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EXTREMAL PROPERTIES OF HILBERT FUNCTIONS

VESSELIN GASHAROV

1. Introduction

Recently there has been a lot of interest in the extremal properties of Hilbert func-
tions. This subject is related to combinatorics, commutative algebra, and algebraic
geometry. It was founded by Macaulay 12] who gave a characterization ofthe Hilbert
functions of quotients of polynomial rings. His result can also be interpreted as a
characterization of the h-vectors of multicomplexes [15, 2.2]. Kr-uskal [11] and
Katona 10] characterized the f-vectors of simplicial complexes, or equivalently, the
Hilbert functions of quotients of exterior algebras. Gotzmann proved a Persistence
Theorem which states that an extremal (in the sense of Macaulay’s theorem) vector
space of homogeneous polynomials of degree d generates an extremal vector space in
degree d + 1 [6]. We will call such a vector space Gotzmann. Green [7] characterized
the Hilbert functions of rings obtained by moding out quotients of polynomial rings
with fixed Hilbert function by a general linear form. Recently, Aramova, Herzog,
and Hibi proved a Persistence Theorem for exterior algebras.

In 2 we introduce some notation. In 3 we study Gotzmann vector spaces and
obtain:

a Reverse Persistence Theorem similar to Gotzmann’s;
a Persistence Theorem for vector spaces which are extremal in the sense of
Green’s theorem;
a structure theorem for Gotzmann vector spaces which generalizes structure
results of Green [7] and Bigatti-Geramita-Migliore [4].

Macaulay’s theorem can be stated in two equivalent ways: one is that for every
homogeneous ideal there is a lexicographic ideal with the same Hilbert function; the
other is numerical. The corresponding generalizations to modules over polynomial
rings however are not equivalent. Hulett [8, 9] and Pardue 13, 14] showed that for ev-
ery graded submodule of a free module over a polynomial ring there is a lexicographic
submodule with the same Hilbert function.

In 4 we give a numerical generalization of Macaulay’s theorem and general-
izations of Green’s and Gotzmann’s theorems for finitely generated modules over
polynomial rings. We also give generalizations of Kruskal-Katona’s theorem and
Aramova-Herzog-Hibi Persistence Theorem for finitely generated modules over ex-
terior algebras.

Received October 7, 1996.
1991 Mathematics Subject Classification. Primary 13D40; Secondary 05D05.

(g) 1997 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

612



EXTREMAL PROPERTIES OF HILBERT FUNCTIONS 613

2. Preliminaries

Let d and a be positive integers. Then there exist unique positive integers
;(a, d) and md, md- ms such that md > md- > > ms > and

a= (d)+ (d-l)+ + (n). (1)

We call (1) the d-binomial representation of a. Sometimes it will be inconvenient
to specify what the value of d is. For this reason we define the non-reduced d-
binomial representation of a to be

a=(d)+(d-l)q-’"+(n]l), (2)

where m for < < - 1. If 6 1, then the d-binomial representation
and the reduced d-binomial representation of a coincide. Note that the mi’s satisfy
md > md- > > m > 0 and that this condition determines uniquely the non-
reduced d-binomial representation of a. Note also that even though 0 does not have
a d-binomial representation, it does have a non-reduced d-binomial representation,

d-2namely 0 (dl)
_

(d-l) -"""" "- (01)" We let 8(0, d) cxz. For fixed d the bijection
a (md, md-, m,) is order-preserving, where the order on the left-hand side
is the usual order on the nonnegative integers and the order on the right-hand side is
the lexicographic order.

There are three operations on nonnegative integers which will be important for us.
If the non-reduced d-binomial representation of a is given by (2), then we set

ald}{md+l (ma_ + (m 1))+" + ’:

(mdd--1 ) (m/_l_-- 1)a(d) + +’’" +

aid)= (dm__l_dl)+ (mad-’)+’"+ (m2’)
Itiseasyto verify that a < b is equivalent to ad < ba and implies thata<a <

In particular, a b is equivalent to aa bd. Note that we can define a la>, ad), and
aa) in exactly the same way as above by using the (reduced) d-binomial representation
of a. Later we will need the following lemma which can be easily verified:

LEMMA 2.1. Ifthe d-binomial representation ofa is a
and 1, then (a + 1)/d a<d) + 1.
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Throughout this paper k will be a field, S k[x Xn] the polynomial ring
over k in the variables x Xn, and Si the degree homogeneous component of
S. For a homogeneous ideal I _c S we denote by li the degree component of I. If
V c_ Sa is a vector space, then we let 8(V) 8(codim(V, Sd), d). When there is no
danger of confusion we write codim V instead of codim(V, Sa). We denote by (V)
the ideal generated by V.

