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FOLNER NUMBERS AND FOLNER TYPE CONDITIONS
FOR AMENABLE SEMIGROUPS

BY

ZHUOCHENG YANG

As well-known, the Folner condition for semigroups does not imply the left
amenability. In 1964, Namioka gave two sufficient conditions of Folner type
for a semigroup to be left amenable. He asked the question whether they are
necessary. In this paper we show that these conditions are not necessary for
left amenability by studying in details the Folner number of a semigroup. We
also prove that for a semidirect product of two semigroups satisfying the
strong Folner condition, the two Namioka-Folner conditions are equivalent to
the strong Folner condition. We answer in this paper a problem of Klawe on
the homomorphic images of a semigroup with the strong Folner condition.
Some general properties of Folner numbers and Folner type conditions are
also studied.

1. Introduction

Let S be a semigroup, and let m(S) be the Banach space of bounded
real-valued functions on S with the supremum norm. A linear functional
tt m(S)* is called a mean if g is positive and Ilgll 1. A mean g is left
invariant if #(f) g(lsf ) for all f m(S) and s S, where lsf m(S) is
defined by (l,f)(st) f(sst), st S. A semigroup is left amenable if it has a
left invariant mean. For general properties of left amenable semigroups, see
Day [3] and [4].
For subsets A, B of S and s S, we define

A B (uvlu A and v B},
sA {sulu A} and As (uslu A).

We denote by A A A, and so on. Xx is used to denote the characteristic
function of A. And if A is finite, then IAI will be its cardinality.

Consider the following Fslner type conditions on S:
(A) There exists a number k, 0 < k < 1, such that for any dements

sx,...,s,, of S (not necessarily distinct), there is a finite subset A of S
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satisfying

1
Ia\sAI < klAI.

i+1

(B) Given any finite subset F of S, and any number e > 0, there exists a
finite subset A of S, such that for each s F, IA \ sa < e lAI.
We call condition (A) the weak Folner condition (WFC) and condition (B),

as in [1] and [8], the strong Folner condition (SFC). When S is a group, Folner
[5] proved that both WFC and SFC are equivalent to the amenability of S.
Frey [6] introduced the condition FC, which is equivalent to SFC when S is
left cancellative (see [1]):

(FC) Given any finite subset F of S, and any number e > 0, there exists a
finite subset A of S, such that for each s F, IsA \A < elA I.

He proved that if S is left amenable, the FC holds, but the converse is not true
(see Namioka [9] for an elegant proof of this fact). In general, SFC is sufficient
for the left amenability (LA) of S (ef. [1], also [9]). However, it is not necessary
(see Klawe [8] for an example). Also WFC is not sufficient for LA (see
Namioka [9] and also see our Theorem 2.3). In 1964, Namioka gave two
sufficient conditions stronger than WFC. We will refer to them as the weak
and strong Namioka-Folner conditions.

(WNFC) There exists a number k, 0 < k < 1, such that for any elements
sx,..., s; s,..., s’ of S, there is a finite subset A of S satisfying

-ff IsA s[A > klA
i+1

(SNFC) There exists a number k, 0 < k < 1/2, such that for any dements
st,..., sn of S, there is a finite subset A of S satisfying

n

i--1

Namioka [9] proved that SNFC implies WNFC and WNFC implies LA. In
fact he showed that if SNFC holds for k then WNFC holds for 1 2k. Also
it is easy to see that if WNFC holds for k, then SNFC(WFC) holds for 1 k.
Namioka [9, p. 26] posted the problem whether those conditions are necessary;
i.e., whether LA implies WNFC or SNFC.
The following diagram summarizes the known implications among the

various Felner-type conditions for a semigroup mentioned above.

SFC = SNFC WNFC =WFC
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We prove in 4 that LA , WFC. This answers negatively Namioka’s
problem (same as what he conjectured). Notice that this also shows that WFC
is not weaker than FC.

Motivated by WFC and SNFC, James Wong [14] defined the Flner
number q0(S) for an arbitrary semigroup S to be the infimum of all numbers
k < 1 such that WFC holds. Clearly (S) < 1 and q(S) < 1/2 correspond to
WFC and SNFC, respectively. Furthermore, tp(S) 0 is equivalent to SFC as
we will show in Proposition 2.1.

In Section 2 of this paper, we investigate some general properties of q0(S)
and competely determine q(S) for all finite semigroups and cancellative
semigroups. In Section 3 we obtain, by some combinatorial computations, two
inequalities for p(S) related to the cancellation behavior of S. One of them is
the main tool to solve Namioka’s problem.

