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CHARACTERIZING HILBERT SPACE FRAMES
WITH THE SUBFRAME PROPERTY

PETER G. CASAZZA

1. Introduction

A sequence (3] )i= in a Hilbert space H which is a frame for its closed linear span
is called aframe sequence. If every subsequence of ()i= is a frame sequence, we
say that the frame has the subframe property. If (3]) is a frame for H with the
subframe property and additionally there are uniform upper and lower frame bounds
for all subsequences of the frame, then we call (jS)i= a Rieszframe. Riesz frames
were introduced in [6] where it was shown that every Riesz frame for H contains a
subset which is a Riesz basis for H. The projection methods [4] play a central role
in evaluating truncation error which arises in computing approximate solutions to
moment problems, as well as handling the very difficult problem of computing dual
frames. There were many natural questions arising from the literature concerning
the interrelationships between Riesz frames, frames with the subframe property, and
the projection methods [2], [4], [5], [6], [8]. In this paper we characterize Riesz
frames and frames with the subframe property which allows us to answer most of
these questions.

2. Riesz frames

If .T is a subset of H, we write span .T for the closed linear span of.T. A sequence
(jS)i= in H is called aframe for H if there are positive constants A, B satisfying

(2.1) Allfll 2 _< I(f, fi)l2 _< Bllfll 2, Vf H.
i=1

We call A, B the lower and upper frame bounds respectively. In general, a subset
of a frame need not be a frame for its closed linear span. But clearly B is an upper
frame bound for every subset of the frame (i.e. It is only the lower frame bound that
might be lost when switching to a subset of a frame). For a Riesz frame, the common
frame bounds for all subsets of the frame will be called the Rieszframe bounds. The
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largest A and the smallest B satisfying (2.1) are called the optimal frame bounds.
An unconditional basis (f/)it for H is called a Riesz basis. Equivalently, (f/)it is
a Riesz basis if it is total and there are constants c, C so that for every sequence of
scalars (ai)il we have

(2.2) c ,ai < il aifill < Cil12-

The largest c and the smallest C satisfying (2.2) are called the Riesz basis constants for
(f/)iet. If (fi)it is a Riesz basis, then [7] the Riesz basis constants equal the square
root of the optimal frame bounds. Finally, we say that two frames (J)i=l’
are equivalent if there is an isomorphism T H H with T(3) gi, for all
i=1,2
We start with an elementary observation concerning Riesz frames.

PROPOSITION 2.1. For aframe (fi)i-_ for H, thefollowing are equivalent:
(1) (fi)i=l is a Rieszframe.
(2) There is an A > 0 so thatfor every finite set ofnatural numbers A for which

(j)ia is linearly independent, thefamily (3)iea has lower Riesz basis bound A.

Proof. = If (fi)iea is linearly independent, then the lower Riesz basis constant
for this set equals the square root of the lower Riesz frame bound.

= It is only the lower frame bound that needs to be checked. For any finite set
of natural numbers F, let (f/)ia be a maximal linearly independent subset, where
A C F. Then the lower frame bound of (f/)ier is greater than or equal to the lower
frame bound of (fi)ia which is equal to the square root of the lower Riesz basis
constant, ,/. So ()i__ is a Riesz frame.

This remark yields a short proof of a result of Christensen [6].

COROLLARY 2.2 (CHRISTENSEN). Every Rieszframe contains a Riesz basis.

Proof. Choose a maximal linearly independent subset of the frame. This is a
Riesz basis, by Proposition 2.1.

We now introduce some of the notation which will be used throughout the paper.
If (gi)il is a Riesz basis for H, and A C I, we let Pzx be the natural projection
of span(gi)it onto span(gi)iA. That is, PA -,it aigi )---iA aigi. We will also
write Pn PI,2 hi, and for m < n, Pn,m Pn Pm. If (3)it is a frame with
frame bounds A, B, and P is an orthogonal projection on H, then (Pfi)il is a frame
sequence with frame bounds A, B. Conversely, if (f/)it (respectively, (gj)jr) is a
frame for P(H) (respectively (I P)(H)) with frame bounds A, B (respectively,
A_, B2), then ((fi)it, (gj)jr) is a frame for H with frame bounds

A min A 1, A2 }, B max{B, B2 }.
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We will make extensive use of a slight extension of these properties which we now
state.

PROPOSITION 2.3. Let (f/ )i=1 be a sequence in H with upperframe bound B.
Let A be a subset ofthe natural numbers and P denote the orthogonal projection of
H onto span(3) eA.