Throughout x will be a general element of S. Fix d and let V cc_ Sa be a subspace.
We denote by V the image of V in S S/(x). Following [7] we set

c codim(V, Sd), cx codim(V, Sd),

c codim(VS, Sd+), C,x codim(VS, Sd+l).

3. Gotzmann and Green vector spaces

By Macaulay’s Theorem [12] codim(VS1, Sd+) <_ codim(V, Sd) <d>. We call
a vector space Gotzmann if equality holds. For such extremal space by Gotzmann
Persistence Theorem [6] we have that the spaces V Si are Gotzmann as well. Similarly,
by Green’s Theorem [7], codim(V, Sd) <_ codim(V, Sd)<dl and we call a vector space
Green if equality holds.

THEOREM 3.1. Let V c_C_ Sd be a Gotzmann vector space. Then we have:

1. V is a Green vector space;
2. V is Gotzmann;
3. (VS x) V;
4. (V x) (V S).

Proof From the exact sequence

0 -- (VS x) - VSl VSl 0

and the fact that dim Sd dim Sd- + dim Sd we can conclude that c Cl,x -[-

codim(VS x). Since V

_
(VSI x), it follows that

Cl Cl,x + codim(VS x) _< c,x + codim V Cl,x + C, (3)

so C c < c,. Then from the assumption that V is Gotzmann and Macaulay’s and
Green’s theorems it follows that

(C(d)) (d) C (d) C Cl C < Cl,x < (Cx) (d) < (C(d)) <d), (4)

so all inequalities in (4) must be equalities, and in particular (c) (d) (C(d)) (d) This
implies that c C(dl, SO V is a Green vector space. It also follows from (4) that
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C1,x (Cx) (d), i.e., V is Gotzmann. We also have that c c1,x --c, so the inequality in
(3)is anequality, hence (VS x) V. Since((V x)S)x ((V x)x)S1 c_ VSI,
we have that (V x)S (VS,’x)= V. Therefore (V x) c_C_ (V S), but we
always have that (V S) _c (V x), so (V x) (V S1). E]

Remark 3.2. It can be shown that if I is a homogeneous saturated ideal in S
generated in degrees < d and ld is Gotzmann, then a linear form is general in the
sense ofTheorem 3.1 exactly when it is a nonzerodivisor on the ring S/I. This shows
that a result due to Bigatti, Geramita, and Migliore [4, Lemma 1.1] is equivalent to
Theorem 3.1 (2). Moreover, they also noticed [4, Remark 1.2] that C,x Cd+,
which is a corollary to Theorem 3.1 (1).

Remark 3.3. It should be noted that not every Green vector space is Gotzmann.
Take for example V span{x2, y2} c_ k[x, Y]2. Then c 1 and Cx 0 cl2, so
V is a Green vector space, but c 0 < c2> 1, so V is not Gotzmann. It is also
interesting to note that in this example V does not satisfy the conclusions (3) and (4)
of Theorem 3.1.

THEOREM 3.4 (Reverse Persistence Theorem). Let V Sd be a Gotzmann vector
space and let the d-binomial representation of c be c (mr) + ,d--l[md-’) ._
with > 1. Then V (V S)S and (V St) is a Gotzmann vector space with

[md-i--1)codim(V" S)= (mda_.l) --- d-2 "-
__

(n__l).

Proof. From the exact sequence

O (V x) - v V o

and Theorem 3.1 it follows that

codim(V’x) C-Cx=C-C

(5)

The last expression is the (d 1)-binomial representation of codim(V x), because
> 1. From Macaulay’s theorem and (5) it follows that

codim(V x)S1 (codim(V" x))Id- (c- Cx) Id-ll

1
/"" + c codimV.
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Applying Theorem 3.1 we see that (V’x) (V" S), hence (V’x)S (V"
S1)S1 c_ V. Thus codim(V x)S > codim V, hence codim(V x)S codim V.
Therefore (V" S)S (V’x)S V. Then codim(V S)S codim V
(codim(V Sl))d-/, so (V S1) is a Gotzmann vector space.