In [8], Klawe studied amenability of the semidirect product of two semi-
groups and she was able to construct a left amenable semigroup not satisfying
SFC. In Section 4, we show that Klawe’s semigroup has Flner number 1,
which answers Namioka’s problem. Then we give some necessary and suffi-
cient conditions for a semidirect product to be left amenable. We also answer
negatively a problem of Klawe [8, p. 102]: whether a homomorphic image of a
semigroup satisfying SFC also satisfies SFC.
The last section of this paper is devoted to the Flner number of a

sernidirect product. We prove by the inequality we obtain in Theorem 3.3 and
3.9 that there is a large collection of semidirect products which are left
amenable and have Felner number 1. We also show that for those sernigroups
the two Namioka-Flner conditions are in fact equivalent to SFC. But the
problem of whether they are always equivalent is still open.

This paper will form part of my thesis under the supervision of Professor
Anthony T. Lau. I am most indebted to Professor Lau for his valuable
suggestions and encouragement.

2. Flner numbers

In this section we give a formula for Felner numbers of finite semigroups
related to the numbers of minimal fight ideals. Then we show that the Folner
number of a cancellative semigroup S is O or I according as S is left amenable
or not.
We follow Wong [14] for the definition of Folner number of a semigroup.

Let S be a semigroup and O < k < 1. We say that S has property (Fk) if for
any st,..., s S (not necessarily distinct), there is a finite (nonempty) subset
A of S such that

-d Ia \ s,a klA
i=1



FOLNER NUMBERS AND FfLNER TYPE CONDITIONS 499

The Folner number of S is defined by

q0(S) inf(kl0 < k < 1 and S has property (F)}.

(S) is well-defined since every semigroup has property (Ft).
By the definition we can see that WFC ** (S) < 1 and SNFC ** p(S) <

1/2. Also it is easy to see that SFC implies (S) 0. Our first result is about
the converse (compare with Wong [14], Theorem 2.2(1)).

PROPOSITION 2.1. Let S be a semigroup. If p(S) O, then S satisfies SFC.

Proof Let F {st,..., s} be any finite subset of S, and e > 0. Since
(S) 0, there exists a finite subset A of S, such that

1
IAs,hl Ihl

Therefore IA \ sAI elAI for all i, 1 < n. El

PROPOSITION 2.2. Let S be a semigroup. If there are n disjoint right ideals
It,..., I in S, then p(S) > (n 1)/n.

Proof. Pick s I for 1,..., n. For any finite subset A of S, the sets

sA are mutually disjoint. So E_ lA sAI < A I. This implies that

1 IA\s,AI > n-1
n

i=1

E3

Tri.omM 2.3. If S is a finite semigroup, then p(S) 1 1/n, where n is
the number of minial right ideals of S.

Proof. By Proposition 2.2, p(S)> 1- 1/n. On the other hand, let
Ix,..., 1 be the n minimal fight ideals of S, and A U’_-xI. Since any two
minimal fight ideals in a finite semigroup have the same cardinality, we have
IAI n I1. For any s S, sA is a fight ideal, so it contains a minimal fight
ideal 1. Thus IA sA > II1 n-Xla I, and

la \ sal (1 1/n)lal.

COROLLARY 2.4. For a finite semigroup S, the following are equivalent:
(1) S is left amenable;
(2) p(S) 0 (S satisfies SFC):
(3) (S) < 1/2 (S satisfies SNFC).
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Proof. A finite semigroup is left amenable if and only if it contains a
unique minimal right ideal (see [11]). E3

COROLLARY 2.5([9]).
left amenable.

There are semigroups which satisfy WFC but are not

COROLLARY 2.6. Let S be a semigroup, h a homomorphism of S onto a finite
semigroup. Then

Proof. If h(S) has n minimal fight ideals, then S admits at least n disjoint
right ideals. By Proposition 2.2, tp(S) > I 1/n (h(S)). r3

It is well known (see [3]) that a homomorphic image of a left amenable
semigroup is also left amenable. It would be desirable if Corollary 2.6 holds
for arbitrary h. Unfortunately, this is not true in general. An example that
(S) 0 but (h(S)) 1 is given in 4.

If G is a group, then q0(G) 0 or I according to G is amenable or not [14,
Theorem 2.2(3)]. This is also true for cancellative semigroups. In other words,
the Folner number of a cancellative semigroup never takes values other than 0
and 1.

THEOREM 2.7. If S is a cancellatioe semigroup, then q(S) 0 or 1 accord-
ing as S is left amenable or not.

Proof. If S is left amenable, then q(S) 0 since now SFC is equivalent to
FC (see [1]).

Suppose S is not left amenable.
Case (i). S has two disjoint fight ideals I and I_. Take s Ix and

s2 19_. stI and stlg_ are disjoint fight ideals contained in Ix. Also s:I and
s9_1 are disjoint fight ideals contained in 12. Thus we have got four disjoint
fight ideals. Inductively, for any positive integer n, we can find 2 disjoint
fight ideals in S. By Proposition 2.2, (S) 1.