(1) If (fi)ieA is aframe withframe bounds Al, B, and ((I P) fi)ieAC is aframe
sequence withframe bounds A2, B, then (f/)=l is aframefor H withframe bounds
AiA% B8B

(2) If (fi)iO=l is aframe withframe bounds A, B then ((I P)fi)iAc is aframe
sequence withframe bounds A, B.

Proof. (1) For any f 6 H we have

i=1 iA iA

I(Pf, 3)12 +

_
[(Pf, Pfi} + ((I Plf, (I P)f/)l2

iA i6.A

> AIlIPfll2

2

"- [iAc’((l-- e)f’ (I-- P)fi)12--iAcl(Pf’ efi)[21
>_ AllPfll2 4- I1(I- P)fll- VrllPfll

Now, there are two possibilities.

Case l. IIPfll2> allfll2 In this case, inequality (2.3) and the fact that -a-z <
8B B

immediately yields
oo AI A2 2[(f, f/)12 > Ilfll8B
i=l

Case II. Pf 112 < A2 f 1128B
In this case, since _4z <

8B , we have II(l- P)fll 2 > 1/2. This combined with
inequality (2.3) yields

I(f, J)l2

i=l

A2 A2 A2 2 A1A2_> Ilfll- Ilfll --ff-Ilfll >
8B
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(2) By our assumptions, (I P)H span((/ P)f/)ieAc. So for any f
(I-P)H,

AIIfll 2 -< 2 [(f’ f/)12 2 ](f’ (I p)f/)[2.
i=1 i.A

We next give a (slightly internal) classification of Riesz frames which is of some
interest itself, and will be important later for our classification of frames with the
subframe property.

THEOREM 2.4. Thefollowing are equivalentfor aframe (f/)i=l.

(fi)i--_ is a Rieszframe.
(2) (f/)icX=l can be divided into two subsets, (gi)=l, (hi)ir such that

(i) o(gi)i=l is a Riesz basisfor H and

(ii) there is an Ao > 0 so thatfor each subset A of the natural numbers,
and FI C F, the set (Pzxhi)ir is aframe sequence with lowerframe
bound Ao.

Moreover, in this case, if A, B are the Riesz frame bounds for (f/)i=, then there
is natural number k so that we can write hi -jA, hi(j)gj, with IAil < k, and

A2 < Ihi(j)l <_ B2, Yj Ai.

Proof. (1) = (2). Since (f/)i=l is a Riesz frame, by Corollary 2.2, it contains
a Riesz basis, say (gi)iC=l Let (hi)iF be the remaining elements of the frame,
and assume that A, B are the Riesz frame bounds for (f/)i=. It suffices to prove the
theorem for any frame equivalent to our frame. So, by taking the natural isomorphism
of (gi)i=l to an orthonormal basis for H, we may assume, without loss of generality,
that (gi)i=l is an orthonormal basis for H. However, the Riesz frame bounds have to
be adjusted by the norm of the isomorphism to A2, B2. If A, F be as in (2)(ii), then
((gi)ieAc, (hi)ir,) is a frame sequence with frame bounds A2, B2, and (gi)=l is an
orthonormal basis. If PA is the natural projection of H onto (gi)i/, then I Pzx
Pzx. By Proposition 2.3(2), (Pahi)ir is a frame sequence with frame bounds A2, B2.
This concludes the proof that (1) implies (2). To check the "moreover" part, write

hi -jai hi(j)gj, where hi(j) O, for j Ai. For any 1, 2 and any
j Ai, consider the subset F {hi} U {gm j rn Ai }. Then gj span F and
this set has frame bounds A2, B2 implies

(2.4)
jmGAi

I(gm, gj)l2 q-I(hi, gj)l2 Ihi(j)l 2 > A2.
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Also,

(2.5) Ihi(j)l2 <_ Ilhill 2 _< B2.
Since sup_<i< f < , the existence of k is now immediate from (2.4) and (2.5).

(2) = (1). Let ()= ((gi)i=l, (hi)ir) be a sequence of vectors in H
satisfying (2). Again we can start by taking the natural isomorphism of (gi)i=l onto an
orthonormal basis (ei)il. This will change the A0 in (2)(ii) to say A. Letting A equal
the natural numbers and l"l F in (2)(ii), we see that (hi)ir is a frame with frame
bounds A, B. So ( o)i=l has a finite upper frame bound 1 + B. Choose a subset of
our set of vectors of the form ((gi)iA, (hi)ir2). Let l"l {i E 1"2 PAhi 5k 0}. By
our assumption (2)(ii), (PAchi)ir has lower frame bound A. Applying Proposition
2.3 (2) (recall that (gi)i=l is an orthonormal basis) we have that (JS)i has lower
frame bound -. So (fi)il is a Riesz frame.

