 4.6 to solve
Namioka’s problem and Klawe’s problem on the homomorphic image of a
semigroup with SFC. Then we will give some necessary and sufficient condi-
tions for a semidirect product to be left amenable.

PROPOSITION 4.7. There exist left amenable semigroups with Folner number
equal to 1. So none of SNFC, WNFC or WFC is necessary for a semigroup to
be left amenable.

Proof. Klawe’s example S is left amenable and right cancellative. Let

F,={(uf ™}, a)|j=1,...,n},

where u%u” is understood to be u". Then F, satisfies conditions (i)-(iii) of

Theorem 3.3 with |F,| = n. So ¢(S) = 1. (This also can be obtained directly
from Theorem. 5.1). O

Klawe [8] asked whether homomorphic images of semigroups satisfying SFC
also satisfy SFC. We now show that Klawe’s example is a homomorphic image
of some semigroup having SFC.

PROPOSITION 4.8. There exists a semigroup X and a homomorphism h from
X such that o(X) = 0 and p(h(X)) = 1.

Proof. Let Y be the free abelian semigroup generated by {u,|i € Z}, U, T
and p as in 4.6. Define 71 T — Aut(Y) by 7,(u,) =u,_,, for i € Z. Let
X =Y X_T. Then ¢(X) = 0 by Proposition 4.4. Define a homomorphism h’:
Y- U by

, U iz 1;
W(u;) = {uo, i<O.

Note that h’e 7, = p, o h’. Now define h: X > S =U X, T by

h((x, a"y) = (k(x), a").
Then
R((x, a")(y, a™) = h((xT (), a™*™))
= (W (X)W (7,0(y)), a™*™)
= (K(x)p(K(y)), a™*™)
= (H(x),a")(K(y), a™)
= h(<x’ an>)h(<y’ am>)-
So h is a homomorphism of X onto S. By Proposition 4.7, ¢(S) = 1.0



FOLNER NUMBERS AND F@LNER TYPE CONDITIONS 511

Among other properties of S, we point out that any left amenable subsemi-
group of S has Felner number either 0 or 1, and any finite generated left
amenable subsemigroup of S is abelian. The proofs are omitted.

Now we give two necessary and sufficient conditions for a semidirect
product to be left amenable. In the next section we will give necessary and
sufficient conditions for a semidirect product to satisfy SFC.

THEOREM 4.9. Let U and T be two left amenable semigroups, p: T — End(U)
a homomorphism. Then the following are equivalent:
(D S =UX_,T is left amenable;
(i) S = U X, T has the finite intersection property for rights ideals;
(i) Yvue UVae T, up,(U)Np,(U)+ B.

Proof. (i) = (ii). This is a well-known fact (see [7]).

(ii) = (iii). Take u € U, a € T. By (ii), (u, a)S N (p,(u), a)S # &. This
implies that up,(U) N p,(u)p,(U) = up,(U) N p,(uU) #+ 2.

(iii) = (i). For each a € T, define a linear operator P, on m(U) by
P,g(u) = g(p,(u)) for g € m(U) and u € U. Each P, induces a dual oper-
ator P* on m(U)* given by P*y(g) = y(P,g) for ¢y € m(U)* and g € m(U).
Obviously when ¢ is a mean on m(U), P*} is also a mean on m(U).
Suppose ¢ is a left invariant mean in m(U), v € U. By (iii), there are
x, y € U, such that vp,(x) = p,(y). We have

P (1,8) = ¥(Pu(1,8)) = ¥(LPu(1,8)) = ¥( Pul L, i08))
= ¥(Pallh,8)) = ¥(1,(P(8)) = ¥(Pug) = P (8).

Thus P*J is also a left invariant mean. As in the proof of [8, Lemma 3.3 and
Prop. 3.4], the map a — P} is a representation of T in the set of linear
mappings on the set ML(U) of all left invariant means on m(U). Since
ML(U) is w*-compact and convex, by the fixed point theorem [4, Theorem
6.1] there exists y € ML(U) with P*) = for each a € T. For each f €
m(S) define f€ m(T) by f(a) = ¢(f,), where f, € m(U) is defined as
f.(w) = f(u, a). Choose v € ML(T') and define p € m(S)* by p(F) = »(f).
It follows by routine computation that p is a left invariant mean on S (see [8,
Prop. 3.4]). So S is left amenable. O

COROLLARY 4.10. Let U and T be two left amenable semigroups, p: T —

End(U) a homomorphism. If for any a € T, p,(U) contains a right ideal of U,
then S = U X T is left amenable.

Proof. Take u € U and a € T. Since p,(U) contains a right ideal, up,(U)
also contains a right ideal. U as a left amenable semigroup has the finite
intersection property for right ideals. Therefore up,(U) N p,(U) # 2.0
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Examples 4.11. We give some applications of Theorem 4.9 and Corollary
4.10.