Case (ii). Any two fight ideals of S have nonempty intersection. By
Dubreil’s theorem [2, p. 36], S can be embedded into a group G, such that

G (xy-tlx, y - S}.
By a theorem of Frey (See Pier [10, Prop. 23.32]), G is not amenable. Hence
q0(G) 1. Suppose (S) < k < 1, and take xly{, x2y-,..., xy G,
where x, y S. We prove first that there exists an element s S such that
xty{Xs,..., x,y-Xs are all in S. By induction, suppose that there exists
s’ S, such that xy{ts’,..., x,_y_tts S. By the structure of G, yts’
can be written as ab-, where a, b S. Let s s’b. Then

xiy[-Xs (xiY[-s’)b - S for < n 1,

and xy-s xa S.
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Write s xiyi-ts. Notice that ss-1 xy-1 for I < < n. By the assump-
tion (S) < k < 1, there is a finite subset of A of S, such that

n1 IA \ s,AI < klAl.
i=1

It follows that- I(A u A)\x,x-(A u

n

IA u sAl - E I(A usA) n s,s
i--I

n

IA u sAl- - IA n s,AI

1
IA \ sAlIAusAI-IAI+

IA u sAl (1 k)IAl

<- IA U sAI 2 IA u sAI
l+k

2 IAUsAI.

-I(A U sA)I

This means q0(G) < (1 + k)/2 < 1, which contradicts the fact that (G) 1.

COROLLARY 2.8. For a cancellative semigroup S, the following are equiv-
alent:

(i) S is left amenable;
(ii) p(S) 0 (S satisfies SFC);
(iJi) p(S) < 1 (S satisfies WFC).
Let S be a semigroup having the finite intersection property for right ideals;

i.e., any two fight ideals of S have nonempty intersection (e.g. any left
amenable semigroup has this property). We can define an equivalence relation
R on S by

sRt , :Ix S, sx tx.

The set S/(R) of the R-equivalence classes forms a fight cancellative semi-
group--the fight cancellative quotient of S. We refer the readers to [7] for
more details about the semigroup S/(R). Whenever S/(R) exists, S is left
amenable if and only if S/(R) is left amenable [13], and q0(S) 0 if and only
if q(S/(R)) 0 ([1] and [8]).
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THIOIM 2.9. Let S be a semigroup with the finite intersection property for
right ideals. Then p(S) < p(S/(R)).

Proof.
[1].

This follows from the proof of Theorem 4 in Argabright and Wilde

We are unable to prove the equality in Theorem 2.9. This gives rise to the
open problem of whether the strict inequality can hold.

3. Flner number and left cancellation

For a fight cancellative semigroup S, (S)= 0 if and only if S is left
amenable and left cancellative ([1] and [8]). In this section we will see that
(S) really depends on the left cancellativity of S. The first result is how (S)
relates to the size of left cancellative classes.

THEOREM 3.1. Let S be a right cancellative semigroup. If there exist distinct
elements st, s2,..., s2n of S, and r S, such that rs rs2 rs2, then
(S) > 1/3- 1/6n.

Proof. Suppose S has property (Fk) for some k (0,1] (see the beginning
of 2). We are going to prove k > 1/3 1/6n. By (F) we know that there
exists a finite subset A of S such that

(3.1) 3 nla \ ral + Ia \ s,al klal.

Define f: S Z+ by f EixX,ZA, where s-tA S is the set of all x S
such that sx A. Let Wj {a AIf(a) j} for 0 <j < 2n. Let To A
and

Tj. y A lY sia for some a U Wm and {1,..., 2n }
m-j

for j 1,..., 2n. Finally, let Sj Tj \ T.+t, J 0,1,..., 2n- 1 and $2,
T2n.

Since S c (U"_xsw) A, it is not difficult to see that

W.l > j-llsjl for j > 1,
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by the definition of f. Thus we have

(3.2)
2n 2n

Y’. Ia \ s,a > Y’. Ia \ s;
i-1 i=1

2n

2nlal IA c si-xAI
i’-1

2nlAI El(a)
aA

2n 2n

j--0 j=l

2n 2n -j> E (2n -j)l 1 > ISj.I.
j-- j-- J

Also since Tt A UtsiA, SO c A \ siA for all 1,... ,2n. Thus we
have the inequality

2n, IA \ s,A 2nlS0i,
i=1

and hence by (3.2),

(3.3) 1 2n-j
__11a\s,alnls01/y__x J’ ISyl.