Let us recall some notation. If (sS)i= is a basis for its span, we say that a sequence
(gi)l is disjointly supported with respect to (f/)i if there exists a disjoint family
of subsets of the natural numbers (Ai )i-- so that

gi - span()jA,, i.

That is, the supports of the gi, relative to the basis (jS)i= are disjoint.
Theorem 2.4 shows that Riesz frames have a somewhat exact form. The next

corollary gives a further restriction on Riesz frames.

COROLLARY 2.5. Every Rieszframefor H is equivalent to one oftheform

((ei) k
i--l, (fij)i-_i,j-_l)

where (el )i= is a orthonormal basisfor H,for each 1 < < k, (fi,j)jffi is disjoin@
supported with respect to (ei o)i=, and the non-zero coordinates (with respect to the
orthonormal basis (el)) satisfy A < IjS,j(n)l _< B for some A, B > O, and there is a
natural number K so that

I{n" fi,j(n) # O}l < K.

Proof. Let B0 be the upper Riesz frame bound for (3 o)i=1’ and choose a natural
number K so that - (B)2 > Bo. Basically, we will apply the pigeonhole principle
to (hi) in Theorem 4.4 to divide it into at most K-sets, G1, G2 Gr where the
hi in Gj are disjointly supported. We start by putting h into G1. If h2 has disjoint
support from h l, put it also into G l, otherwise, put it in G2. We continue by induction.
Assume that hi, h2 h,, have been distributed into the sets so that the elements
of each set are disjointly supported. If hn+l is disjoint from all the elements of
put it in G l. If not, go to G2 and so on. If we reach set Gx, then by assumption,
hn+l has a non-zero coordinate in common with at least one element from each of the
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sets G, G2 GK-I. But, by Theorem 4.4, hn+ has only k non-zero coordinates.
Hence, hn+l has a fixed non-zero coordinate, say m, in common with of the hi.
Hence,

K
I(em, hi)l2 >_ --(B)2 > Bo,

which is a contradiction. Thus, hn+l must go into at least one of the sets.

The next corollary shows that Corollary 2.5 comes close to classifying Riesz frames
(all we are missing in Corollary 2.5 is condition (2) of Corollary 2.6).

COROLLARY 2.6. Let A, B > 0, and K be a natural number Let o(ei)i=l be an
k oorthonormal basisfor H, and (J)i=l,j= be vectors in H satisfying:

(1) The non-zero coordinates of fi,j (with respect to the orthonormal basis (el))
satisfy

(i) A < If,y(n)l2 <_ B and

(ii) I{n" f,j(n) #-0}1 < g.

(2) Span(fij)j= C span(3_,j)j, 2 < < k,
(3) Each (f/J)j%l is a disjointly supported sequence with respect to (fi-,j)j

(with fo, gj, for all j 1, 2 ).

Then ((ei)iC=l (fij)ik=i,j=l) is a Rieszframefor H with Rieszframe bounds

Dk8k kI-Ii=l(1 4-iD)
14-kD,

where D r___
A

Proof. We will do the proof in three steps.

Step I. A calculation.

Let A be a subset of the natural numbers and PA denote the natural projection
of H onto span(ei)iA. By deleting the f/,j with support in A and reindexing, we
may assume that Pac fi,j 0, for all < < k, and j 1, 2 We will work
with the family ((ei)ia, (,j)i_,=). Fix 2 < i0 < k and note that (PAcfio,j)
is an orthogonal sequence in H with A < IIf0, 2 <- KB. By taking the natural
isomorphism

T(Pac fio,j)
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we have that < T -. For i0 < < k, let gi,j T(PAc 3,j)" It follows
that:

(2.6) (gio,j)jC=l is an orthonormal basis for its closed linear span.

(2.7) Span(gi,j )j__l C span(gi_l,j )j=.

(2.8) Each (gi,j)j is a disjointly supported sequence with respect to (gi_l,j)i__l

For all i0 <_ < k, we can choose subsets of the natural numbers Ai,j SO that

(2.9) gi,j E am fl,m, am # O, Ym
_

Ai,j.
mEAio,j

By our assumption (1)(i), the non-zero coordinates of PAc jS,j (relative to the Riesz
basis (ei)i=l) satisfy

(2.10)

Therefore,

(2.11)

By (2.9) and (2.11) we have

A < IPAc3,j(n)l2 < B.