The following theorem is an analog of Gotzmann Persistence Theorem for restric-
tions to general hyperplanes.

THEOREM 3.5. Let V cc_ Sd be a Green vector space and the d-binomial repre-
sentation ofc be c (’a)+ (’-11) +... + (’’). If > 2 or 1 and m 1, then

V is also a Green vector space. Moreover, ify is a general element of S1 and y is
any preimage of’y in SI, then (V y) (V y).

Proof. Let V be the image of V in Sd (S/(x, Y))d and Cx,y codim(V, Sd).
Consider the exact sequences

We have that

Cld Cx codimV codimV + codim(V y) Cx,y + codim(V ) (6)

Cx,y < (Cx)(d) (C(d))(d). (7)

Also (V y)

_
(V y) and codim(V y) codim(V x) (because x and y are

general), so

codim(V "y) < codim (V" y) < (codim(V Y))(d-l)
(codim(V x))(d_l) (c- Cx)(d_l) (C- C(d))(d_l). (8)

It follows from (6), (7), and (8) that

C(d) Cx Cx,y + codim(V y) < (C(d))(d) ’ (c C(d))(d_l) C(d).

Therefore all inequalities in (7) and (8) must be equalities, which completes the proof.

The next example shows that it is necessary to assume that m in Theorem 3.5.

Example 3.6. Let n > 4 and consider the vector space

V span(x x x,,_l) C k[x, X2 Xn]d.
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After a change of variables we can assume that

V span(x x xn_ l) C k[Xl, X2 Xn-l]d.

We can also assume that y Xn-l ,S_21 aixi, so

( 1V span x,x,., d
Xn_2, aixi C k[xl, x2 Xn-2]d.

\i=l

Since the ai’s are general, we see that dim V n 1. We also have dim V dim V
n- 1, so

(litd + d-1 +’"+ +

( -1td + d-1 +’"+ 2

and

-tCx,y codim V n -t- d
-t-

n -t- d
+’"+ n-22 -1.

Therefore ml 1, Cx Cld>, and Cx,y (x)(d) 1 (cx)ld), so this is a coun-
terexample to the first part of Theorem 3.5 without the hypothesis m 1. To get
a counterexample to the second part, consider V span(xld) C k[Xl, XE]d. Then

d+lc (d)-- () + (dd-l) +...+ (1)’ som and (V y) 0, so

(V y) 0. We have that - span(zd) k[z]d, where z is an indeterminate, so
(V ) k[z]d_ :A (V y).

LEMMA 3.7. Let V c_ Sd be a Gotzmann vector space and the d-binomial rep-
resentation ofc be c (mr) + (m_, +... + (m,) with > 2 or and m\d-l!

Then (V S 1) (V Sl) and (V S) is a Green vector space.

Proof. Let y and Cx,y be as in Theorem 3.5. By Theorem 3. l, V is a Green vector
space, so by Theorem 3.5 we have that V is a Green vector space, i.e., Cx,y (Cx)d>.

If >_ 2, apply Theorem 3.4. Now let d 1. By Theorem 3.1, (V S1) (V x)
and (V Sl) (V y), so

(ndll) (md-l--1) (m2 1)codim(V’Sl)=C-Cx= +\ d-2 +"" + +1 and

codim(V $1) Cx Cx,y C(d) (C(d))(d)

(d__--?)+ (m__-- 2) --2)2 +’"+ (m21 + 1.
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Using the fact that (V S1)

___
(V S1) and Lemma 2.1 we conclude that

codim(V Sl) _< codim (V S1) _< (codim(V’Sl))(d-l)

(md-1 2) --2)
codim(V Sl).

Therefore codim(V Sl) codim (V Sl) (codim(V S1))<a-1), so (V S1)
(V Sl) and (V S1) is a Green vector space.

It is natural to ask whether we can say something about the structure of Gotzmann
vector spaces. It was proved by Gotzmann in [6] that any homogeneous ideal I

_
S

has Hilbert polynomial of the form

Ps/’(t)=(al+t)+(a2+t-1)+’"+(as+t-(s-I)a2 as
(9)

where a > a2 > > 0. This implies that le is Gotzmann for e >> 0. So we
cannot hope to say much about the structure of arbitrary Gotzmann vector spaces
V. However, in some cases the d-binomial representation of codim V determines the
structure of V. One such case is treated in Theorem 3.8 below which was first proved
by Green [7, Theorem 3] and was later given a different proof by Bigatti, Geramita,
and Migliore [4, Lemma 3.1 ].