Now consider IA \ rAI. We claim that for j > 1,

2n 1(3.4) IrS\ U rs,,I < 71sjI.
m--j+1

Suppose x rSj \ [J2mn=j+ ,rS,. Then there is s Sj with x rs, where s Soa
for some o and a A with f(a) j. Here the equality holds since s Tj+.
Thus there are j distinct s such that sa A. Also those sa are distinct by
fight cancellation of S. Since

21

rs,a rS,oa x q .J rSm rTj+ x,
m---j+1

those sia are all in Sj. Now we have proved that for any x rSj \ 2nUm--j+ rSn,
there are at least j elements s Sj, such that rs- x. This gives (3.4).
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Summing up for j O, 1,..., 2n, we obtain

IrA < IrS01 + - Sj ISol + )-IS.I,
j-- j--

and

(3.5) Iaral Ial lrA 1 ISjI.
j--1

Finally, from (3.1), (3.3) and (3.5),

klA > .,,, nlA \ rA + IA \ s,A

1 ( (1) 1 2n-j )n -)-ISl+nlSol+ j ISl
jl j--1-1( "( 1) ).]---1

j--O

i.e., k > 1/3- 1/6n. El

It can be seen in the proof that for an arbitrary semigroup S, the same result
also holds with the additional condition that sx,..., s2, belong to different
fight cancellative classes. In other words, for any a S, j implies sia sja.

COROLLARY 3.2. For any semigroup S, if cp(S) 0, then cp(S) > 1/6.

Proof. We may assume that S is left amenable. By Lemma 2.1 in [8], there
exist r, s, t S with rs rt but sx tx for any x S. Now our theorem
applies with n 1. C3

If there is a subset in S having a sort of "uniform cancellation property",
we can get a much sharper inequality for (S) which will be used to solve
Namioka’s problem.

THEOREM 3.3. Suppose S is a. right cancellative semigroup. If there exists a

finite subset F in S such that
(i) IFI =n a2,
(ii) Vr, s,t F, rs= rt,
fii) Vrt, r F, Vs, t S, rts rtt ** rs rt,

then p(S) > 1 1/n.
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We divide the proof into some lemmas.

For any positive integer m >_ 2, the set Fm also has properties

Proof (i) Take r F. Then Fm Frm- 1 by (ii). But Frm- 11 n since
S is fight cancellative.

(ii) This follows from the fact that r rmr/.., r, rm for
rx,..., rm, r,..., r’ F.

(iii) For rx rm and r... r, Fm, and s, S, if

rx... rmS rx... rmt,

then

r... r,s rrn-ls rr-Xt r... r,t,

by (iii), since rlrn-s r... rmS rx... rmt rxrn-t, ra
Now let A be a finite subset of S. Given a positive integer m, we define an

equivalence relation -m on A by

S’m t ** ]r Fm, rs rt.

By (iii) it defines an equivalence relation. An equivalence class for the relations
is called a class of level m. Denote by Nm the total number of classes ofm

level m in A. Since s-m s- m+X t, each class of level m + 1 is the
disjoint union of some classes of level m, and IAI > Nx >- Nz >_ Let

1 Ia\rhlkm-’- Z
r.F

LEMMA 3.5. For any (nonempty) finite subset A of S and any real number
> 1, if km < 1, then

6-1(1-kin)2[1- 6 ]IANm- N2m > 9 (l km)n

Proof. Define a function f: S ---) Z+ by f= .rGFmXrA We have 0 < f(s)
< n, and the average of f on A is given by
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Let A

So

{s A If(s) > (1 km)n/ }, and A2 A \At. Then

(1-km)nlA E f(s)
sA

E f(x) + E
s.A s.A

(1 km)n
nlAxl / IAI.

(3.6) 1
IAxl > (1- )(1- k,,)lA{.

Let C be a class of level m. Then for any r F, IrCI 1. Furthermore, if
s -, t and rt, r2 F’, then rts -m r2t, by (ii). Thus (F’. C) A is con-
tained in a single class of level m (maybe empty).

Suppose that there exists s C with f(s) > 0. Then s rA for distinct
rt, r2,..., r/, F’. In other words, there exist f(s) classes Ct, C2,..., C[,
of level m with rC (s). It is easy to see that those C are disjoint. By (ii),
those classes are contained in the same class C of level 2m. For a class C’ of
level m such that (F’. C’) A , C’ C if and only if (F’. C’) A

C. For let t C’ and r F" be such that rtt A, and t2 Ct C.
Then

(F. C’) tq A c C ** rt - C , rt - rt2 r2tt
r2t2 tx 2 t2 C’ c .