A KB<-,,12 <
KB- A

(2.12)
A 12 KB

< lamf,m(n) <
KB- A

Combining (2.11) and (2.12) we have

A KB
< laml <(2.13)

D KB A
=D.

It follows that for 2 < i0 < < k, and for every j, the non-zero coordinates gi,j(m)
(these denote the coordinates of gi,j with respect to the orthonormal basis (gio,j)j=l)
satisfy

1
< Igi,j(m)[ < D,(2.14)

D
Also, note that the number of these non-zero coordinates is still < K.
We will prove the corollary by induction on k with the hypotheses of the corollary

except that we will assume that our family satisfies (2.14) and replacing A, B in
assumption (1)(i) by 5, D respectively.

Step H. Starting the induction, i.e. The case k 1.
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Since (ei oo)i=l is an orthonormal basis for H, the (fl,j)j=l are disjointly supported,

and 5 < II/1, _< D, itfollowsthat(fl,j)jl has Riesz basis constants ./-, and
)i=l, (fl,j)_-l) has upper frame bound <_ + D.hence frame bounds 5, D. So ((el c

Let ((ei)izx, (fl,)jr) be a subset of our set of vectors. Let PA be the natural
projection of H onto span(gi)ia, and let

A {j . I: Pacfl,j 0}.

Now, Pafl,j fl,j, for all j F A. So ((ei)iea, (fl,j)jr-^) is a frame with
frame bounds 1, 1 + D. Now, (Pcfl,j)je^ is a disjointly supported sequence of
vectors with respect to (ei)ia for which: 5 < IIef,jll2 <- D. Hence, this is a

Riesz basis with constants 1, and lower frame bound A5" By Proposition 2.3

(1), it follows that ((ei)ia (fl,j)jr) is a frame with frame bounds 1 + D.D8(I+D)
So our family is a Riesz frame with the bounds specified in the corollary.

Step IlL The induction step.

Assume the result holds for some k 1, and we will prove that it holds for k.
kChoose a subfamily of our set given by ((ei)i/, (3,j)i=l,ja,). For each 1 < < k,

(3,y)% is an orthogonal sequence satisfying 5 < f,y 2 <_ D, and so this family has
upperframe bound D. Hence, ((ei)iezx, (3, k oJ)i=1,j= 1) has upper frame bound 1 + kD.
Since (ei)iA is an orthonormal sequence, ((ei)iA (PA k ooA,J)i= l,j= has frame bounds
1, 1 + kD. So, without loss of generality, we may assume that PAC fi,j 0, for all
j Ai. Let i0 1 in Step I to obtain the corresponding gi,j. By Step I, we can apply

oo k oothe induction hypothesis to the family ((g1,j )j= 1, (gi,j)i=2,j= to discover that this is
a Riesz frame with Riesz frame bounds

1
(2.15)

Dk-18k-I Hi=lk-I (1 + D)
+ (k- 1)D.

That is, (TPzxcfi,j)ikl,jzx) is a frame with frame bounds given by (2.15). There-
fore, (Pzx 3,y)ikl,jA) is a frame with lower frame bound

1
k-IDk8k-1 l-’[i=l (1 -- D)

Applying Proposition 2.3 (1), we see that ((ei)i,a, (fi,j)ik=l,jzx) is a frame with
frame bounds

l+kD.
Dk8k I-I=l (1 -t-iO)

This proves that our original family is a Riesz frame with the stated frame bounds,
and concludes the proof of corollary 2.6
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3. Characterizing frames with the subframe property

In this section we characterize offrames having the subframe property. To simplify
the proof of the theorem, we first make an elementary observation.

LEMMA 3.1. If (fi)i= is aframefor H, G is afinite dimensional subspace ofH
and P is the orthogonal projection ofH onto G, then

i=1

Proof Let {el, e2 en be an orthonormal basis for G. Then

i=1 i=1 j--1 i=1 j=l

I(J, ej)l 2 I(J, ej)l2 <_ Bl[ejll 2 nB.
i--1 j=l j=l i=1 j=l

Now we are ready to prove the main theorem of this paper.