(i) Let U= {q € Q|q = 1} with the usual addition. T = {r € Q|r > 1}
with the usual multiplication. T acts on U in the way that p,(¢) =rq,r € T, q
€ U. Since for any re T, p(U)= {g€ U|g=r} is an ideal in U, by
Corollary 410, S=U X, T is left amenable.

(ii)) Let Q" be the set of nonnegative rationals, Z* that of integers, with
the usual addition. Let U = Q* & Z*, T the infinite cyclic semigroup gener-
ated by a. Define p,({r, n)) = (r + n, n). Then p,(U) does not contain any
ideal of U. But by Theorem 4.9, § = U X T is still left amenable.

5. Semidirect products and Felner type conditions

For left cancellative semigroups, finite semigroups, and abelian semigroups,
SFC, SNFC and WNFC are all equivalent (to the left amenability). It is
natural to ask whether these conditions are equivalent in general. In this
section we will prove that for a semidirect product of two semigroups
satisfying SFC, they are equivalent (to LA + WFC).

If a semigroup S has the finite intersection property for right ideals and its
right cancellative quotient semigroup S/(R) is left cancellative, we say S
satisfies Sorenson’s condition. See [12] for Sorenson’s conjecture. It is known
that § satisfies SFC if and only if S is left amenable and satisfies Sorenson’s
condition (cf. [1] and [8]).

Let U be a semigroup with the finite intersection property for right ideals,
and A € End(U). Since sRt implies h(s)Rh(2), h can be reduced to

h € End(U/(R)),

defined by A(5) = h(s) . And for hy, h, € End(U), hyoh, =h;oh, If
p: T — End(U) is a homomorphism from another semigroup 7" into End(U),
then we can define p: T — End(U/(R)) by p, = p,. p is also a homomor-
phism.

THEOREM 5.1. Let U and T be two semigroups where U satisfies Sorenson’s
condition. Suppose p: T — End(U) is a homomorphism such that

p(T) ¢ Inj(U/(R)).

Then the semidirect product S = U X , T is either not left amenable or ¢(S) = 1.
In both cases S does not satisfy WNFC.

Proof. For convenience we write ~ for the right cancellative relation R
on U. Sorenson’s condition implies that Vu, v, w € U, wu = wo = u ~ v.
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Assume that S is left amenable and p(T) ¢ Inj(U/(R)). Then there exists
a € T and u, v € U such that u + v but p,(u) ~ p,(v).

We claim that for any positive integer n, there are two elements u,, v, € U
such that p »-1(u,) *~ P,.-1(v,) but p,«(u,) = p,(v,).

Take w € U with p,(u)w = p,(v)w. Since S is left amenable, by Theorem
49, wU N p,(U) # @. Choose w’ € U with p,(w’) € wU. Then p,(uw’) =
p(vw’), and uw’ + vw’, since u + v. Let u; = uw’ and v, = vw'.

Suppose n > 2. Again since S is left amenable,

(up, a" DS N (v, a" S+ 2.
Therefore u;p,--1(U) N v,p,+-1(U) # @. Choose w’, w” € U so that
(5.1) U pn-1(W’) = v1p,n-1(W").

Since u; * vy, p-1(w’) * p-1(w”). Applying p, to both sides of (5.1), we
get p,(u)p (W) = p,(v)p (W) = p,(uy)p,(w”). Sorenson’s condition on
U gives that p,.(w’) ~ p,-(w”). By the same argument as in the previous
paragraph, we can find w e U, with p,.(w'w) = p»(w”w), and also
Par-1(W'W) * poa-1i(w”w). Let u, = w'w and v, = w"w.

Let

E, = {{ww,...w,,a") € S|w,=u;orv,}.

Then F, satisfies conditions (i), (ii), (iiiy and (iv) in Theorem 3.9 with
|E,| = 2", as we will show.

(i) and (iv). We prove by induction that any two different words w,w, ... w,
are not in the same right cancellative class of U. This implies (i) and (iv).
Suppose this is true for n = k — 1 > 1. Let
Fl={ww,...w,_qu|w,=u,orv,},
and

Fl'={ww,...we_0lw, =u,0rv,}.

By the induction hypothesis and the fact that ac ~ bc = a ~ b, each set F; or
F\” satisfies our requirement. Let w,...w,_qu, € F/ and w{...w}_iv; €
F/’. If they are in the same right cancellative class, then
pae-1(uy) par-1(ug) . . k-1 (tye_ 1) por1 ()
= p-1(wwy ... wy_qu;)
~ par-r(Wiwy ... wi_1vy)

= pge-1(ty) par-1(43) - . par-1 (1) par-1 ().
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Since U satisfies Sorenson’s condition, we have

pa""l(uk) = pa""(vk)'

This contradicts to our choice for u, and v,.
(ii)) This follows from the fact that

pa"(wlw2 cee wn) = pa"(ul)pa”(uZ) cee pa"(un)’