This means that the map C C is indepe_ndent of a choice _f s and it is 1-1.
For every class C of level m for which C is defined, let V(C)be the number

of classes of level m contained in C. Then for any r g, rCI V(C). So
Escf(s) < n V(C) by the definition of f, and

(3.7) IC Atl < n. V(() (1 k,)n . V(.)
/ 1- k’,.

If C A , then Is C with f(s) > (1 k,,,)n/& So V(C) > f(s) >
(1 k,,)n/& Thus by (3.7),

(3 8) V() 1 V() 1
Icnal > .v(E)

l-k,,
1 k, (1 1v(E))
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And then from (3.6) and (3.8),

N. N:. E(v((:)
C

> E(V()- llC qA : }

> ElcoAxll-k[c
/ 1 (1 k,,)n

a 1 (1 k,,)n [Axl

a- 1(1_ kin)2[1 a ]>
a2 (l_km)n IAI ra

Proof of Theorem 3.3. Suppose (S) < 1 !,/n. Then WFC holds for
some k < 1 1/n. Choose/ so that 1 < 8 < n (1 k), and an integer so
that

(3.9) 1>
( 1)2(1 k)2[(1 k)n -/2]

+ (1 k)($ 1)"

By WFC, there exists a finite subset A of S such that

1 , IA \rAI klAI.(l 1)n+ 0"---- rF2

Adapting the above notations, we have

1 1
/+1 Ek2’<k’ or /+1 E(1-k2’)>l-k"

iffi0 iffi0

Let K {TIi 0,1,..., 1- 1; 1 k2, > (1 k)/8 }. Then

1
1-k l+ 1

i--0

/+l --o

< 1+1 1+ /i + E (1-kin)
mK

<t+i 1+ a +IKI.
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This and (3.9) imply

Igl l(1-k) -k>
(8 1)(1 k)[(1 k)n 6]

Finally, by Lemma 3.5,

which is a contradiction. This completes the proof of Theorem 3.3.

COROLLARY 3.6. Let S be a right cancellative semigroup. If there exists a

finite subset F of S satisfying conditions (i)-(iii) of Theorem 3.3, then S does not
satisfy SNFC.

COROLLARY 3.7. Let S be a right cancellative semigroup. If there exists a
sequence { F } of finite subsets of S satisfying conditions (ii) and (iJi) of
Theorem 3.3, and Fl - , then S does not satisfy WFC.

lMXa 3.8. The conclusion ,p(S)2 1- 1/n is the best possible. For
consider the semigroup { a,..., a} with the operation aaj a. It is easy to
check that this semigroup, with F equal to itself, satisfies all the conditions of
Theorem 3.3, and ,p(S) 1 1/n by Theorem 2.3.

For later application we need a slightly different form of Theorem 3.3.

THEOREM 3.9. Let S be a semigroup with the finite intersection property for
right ideals. Suppose S has a finite subset F with the following properties:

(i) FI n > 2.
(ii) Vr, s, t F, rs rt.

(iii)’ Vrx, r2 F, Vs, t S, rsRrxt , r2sRr2t.
(iv) Different elements ofF belong to different right cancellatioe classes; i.e.,

r, r2 F, rxRr2 rx r2.
Then q)(S) I -.l/n. (See the last part of 2 for the relation R.)



FOLNER NUMBERS AND FfLNER TYPE CONDITIONS 509

To prove Theorem 3.9, we need to change the equivalence relation m into
defined bym

s t ** lr Fm, rsRrtm

in the proof of Theorem 3.3. All the rest works with little modification.

4. Semidirect products and left amenability

For a semigroup U, we denote by End(U) the semigroup of all endomor-
phisms of U. Similarly, Inj(U) and Sur(U) will be the semigroups of all
injective or surjective endomorphisms of U, respectively. And Aut(U)--
Inj(U) Sur(U).

Let U and T be two semigroups, O a homomorphism of T into End(U).
The sernidirect product of U by T (with respect to p) is the set U T
associated with the multiplication (u, a)(v, b) (uo(v), ab), denoted by
U T. It is also a semigroup.
Maria Klawe [8] initiated the study of semidirect products for amenable

semigroups. For convenience, we collect some of her results here (Propositions
4.1-4.5).

PROPOSITION 4.1. If U and T are right cancellative, so is S U T. If U
and T are left cancellative, then S is left cancellative iff o(T) c lnj(U).

PROPOSITION 4.2. If U and T are left amenable and o(T) c Sur(U), then
S U x T is also left amenable.

PROPOSITION 4.3.
amenable.

If S-- U X T is left amenable, then U and T are left

PROPOSITION 4.4. If U and T satisfy SFC and o(T) c Aut(T), then
S U T also satisfies SFC.

PROPOSITION 4.5.
SFC.