THEOREM 3.2. For aframe ()i=l thefollowing are equivalent:

(1) (f iO=l has the subframe property.
(2) The frame o(f/)i=l can be divided into three sets of vectors, (gi)il, (hi)ir,

(ki)i= where F may be finite or infinite, on (gi)i=l is a Riesz basis for H, and
there is a natural number m so that ifG span(gi)im=l then hi is oftheform
hi h d- hEi with h2i E G, h G+/- and such that

(i) the ki have infinite support,

(ii) -ir IIh/2ll 2 < cx:, and

(iii) ((gi)il, (h)ier) is a Rieszframefor H.

Proof. (1) = (2). By Casazza, Christensen [3], (J)i=l contains a Riesz basis,
say (gi o)i=1. To simplify the proof, we take the natural isomorphism of (gi o)i= to an
orthonormal basis (ei)= and see that, without loss of generality, we may assume
that o(gi)i=l is an orthonormal basis for H. Let (ki)iA be the elements of (J)i with
infinite support with respect to (gi)=l, and let (hi)ir be the remaining elements of
the frame (i.e., The elements of the frame which are not one of the gi and which have
finite support). We can write

hi hi(j)gj,
ji

where 1[2i1 < oo, and hi(j) 5 O, Yj "i.
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Step I. IAI

We proceed by way of contradiction. So assume we have infinitely many infinitely
ksupported vectors i)i=. We must construct a subset of our frame which is not a

frame for its closed linear span. To do this, we apply an inductive construction to the
two conditions below:

Ilki 2 Iki(j)l 2

j’-I

<oo, i 1,2,...,

I(ki, gj)l 2 y Iki(j)l 2 < B, Vj 1, 2,....
i=1 i=1

By alternately applying these two conditions and induction, we can find sequences
of natural numbers i < i2 < i3 <... and j < j2 < j3 <"" so that

(3.1) 0<ylkin(jm)l2 <--, Ym 1,2,3
rn

n=l

We will sketch the beginning of this induction proof. From the first condition, we
can choose a i 1, jl so that

0 < Iki,(jll 2 < .
The second condition allows us to switch to a subsequence of (k )i=l, starting with

ki, (call it (ki)=,) so that

o

Ikn(j)l2 < -.
n=i+l

Now, using the first condition, we can find a natural numberm so that Iki, (j)l 2 < (-)2,
for all j > m. Choose any i2 > l. Since ki2 is infinitely supported, there is some
j2 > j so that

0 =/:: ]ki2(J2)l2 <
(3)(2)

By condition 2 again, we can choose an i2 > i and a subset of the o(ki)i=i, (denote it
(ki,, ki2, ki2+l, ki2+2 ))) SO that

Ikn (j2 12 <
n=i2+l

(3)(2)
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Now choose any i3 > i2 and a natural number rn so that

2. Iki. (j)l2 <
n=l (3)(3)

Yj>m.

Again, since ki3 is infinitely supported, there is some j3 > j2 so that

0
(3)(3)

and by switching to a subsequence of (ki) we may assume that, Ikn(j2)l2 <
n=i3+l

(3)(3)

Now continue this construction by induction.
Finally, let A {jm m 1, 2, 3 }c and consider the subframe of our frame

given by: ((gi)ih, (ki. ),,=1)" Now, gjm is in the span of our frame for each m
l, 2, 3 But, by inequality 3.1,, I(ki.gj.)l2 _, Iki.(jm)l2 < IIg. II.

i=1 n=l

So this set is not a frame for its span. This contradiction completes the proof of step
I.

Step H. There is a natural number m and numbers A, B > 0 so that Yj ’i,
with j > m, we have

A < Ihi(j)l < B.

To obtain the m, and the lower bound for Ihi(j)l, we proceed by way of con-
tradiction. If there is no such m or A, then choose natural numbers i, j so that
0 < Ihi, (j)l < 1. Since hi, is finitely supported and for all n supp hi, we have

Ihi(n)l2 <

it follows that there are natural numbers i2 > il, and j2 > j with
(1) j2 > max{supp hi, (so hi (j2) 0),
(2) 0 < [hi2(J2)[ < 5’
(3) Ihi(jl)l _< 5.
Continuing by induction, we can find natural numbers i < i2 < i3 < and

j < j2 < j3 <"-so that
(4) hi. (jrn) 0, for all m > n,
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(5) 0 < Ihin(Jn)l < -if,
Im<n.(6) Ihin(jm)l < ,

Let Ac {ji 1, 2, 3,. ..}, and consider the subset of the frame (f/)i=o
consisting of the elements, ((gi)i/, (hin)n=l) Let Pzx be the natural orthogonal
projection of H onto span(gi)i/. Note that (4)-(6) imply span(gjk)k= span((/--
Pa)hin)n=l. By our assumption for this direction ofthe theorem, ((gi)iA, (hin)n=l) is
a frame sequence. By Proposition 2.3 (2), ((! PA)hin o)n= is also a frame sequence.
Now, for all n 1, 2, 3 we have

n

(I eA)hin

_
hin (jm)gjm

m=l

But,

inf- I((l PA)hin, gjm)l 2 inf- Ihin(jm)l 2 inf-m m m
n=l n=l n--m

h is a frame for span(gjm)m._l Thiswhich contradicts the fact that ((I PA) in )n--
concludes the proof of step II.