(iii)’ For s € S, write s = (P,(s), P,(s)). Suppose r;, 7, € F, and 5,t € S
are such that there exists x € S, r,sx = rytx. Equivalently we have

(5.2) P,(r)p(Py(sx)) = Py(r))pn(Py(2x)),
and
(5.3) a"P,(sx) = a"P,(tx),

by the definition of semidirect products. By Sorenson’s condition, there exists
w € U such that p,-(P;(sx))w = p.(Py(tx))w. Theorem 4.9 gives

WU N pyrp o) (U) # 2.
Thus there exists w’ € U such that
(5.4) pa"(Pl(sx))pa”Pz(sx)(wl) = pa"(Pl(tx))pa"l‘z(tx)(w’)’
since a"P,(sx) = a"P,(tx). Let y = x{w’, a). Then it is easy to check that

P (Pi(sy)) = 0,(Pi(2y)) and a"Py(sy) = a"Py(1y),

by (5.4) and (5.3). It follows that r,sy = r,ty.
S as a left amenable semigroup has the finite intersection property for right
ideals. So by Theorem 3.9, ¢(S) =1.0

COROLLARY 5.2. Let U and T be two semigroups where U satisfies SFC and
T is left amenable. Suppose p: T — End(U) is a homomorphism satisfying
condition (iii) in Theorem 4.9 and such that p(T) ¢ Inj(U/(R)). Then the
semidirect product S = U X, T is left amenable and ¢(S) = 1; i.e., S does not
satisfy WFC.

Proof. By Theorem 4.9, S is left amenable. O

This corollary gives a large class of counterexamples for Namioka’s prob-
lem.
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Now we consider the conditions under which S satisfies SFC.

Let U and T be two semigroups satisfying SFC, and p: T — End(U) a
homomorphism. Suppose § = U X, T is left amenable, and p(T) C
Inj(U/(R)). Note that those conditions are necessary for S to satisfy SFC by
Proposition 4.5 and Theorem 5.1.

Let (u, a), (v, b) € S, and suppose that there exists (w, c¢) € S, such that
(w, c){u, a) = (w, c){v, b); ie., wp,(u) = wp,(v) and ca = cb. Since U and
T satisfy Sorenson’s condition, there is x € U and d € T, such that

(5.5) p(u)x =p,(v)x and ad=bd.
p(u) ~ p(v) and p(U) C Inj(U/(R)) imply u ~ v. So there exists x; € U

with ux; = vx,. Since S is left amenable, x,U N p,,(U) # @ by Theorem 4.9.
Hence we can find x, € U such that up,,;(x;) = vp, (x;) = vp,(x,), or

(5.6) “Pa(Pd(xz)) = UPb(Pd(xz))-

It follows from (5.5) and (5.6) that

(u, a)(ps(x,), d) = (v, b)(py(x,), d).

Thus we have proved that S satisfies Sorenson’s condition. But S is left
amenable, so we obtain the following result.

LEMMA 5.3. Let U and T be two semigroups satisfying SFC, and let
p: T — End(U)

be a homomorphism. If p(T) C Inj(U/(R)) and condition (iii) of Theorem 4.9
holds for p, then S = U X, T satisfies SFC.

Summing up the above results, we obtain the main theorem of this section.
THEOREM 5.4. Let U and T be two semigroups satisfying SFC, and let
p: T - End(U)

be a homomorphism. Let S = U X, T be the semidirect product. Then the
following are equivalent:

(1) S satisfies SFC.

(2) S satisfies SNFC.

(3) S satisfies WNFC.

(4) S is left amenable and satisfies WFC.

() p(T)< Inj(U/(R)) and Yu € U,Vae T, up,(U) Np,(U) + 2.
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Proof. That (1) = (2) = (3) = (4) follows from the diagram of implica-
tions in §1. Also (4) = (5) is an application of Theorem 4.9 and Theorem 5.1;
(5) = (1) is the above lemma. O

If U and T are cancellative, then p = p and U/(R) = U, also the left
amenability of U and T is equivalent to SFC. By Proposition 4.3, this is a
consequence of each of (1), (2), (3) or (4).

COROLLARY 5.5. Let U and T be two cancellative semigroups, and let
p: T - End(U)

be a homomorphism. Let S = U X ,T be the semidirect product. Then the
following are equivalent:

(1) S satisfies SFC.

(2) S satisfies SNFC.

(3) S satisfies WNFC,

(4) S is left amenable and satisfies WFC.

(5) U and T are left amenable, p(T) C Inj(U), and Yue U, Va e T,
up(U) N py(U) # 9.

Problem 5.6. Is there any left amenable semigroup S such that 0 < ¢(S)
< 17 If not, then all the conditions SFC, SNFC, WNFC and LA + WFC are
equivalent. We know that such an example cannot be finite, or abelian, or left
cancellative, or a semidirect product of those “better” semigroups. Our

Section 3 is in this direction. But we only get a lower bound 1/6 (Corollary
3.2).
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