If S U X p T satisfies SFC, then U and T also satisfy

From those results we see that if U and T are two left amenable cancellative
semigroups, #: T --, Sur(U) a homomorphism such that (T) Inj(U), then
S U T is left amenable, fight cancellative, but not left cancellative. So it
does not satisfy SFC (see [8] or our Theorem 3.1). The following example is
given by Klawe.

Example 4.6 [8]. Let U be the free abelian semigroup generated by the
elements { uli O, 1,2,...’}, and T the infinite cyclic semigroup with genera-
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tor a. Define p: T Sur(U) by p,(ui) ui_t if > 1 and p,(Uo) uo. Since
p. Inj(U), the semidirect product S U x p T is left amenable but does not
satisfy SFC.

In the rest part of this section, we will use Klawe’s example 4.6 to solve
Namioka’s problem and Klawe’s problem on the homomorphic image of a
semigroup with SFC. Then we will give some necessary and sufficient condi-
tions for a semidirect product to be left amenable.

PROPOSITION 4.7. There exist left amenable semigroups with FeIner number
equal to 1. So none of SNFC, WNFC or WFC is necessary for a semigroup to
be left amenable.

Proof Klawe’s example S is left amenable and fight cancellative. Let

F {(ut-u-, a)lj 1,..., n },
where uu" is understood to be u n. Then Fn satisfies conditions (i)-(iii) of
Theorem 3.3 with IFn[ n. So q(S) 1. (This also can be obtained directly
from Theorem. 5.1). ra
Klawe [8] asked whether homomorphic images of semigroups satisfying SFC

also satisfy SFC. We now show that Klawe’s example is a homomorphic image
of some semigroup having SFC.

PROPOSITION 4.8. There exists a semigroup X and a homomorphism h from
X such that p(X) 0 and p(h(X)) 1.

Proof. Let Y be the free abelian semigroup generated by { uli Z}, U, T
and p as in 4.6. Define ,: TAut(Y) by %(ui)=u_x, for iZ. Let
X Y x, T. Then q0(X) 0 by Proposition 4.4. Define a homomorphism h’:
Y--. U by

h’(ui) { ui’ > 1;
uo, <0.

Note that h’. *a O, * h’. Now define h" X S U x

h((x, an))=(h’(x),an).
Then

T by

h((x, an)(y, am)) h((x,an(y), an+m>)
(h’(x)h’(%n(y)), a n+m)
(h’(x)p,(h’(y)), an+m>

--(h’(x),an)(h’(y),a m)
h((x, an))h((y, am)).

So h is a homomorphism of X onto $. By Proposition 4.7, q0(S) 1. I2
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Among other properties of S, we point out that any left amenable subsemi-
group of S has Folner number either 0 or 1, and any finite generated left
amenable subsemigroup of S is abelian. The proofs are omitted.
Now we give two necessary and sufficient conditions for a semidirect

product to be left amenable. In the next section we will give necessary and
sufficient conditions for a semidirect product to satisfy SFC.

THOIM 4.9. Let Uand Tbe two left amenable semigroups, p" T --* End(U)
a homomorphism. Then the following are equivalent:

(i) S U T is left amenable;
(ii) S U x T has the finite intersection property for rights ideals;
(iii) Vu U, Va T, UPa(U) Pa(U) .
Proof. (i) =, (ii). This is a well-known fact (see [7]).
(ii) (’tii). Take u e U, a e T. By (ii), (u, a)S (po(u), a)S, . This

implies that UPa(U) p,(U)Pa(U) up,(U)
(iii) (i). For each a e T, define a linear operator Po on m(U) by

Pog(u) g(po(u)) for g e re(U) and u U. Each Po induces a dual oper-
ator P* on m(U)* given by P*p(g) k(Pag) for k e re(U)* and g e m(U).
Obviously when k is a mean on rn(U), P*k is also a mean on m(U).
Suppose k is a left invariant mean in m(U), o U. By (iii), there are
x, y e U, such that vpo(x) p(y). We have

Pa*q,, ( log )

Thus Pa*k is also a left invadant mean. As in the proof of [8, Lcmma 3.3 and
Prop. 3.4], the map a--) P*-is a representation of T in the set of linear
mappings on the set ML(U) of all left invariant means on m(U). Since
ML(U) is w*-compact and convex, by the fixed point theorem [4, Theorem
6.1] there exists )e ML(U)_with Pa*k
m(S) define ]e m(T) by f(a)= k(f), where fa e m(U) is defined as
f(u) f(u, a). Choose v e ML(T) and define/t e m(S)* by/x(F) v(]).
It follows by routine computation that/t is a left invariant mean on S (see [8,
Prop. 3.4]). So S is left amenable.