Recall that Pm denotes the natural (orthogonal) projection of H onto span(g/)im__,
and for rn < n, Pm,n P Pm-1.

Step IlL There is a naturalnumbermo > m so that (gi i=m0+l’ ((l-Pmo)hi)ir)
is a Rieszframe.

We prove Step III by way of contradiction. If no such m0 exists, given m as in
Step II, there are finite sets of natural numbers 1-’l and A C {n n > rn + and a
vector f span{(gi)izx,, ((I Pm)hi)ir} satisfying

I(f, gi)l2 -t- I(f, (I Pm)hi)l2 < 1.

Let e max{n n e A 1U Uil- supp(l Pm)hi}. By Step II, there are only a finite
number of hi whose supports intersect {m + l, m + 2 el }. Since each hi has
finite support, there is a natural number m < m so that (I Pm)hi 0, implies
Pm,ehi O. This fact and our assumption that Step III fails, implies the existence
of finite sets of natural numbers F2 C I"l c and A2 C {n n >_ m} and a vector f2
satisfying

hj or_ span{ rn(gn)n=m,+l, (gn)n=l}, /j r’2,

f2 - span{(gn)ne:, (l Pm,+l)hi)isr}, IIf211 1,
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i.A2 iEF2

2

Continuing by induction, there exist natural numbers m0 m < m < m2 <
and finite subsets of the natural numbers Ai and Fi, and vectors 3 satisfying

(3.2) Ai C {mi-1 d- 1, mi-1 - 2 mi},

(3.3) hj . span{ mi rn(gn)n=mi_,+l, (gi)i=l}, Vj . Fi,

(3.4) span{(gn),,EA,, (Pmi_,mihj)j.Fi},

(3.5) Ilfi l,

(3.6) I(f/, gj)l2 + I(fi, em,_,,mihj)l2 <
j-Ai j-Pi

Next, let A I,.Ji= A t_J 1, 2, 3 m} and q I,.Ji= Ii We will show that
the subset of our frame given by ((gi)iA, (hi)iEq) is not a frame for its closed linear
span, contradicting our assumption that (f/)il has the subframe property. To see
this, let/C span((gi)i,x, (hi)ieq) and note that 1, 2 m} C A and (3.3) imply
that Pmi_,mihj ], for every j F Since A C A, it follows from (3.4) that
fi /C, for all i. Finally, by (3.2), (3.3), (3.4) we have

3 _L span((gj)j<zx-A,), (hj)j<q,-r,)).

](fi, gj)l 2 + _, I(f/, hj)[2 I(fi, gj)[2 + I(J, hj)l2
jEA j.q jAi jeFi

Y I(fi, gj)l2 + ](f/, Pmi_,,mihj)l2 <
jeAi jEri

Therefore, our subset of the frame is not a frame sequence. This completes the proof
of Step III.

Now, let G span(g/ ,no)i=1 Pmo the natural (orthogonal) projection of H onto G,
and h/2 Pmohi Also let Ai "i ("1 {m0 + 1, m0 + 2 }, and

h (I Pmo)hi

_
hi(j),

j.Ai

Step IV. Verify (ii) and (iii) ofthe theorem.
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Since (hi)ir is a frame and RngPm0 is finite dimensional, (ii) follows from Lemma
3.1. Part (iii) follows immediately from Step III and the fact that

span(gi)n _l_ span{(gi)i=m0+l, (h)ir}
(2) = (1) Assume that n((gi)i=l, (hi)ir, (ki)i=l) is a frame for H satisfying the

conditions in part (2) of the theorem Since ((gi)i=l, (h))ir) is a Riesz frame, we
assume it has the properties ofTheorem 2.4. Letting A equal the natural numbers and
D 1" in (2)(ii) of Theorem 2.4, we get that (h))ir is a frame sequence with lower
frame bound A0. Since YiF IIh/2112 < cx, there are only finitely many infinitely
supported vectors ki, and (gi)ic_-i is a Riesz basis it follows that our set of vectors
satisfies the upper frame condition (and hence every subset satisfies the upper frame
condition) with constant say B. By taking the natural isomorphism of (gi)i=l to an
orthonormal basis for H, we may assume that (gi o)i=l is an orthonormal basis for
H. (To simplify the notation, we will use the same constants given earlier.) Choose
an arbitrary subset of the frame of the form ((gi)ie/x, (ki)ieA, (hi)ier’,). Applying
(2)(ii) of Theorem 2.4 again, we see that (Pzxch))ir, is a frame sequence with frame
constants A0, B. We will finish the proof in three steps.