THEOREM 3.8. Let V c_C_ Sd be a Green vector space and I the saturation of (V).
( d ) for some m > 1, then I is generated by n m linearforms, so inIfc m+d

particular V is Gotzmann.

It is not hard to see that if V c_ Sd is a vector space and h - 0 a homogeneous
form, then V is Gotzmann if and only if hV is. A vector space V c_ Sd is called
reduced if there is no vector space V - 0 and a homogeneous form h - 0 of degree
> such that V h V. So to study the structure of Gotzmann vector spaces it is
enough to consider reduced vector spaces. The following theorem follows from [4,
Proposition 2.7].

THEOREM 3.9. Let V c_ Sd be a Gotzmann vector space ofdim V >_ 2. Then V
is reduced ifand only ifdim V > dim Sd-1.

Now let I be a homogeneous ideal whose Hilbert polynomial is given by (9) and
r r(l) be the least integer such that le is Gotzmann for all e > r. If I is saturated,
then by Gotzmann Persistence Theorem [6] and Theorem 3.4 it follows that r s
and I is the saturation of (Ir). In particular, the r-binomial representation of codim Ir
is

codimlr=(al+r r)+(a2+r-1)r--1 +’’’+(ar+l )’
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SO (Ir) 1. Thus there is a one-to-one correspondence between saturated homoge-
neous ideals I and Gotzmann vector spaces V with d(V) 1. Namely, I corresponds
to Ir(t) and V corresponds to the saturation of (V).

Next we give a structure result about saturated homogeneous ideals, which by
the discussion above can be interpreted as a structure result about Gotzmann vector
spaces.

THEOREM 3.10. Let I be a homogeneous saturated ideal in S. Then the Hilbert
polynomial of S/I has the form Ps/t(t) (a+t "JI- (a+t-1) .t_... + (a+t-(d-2) +a a a

(b+td-l) with a >_ b >_ ifand only ifdim 11 n a 2 and one ofthefollowing
is satisfied:

1. a > b and there exist a vector space W c__ $1 with 11 N W 0 and an element
h Sd-1 \ (I1)d-1 such that dim W a b + and I (11) + (h W).

2. a b and there exists an element f Sd \ (I1)d such that I (11) + (f).

Proofi The "if" part is easy to prove. To prove the "only if" part, note that
r(I) d, so Id is a Gotzmann vector space with

codimld (a+d)+a (a+d-1)+...+a (a+2)+a (b+l)b
(a-+-d)(a+d-1) (a-b2)(b+ld + d-1 +’"+ 2 + 1 /"

Since I is saturated, this implies that Ia-1 (Ia $1). By Theorem 3.1, (la
$1) (la x), so from the exact sequence 0 ---> (la x) - Ia -[a --> 0 we get
codim la- codim la codim Ia. By Theorem 3.1 codim la (codim ld) Ca>, so

[a+d-1) a+d-2 a+l) [a+dcodim Id-1 codim Id--(codim Id)(d) , d-I d-( d-2 )’-’" "’at-( -- ,d-l]"

By Lemma 3.7, Id-1 is a Green vector space, so, by Theorem 3.8, Id-I is Gotzmann
and 11 is spanned by n a 2 linear forms. Then

cdimld-lSl=(Cdimld-l)ld-l’=(a+d+l)d
and

dim Id dim Id-I S1 a b + 1.

We can assume without loss of generality that 11 is spanned by Xa+3, Xa+4 Xn.
Then we can write Id Id-1 $1 K, where K is a vector subspace of k[Xl, x2
Xa+2]d of dimension a b + 1. If a b, then K is spanned by a single element f
Sd\(I1)d andwe are done. Ifa > b, then let L beany subspace ofk[xl, x2 Xa+2]d
of dimension a b + 1. Then