COROLLARY 4.10. Let U and T be two left amenable semigroups, p: T-,

End(U) a homomorphism. Iffor any a T, Pa(U) contains a right ideal of U,
then S U x T is left amenable.

Proof. Take u e U and a e T. Since p(U) contains a fight ideal, UPa(U)
also contains a fight ideal. U as a left amenable semigroup has the finite
intersection property for fight ideals. Therefore up(U) Pa(U) . [3
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Examples 4.11. We give some applications of Theorem 4.9 and Corollary
4.10.

(i) Let U { q Q Iq > 1} with the usual addition. T (r Q Ir > 1}
with the usual multiplication. T acts on U in the way that p(q) rq, r T, q

U. Since for any r T, o,(U)= {q UIq > r) is an ideal in U, by
Corollary 4.10, S U x T is left amenable.

(ii) Let Q/ be the set of nonnegative rationals, Z+ that of integers, with
the usual addition. Let U Q+ Z+, T the infinite cyclic semigroup gener-
ated by a. Define p((r, n)) r + n, n). Then Pa(U) does not contain any
ideal of U. But by Theorem 4.9, S U x T is still left amenable.

5. Semidirect products and Felner type conditions

For left cancellative semigroups, finite semigroups, and abelian semigroups,
SFC, SNFC and WNFC are all equivalent (to the left amenability). It is
natural to ask whether these conditions are equivalent in general. In this
section we will prove that for a semidirect product of two semigroups
satisfying SFC, they are equivalent (to LA + WFC).

If a semigroup S has the finite intersection property for fight ideals and its
fight cancellative quotient semigroup S/(R) is left cancellative, we say S
satisfies Sorenson’s condition. See [12] for Sorenson’s conjecture. It is known
that S satisfies SFC if and only if S is left amenable and satisfies Sorenson’s
condition (of. [1] and [8]).

Let U be a semigroup with the finite intersection property for fight ideals,
and h End(U). Since sRt implies h (s)Rh (t), h can be reduced to

End(U/(R)),

defined by (g) h(s) And for hx, h 2 End(U), 1 * 2 hi o h 2. If
p: T End(U) is a homomorphism from another semigroup T into End(U),
then we can define "#: T End(U/(R)) by a Pa" is also a homomor-
phism.

THEOREM 5.1. Let U and T be two semigroups where U satisfies Sorenson’s
condition. Suppose p" T - End(U) is a homomorphism such that

(T) Inj(U/(R)).

Then the semidirect product S U x p T is either not left amenable or p(S) 1.
In both cases S does not satisfy WNFC.

Proof. For convenience we write for the fight cancellative relation R
on U. Sorenson’s condition implies that Vu, v, w U, wu wv u v.
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Assume that S is left amenable and (T) Inj(U/(R)). Then there exists
a T and u, o U such that u - o but Oo(u) Oo(v).
We claim that for any positive integer n, there are two elements u, v U

such that po,-(u) - P,,,-x(o) but
Take w U with po(u)w po(v)w. Since S is left amenable, by Theorem

4.9, wU Oa(U) 4: . Choose w’ U with Oa(W’) wU. Then Oo(uw’)=
po(vw’), and uw’ - ow’, since u * v. Let u uw’ and o vw’.

Suppose n > 2. Again since S is left amenable,

W/!Therefore UlPan-l(U) ("1 VlPan-x(U ) . Choose w’, U so that

(5.1) u 0o.- (w’) o 0o.- (w").

Since ut * vt, [an-t(W t) * Oan-.(Wtt). Applying Oa to both sides of (5.1), we
get Pa(Ut)Pa.(W’)= Pa(Vt)Pa.(W")= Pa(Ut)#a.(W"). Sorenson’s condition on
U gives that Oa.(W’)- p,,.(w"). By the same argument as in the previous
paragraph, we can find w U, with pa.(W’W)= O,,.(W"W), and also
pa.-(w’w) "," pa.-(w"w). Let u. w’w and v. w"w.

Let

F. ((wtw2... w,,, a") Slw u or vi).

Then F, satisfies conditions (i), (ii), (iii)’ and (iv) in Theorem 3.9 with

F=I 2=, as we will show.
(i) and (iv). We prove by induction that any two different words wxw2..- w,

are not in the same right cancellative class of U. This implies (i) and (iv).
Suppose this is true for n k 1 > 1. Let

F: (ww_... Wk_tUklW U or vi},

and

F’ (wtw2... Wk_lVklW U or vi).

By the induction hypothesis and the fact that ac bc = a b, each set F[ or

Fk" satisfies our requirement. Let wt Wk_xUk F{ and w W’k_xVk
Fk". If they are in the same fight cancellative class, then
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Since U satisfies Sorenson’s condition, we have

This contradicts to our choice for uk and vk.
(ii) This follows from the fact that

w.)