Step I. There is a subset f2 C F1 with IF f21 < o, so that (Pzxchi)i2 is a

frame sequence.

By our assumption (ii), we can choose 2 of the form above so that

llh/2112 <

Then for any f span(P,xhi)ia, with the fact that (PAch)ir, is a frame sequence
with frame constants A0, B, we have

Vf-llA fll.

Step H. The family ((PAchi)iF,, (e/xki)iA) is a frame sequence with frame
bounds say A, B.

By step I, (P/xhi)ieft is a frame sequence But IAI < o and IF fl < o,
and adding any finite number of vectors to a frame sequence always yields a frame
sequence.
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Step IlL ((gi)iA, (hi)iel, (ki)in=l) is aframe sequence.

Since (gi)i=l is an orthonormal basis, Pzx is an orthogonal projection on H with
I PA =Pac. Now, (gi)ia is an orthonormal basis for its span, and by Step II we
have that ((ezxchi)iert, (ezxcki)ieA) is a frame sequence. Applying Proposition 3.2
(1), it follows that ((gi)iea, (hi)ir, (ki)in=l) is a frame sequence.

This completes the proof of Theorem 3.2.

Now, let us look at how this theorem uniquely relates frames with the subframe
property to Riesz frames. To get a frame with the subframe property, we first choose
a Riesz frame ((gi)i=l, (hi)ir) for H where (gi)i=l is a Riesz basis for H. Now
choose a finite set of vectors (ki)il from H each with infinite support with respect
to our Riesz basis (gi)i=l Next, choose a natural number m and let G span(gi)im=l
be a finite dimensional subspace of H. Finally, choose a set of vectors (f/)ir from
G satisfying

I1112 < o.

Then by Theorem 3.2, the set ((gi o n)i=1, (ki)i=l, (hi -k f/)ier) is a frame for H which
has the subframe property, and this is the only way to produce a frame with the
subframe property. This also shows, for example, that if we take a Riesz basis for H
and add to it an infinite number of infinitely supported vectors, then this new set has
a subfamily which is not a frame for its closed linear span.

4. The projection methods

If(f/ )i= is a frame, we define theframe operator S: H --, H by

(4.1) S(f) (f, j)j.
i=1

Then S is an isomorphism of H onto H and so (S- iS)----1 is also a frame for H called
the dualframe. For f 6 H, we can write

(4.2) f SS-f (f, S- 3) fi,
i=1

where the (f, S-l f/) are called theframe coefficients for f. One of the most difficult
problems in frame theory is to explicitely calculate the dual frame of a frame. A useful
method here is to "truncate" the problem. That is, for each n, let Hn span(f/)il
and Sn: Hn Hn be given by

(4.3) Snf ’-(f, ) fi.
i=1
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For each f H, Pnf converges to f in norm. But in general [4], the frame
coefficients for Pn f need not converge (even coordinatewise) to those of f. If for
every f H, and for every 1, 2, 3 we have

(4.4) lim (f, Sf) (f, S-f/),
n.--,o

we say that theprojection method works. The advantage here is that finite dimensional
methods, applied to the frame (f/)in=l, can be used to approximate the frame coeffi-
cients. If ((f, S- f/))i converges to the frame coefficients for f in the e2-sense,
i.e.,

(4.5) linac I(f, S-’ f) (f, S-’ fi)l2 + I(f, S-’ fi)l2 =.0,
i=1 i=n+l

we say that the strong projection method works. For a discussion of the projection
method, we refer the reader to [2]. Also, for an in-depth study of the strong projection
method, and a host of examples, we refer the reader to [4]. It is known [2] that the
projection method and the strong projection method working are not equivalent. Also
note that the projection methods depend upon the order in which the frame elements
are written. That is, a frame may satisfy the strong projection method but have a
permutation which fails it [4]. It is immediate that the strong projection method
works for Riesz bases (or see Zwaan [8]). It also works for Riesz frames but may fail
(even the projection method may fail) for frames with the subframe property [4]. The
main theorem of this section will show that for frames with the subframe property,
the projection methods become equivalent and independent of the order in which the
frame elements are written.