(Id-I S1)Sl I’l LS1 (Xad-3, Xa+4 Xn)dq-1 f’) LSI Z(xa+3, Xa+4 Xn)l

Lxa+3 Lxa+4 )... ) Lxn.
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Hencedim[(Id_S)S N LS] (n-a- 2) dim L (n-a- 2)(a-b + 1), so

dim[(Id_S L)S] dim[(Id_S)S + LS]
dim(Id_ S1)S1 -]- dim LS dim[(Id- Sl)S1 N LSI]

dimLSl+(nd+dl)-( d+l
(n a 2)(a b + 1)

and we can conclude that dim[(Id_S L)S] -dim LS does not depend on the
choice of L. If L is generated by a lex-segment in k[x, x2 Xa+2]d, then Id-S
L is generated by a lex-segment in k[x, x2 Xn]d (we order Xa+3 < Xa+4 < <
Xn < X < X2 < < Xa+2), thus Id-S L is Gotzmann. Since Id-S K Id
is Gotzmann, it follows that

dim[(Id_S L)S] dim[(Id_S1 K)S1],

so dim LS dim KS. But L is Gotzmann, so K is Gotzmann.
Since dimK a-b+ 1 and2 < a-b/ 1 < n dim S, it follows by

Theorem 3.9 that there exists a subspace W in k[x, x2 Xa+2] with dim W
a b + 1 and an element h k[x, x2 Xa+2]a- such that K hW. Then
I (Xa+3, Xa+4 Xn) + (hW) (I1) -I- (hW). !’-1

Green proved the special case a b of Theorem 3.10 in [7, Theorem 4]
and Bigatti, Geramita, and Migliore proved the more general special case a b in
[4, Corollary 3.2]. Theorem 3.10 shows that in suitable coordinates I is "almost"
lexicographic. It is also clear that the generic initial ideal of I, gin(l), is lexicographic:

COROLLARY 3.11. If I is as in Theorem 3.10, then gin(I) is lexicographic.

Remark 3.12. If V

_
$2 is a Gotzmann vector space, then the saturation of the

ideal generated by V satisfies the hypothesis of Theorem 3.10, so the structure of
Gotzmann vector subspaces of $2 is completely determined by Theorem 3.10. Also,

n+lby Theorem 3.9, a Gotzmann vector space V with dim V < dim $2 2 ) has the
form V hW, where h is a homogeneous form and W is a subspace of Se for some
e e {0, 1, 2}. Thus, Theorem 3.10 also determines the structure of any Gotzmann
vector space of dimension -2)"< (n+l

4. Hilbert functions of modules

Here we generalize Macaulay’s Theorem 12], Green’s theorem [7] and Gotzmann
Persistence Theorem [6] for S-modules. We also give generalizations of Kruskal-
Katona’s Theorem 10, 11 and the Persistence Theorem of Aramova-Herzog-Hibi
[1 for modules over an exterior algebra.
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Remark 4.1. Hulett [8], [9] and Pardue [13], [14] generalized Macaulay’s The-
orem as follows: if F is a finitely generated free S-module and V, L c_ Fd vector
spaces of the same dimension such that L is generated by an initial lex-segment,
then codim(VS1, Fd+) < codim(LSl, Fd+l). However, unlike the ideal case, we
no longer have codim(LSl, Fd+) codim(L, Fd) Id) when L c_ Fd is generated
by an initial lex-segment. Take for example S k[x], F S @ S, d 1, and
L 0

_
F. Then codim(LS, F2) 2 codim(L, F) II) 3. Nevertheless,

there exists a numerical generalization of Macaulay’s theorem for S-modules which
we give in part 2 of the next theorem.

THEOREM 4.2. Let S k[x Xn] and F SI +...-t- Sv be a finitely
generatedfree S-module. Let N c__ F be a graded submodule, max{deg i

v}, and M FIN. Let x be a general element in SI, S S/(x), and
M F/(N + x F). Thenfor any pair (p, d) such that p > 0 and d > p + + we
have"

1. dim Md < (dim Md)(d-l-p);
2. dim Md+l < (dim Md)(d-l-p)

3. If N is generated in degrees < d and dim Md+l (dim Md)ia-l-p), then
dim Md+2 (dim Md+ (d+ l-l-p)

Note that Theorem 4.2 (2) implies that for any p > 0 there exists a number
D D(p) such that dim Md+ (dim Md)td-l-p) whenever d > D. To see why
this is true, set hd dim Md+t+p, so hd+ <_ hdd). There exists a polynomial ring
P and a lexicographic ideal L c_ P such that dim(P/L)d hd. If D is the largest
degree of a minimal generator of L, then dim(P/L)d+ (dim(P/L)d) dl for any
d>D.