(iii)’ For s S, write s (Pt(s), P2(s)). Suppose rt, r2 F, and s, S
are such that there exists x S, r2sx rttx. Equivalently we have

and

(5.3) a "P2 (sx) a "P2 (tx),

by the definition of semidirect products. By Sorenson’s condition, there exists
w U such that pa(PI(sX))W pa(Pl(tX))w. Theorem 4.9 gives

wU c ,ae<,)(U) * .
Thus there exists w’ U such that

(5.4) Oan(Pl(SX))anP2(sx)(Wt) [an(Pl(tX))anP2(tx)(W’),

since a"P2(sx) a"P2(tx). Let y x(w’, a). Then it is easy to check that

[3an(Pl(Sy)) )an(Pl(ly)) and anP2(sy) a"Pz(ty),

by (5.4) and (5.3). It follows that r2sy r2ty.
S as a left amenable semigroup has the finite intersection property for right

ideals. So by Theorem 3.9, q(S) 1. r3

COROLLARY 5.2. Let U and T be two semigroups where U satisfies SFC and
T is left amenable. Suppose p: T End(U) is a homomorphism satisfying
condition (iii) in Theorem 4.9 and such that (T) Inj(U/(R)). Then the
semidirect product S U x T is left amenable and tp(S) 1; i.e., S does not
satisfy WFC.

Proof. By Theorem 4.9, S is left amenable.

This corollary gives a large class of counterexamples for Namioka’s prob-
lem.
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Now we consider the conditions under which S satisfies SFC.
Let U and T be two semigroups satisfying SFC, and 0: T End(U) a

homomorphism. Suppose S U T is left amenable, and (T)c
Inj(U/(R)). Note that those conditions are necessary for S to satisfy SFC by
Proposition 4.5 and Theorem 5.1.

Let < u, a), < v, b) S, and suppose that there exists <w, c) S, such that
w, c)u, a) <w, c)<v, b); i.e., wo(u) wo(v) and ca cb. Since U and
T satisfy Sorenson’s condition, there is x U and d T, such that

(5.5) Oc(U)X Oc(V)X and ad bd.

p(u)- Pc(V) and (U)c Inj(U/(R)) imply u- v. So there exists X U
with uxt vxt. Since S is left amenable, xtU pad(U) J by Theorem 4.9.
Hence we can find xz U such that Upaa(X2) vp=a(x) VPbd(X), or

(5.6)

It follows from (5.5) and (5.6) that

(u, a)(#a(x2), d) (v, b)(#a(x2), d).

Thus we have proved that S satisfies Sorenson’s condition. But S is left
amenable, so we obtain the following result.

LEMM 5.3. Let U and T be two semigroups satisfying SFC, and let

p" T--} End(U)

be a homomorphism. If (T) c Inj(U/(R)) and condition (iii) of Theorem 4.9
holds for p, then S U p T satisfies SFC.

Summing up the above results, we obtain the main theorem of this section.

THEOREM 5.4. Let U and T be two semigroups satisfying SFC, and let

p" T End(U)

be a homomorphism. Let S U p T be the semidirect product. Then the
following are equivalent:

(1) S satisfies SFC.
(2) S satisfies SNFC.
(3) S satisfies WNFC.
(4) S is left amenable and satisfies WFC.
(5) (T) c Inj(U/(R)) and Vu U, Va T, ttPa(U) N Pa(U) : .
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Proof. That (1) (2) = (3) (4) follows from the diagram of implica-
tions in {}1. Also (4) = (5) is an application of Theorem 4.9 and Theorem 5.1;
(5) = (1) is the above lemma, t

If U and T are cancellative, then =p and U/(R)= U, also the left
amenability of U and T is equivalent to SFC. By Proposition 4.3, this is a
consequence of each of (1), (2), (3) or (4).

COROLLARY 5.5. Let U and T be two cancellative semigroups, and let

End(U)

be a homomorphism. Let S Ifp T be the semidirect product. Then the
following are equivalent:

(1) S satisfies SFC.
(2) S satisfies SNFC.
(3) S satisfies WNFC.
(4) S is left amenable and satisfies WFC.
(5) U and T are left amenable, o(T) c Inj(U), and Vu U, Va T,

UPa(U) (") Pa(U) * JJ.

Problem 5.6. Is there any left amenable semigroup S such that 0 < p(S)
< 1? If not, then all the conditions SFC, SNFC, WNFC and LA + WFC are
equivalent. We know that such an example cannot be finite, or abelian, or left
cancellative, or a semidirect product of those "better" semigroups. Our
Section 3 is in this direction. But we only get a lower bound 1/6 (Corollary
3.2).
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