THEOREM 4.1. If(j = is aframe with the subframeproperty, then thefollowing
are equivalent:

(1) There are no infinitely supported vectors ki in Theorem 3.2.
(2) (f/)iC=l has a permutation satisfying the projection method.
(3) Eve permutation of (fi)i satisfies the strong projection method.

Proof. (3) = (2). Obvious.
(2) = (1). We will prove this by way of contradiction. So suppose we have

a frame ((gi c)i=1 (hi)ier), (ki )i=l) satisfying the conditions of Theorem 3.2. As
usual we may assume that (gi c oo)i= is an orthonormal basis for H. Let ()i=l be a
permutation of this frame satisfying the projection method. Let I, J be sets of natural
numbers so that (recall the m of theorem 3.2)

{fi" I} {gi" <i < m}, {fi" J} {ki" <i <

Let m0 maxi,uj and let & be the frame operator for (3)in=l. Our assumption
that (fi)i satisfies the projection method implies there is a constant K > 0 so that
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for all n > m0, we have IIS-ki < K. So fix any n > m0 and write (J/)i=l as
((gi)iA (hi)iA e(ki)i=]). Let Qn be the orthogonal projection of span(f/)= onto
its subspace span{(gi)ix, (hi)iA}. Choose < j < so that

(4.6) I1(I- Qn)kjll- max Ilkill.
l<i<e

Since the hi all have finite support with respect to the orthonormal basis (gi oo)i=1, and
the ki have infinite support, it follows that (I an)k 0 in formula (4.6). Let

(I- Qn)kj
fn,j

II(/- Qn)kj z’

so that (fn,j, kj) 1. Finally, let

f fn,j (fn,j, ki)Slki.

Now we compute

i=1

-(fn,j, ki)ki (fn,j, ki)ki (fn,j, kj)kj kj.
i=1 i#j

So Slkj f. It follows from our earlier assumption that

(4.7) IISlkjll--Ilfll < K.

Combining (4.6) with (4.7) we have

(4.8) > Ilfll > Ilfn,jll- _,(fn,j,ki)SlkillK
ij

> IIA,yll- I(A,, (I P)ki)lllSlkill

> IIA,yll- K Ilfn,yllll(l P)kill > Ilfn,yll- Ke.
ij
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However,

(4.9) sup Ilfn,j sup c.
n n I1(I Qn)kjll

and (4.8) and (4.9) contradict one another.
(1) =: (3). By (1) and Theorem 3.2, our frame is of the form ((gi)i=l, (hi)ir)

and has the properties listed in Theorem 3.2. As usual, we may assume that (gi)i=l
is an orthonormal basis for H. Let rn and G be given as in Theorem 3.2, and let Pc
be the natural (orthogonal) projection of H onto G. Let (3)1 be any permutation
of this frame. Choose a natural number m0 so that gj 6 {f/" < < m0}, for all
1 < j < m. Let A be the lower Riesz frame bound for the Riesz frame given in
Theorem 3.2 (iii), and choose 0 < 3 < 5 with

A
32 IIeGhi 2 < -.

iP

Let n > m0 and let Sn be the frame operator for (3)in_-l. By our assumptions,
there are finite sets of natural numbers J C 1-’, and I C {m + 1, rn + 2 so that

n rn(J)i=l ((gi)i=l, (gi)il, (hi)ij). Choose f span(f/)in=l with

Ilfll 2 --IIPfll 2 + I1(I Pc)fll e.
We consider two cases.

Case I. Pc f 112 .
In this case,

n m

i=1 i=1

Case II. Ptf 112 .
In this case, applying (iii) of Theorem 3.2, we have

i=1 I(f, fi)l 2 >- //t I(f, gi)12 + -ij I(f, hi)l 2

>- / I((I- e)f, gi)12 -+ iJ I((I- P)f, (I- eG)hi)l2

i Pf Phi l2
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Hence, our flame (3)ic_-i satisfies the strong projection method.

Although flames with the subframe property may fail even the projection method,
Theorem 4.1 implies that this occurs because of a few "misbehaved" vectors. We
state this formally as follows:

COROLLARY 4.2. If (fi)iel is aframe with the subframe property, then there is a

finite subset A C I so that the strong projection method worksfor (3)il-A.
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