THEOREM 4.3. Let F E +... + Ev be afinitely generatedfree module over
anexterioralgebra E andletN c_ F bea gradedsubmodule. Letl max{deg i

v} andM FIN. Thenforanypair(p, d) suchthat p > Oandd > p+l +
we have:

1. dim Md+ < (dim Md)d-l-P;
2. If N is generated in degrees < d and dim Md+ (dim Ma)d-l-p, then

dim Md+2 (dim Md+l)(d+l-l-p).

We will omit the proof ofTheorem 4.3 because it is similar to that of Theorem 4.2.
To prove the latter theorem we need some preliminary results.

LEMMA 4.4. Let a, b > 0 and d >_ be integers. Then:

1. a(d) d- b(d) < (a + b)(d);
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2. a (d) -]- b (d) <_ (a + b)(d);
3. a (d) if- b(d) <_ (a + b)(d);
4. Ifa (d) + b(d) (a + b) (d), then (a(d)) (d+l) + (b(d)) (d+l) (a (d) + b(d))(d+);
5. Ira(d) + b(d) (a + b)(d), then (a(d))(d+) + (b(d))(d+) (a (d) + b(d))(d+).

Proof. Let S k[Xl, x2 ], T k[y, Y2 be polynomial rings and I

_
S,

J

_
T homogeneous lex-segment ideals generated in degree d such that Hs/t(d) a

and Hr/g(d) b, where Hs/1 and Hr/j are the Hilbert functions of S/I and T/J
respectively. Then Hs/(d + 1) a (d), HT/j(d d- 1) b(d), H/-[(d) a(d), and

Hy/7(d) b(d), where S S/(x), I I +(x)/(x) for some general element x $1

and similarly for T and J. Let U k[Xl, x2 yl, y2 and K be the ideal of
U generated by the elements of I, J, and all monomials of the form xi Yi. Then

(U/K)n (S/I)n (T/J)n for n >_ 1,

so

HU/K(n) Hs/t(n) + HT/j(n) for n >_ 1.

Let z OliXi " Z jYj be a general element in U1 and let x OliX and

Y JYi" (Then x is a general element in S and y is a general element in T.)
For d > we have the following sequence of maps of k-vector spaces:

(U/(K, Z))d (U/(K, x, Y))d (S/(I, X))d (T/(J, Y))d, (10)

where q is a surjection and p is an isomorphism. Also q is an isomorphism for d > 2.
Since I

_
S and J

_
T are lex-segment ideals generated in degree d, we have

a(d) dim(S/(I, X))d, b(d) dim(T/(J, Y))d,
a (d) dim(S/l)d+l, andb(d)= dim(T/J)d+l.

So from (10) and Green’s theorem [7] we get

a(d) -t- b(d) dim(S/(I, X))d + dim(T/(J, Y))d dim(U/(K, x, Y))d
< dim(U/(K, Z))d < (dim(U/K)d)(d)= (Hu/K(d))(d)

(Hs/l(d) d- HT/j(d))(d) (a -b b)(d). (11)

This proves part (1) of Lemma 4.4. To prove part (2), note that

a (d) d- b (d) Hs/l(d d- 1) -+- HT/j(d d- 1) HU/K(d + 1)
< (Hu/K(d)) (d) (a d-b) (d). (12)

To prove part (4), note that the equality a (d) b (d) (a d- b) (d) implies that the
inequality in (12) is an equality, so

Hu/r(d d- l) (Hu/r(d)) (d).
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Since K is generated in degrees < d we can apply the Gotzmann Persistence Theorem
and conclude that Hv/r(d + 2) (Hv/r(d + 1))d+. Hence

(a(d)) (d+l) 47 (b(d>) (d+l) Hs/t(d + 2) + Hr/s(d + 2) Hv/r(d + 2)

(Hv/r(d + 1)) (d+l) (a (d) 47 b(d)) (d+l).

To prove (3) and (5) we replace the polynomial rings S k[Xl, x2 and T
k[y, Y2 by the exterior algebras on the x’s and on the y’s respectively and argue
exactly as in the proofs of (2) and (4). El

LEMMA 4.5. For any a > 0 and d > we have"

1. a(d+l) < a(d);
2. a (d+l) < a (d)"

3. /fa (d+l) a (d), then (a(d+l)) (d+2) (a(d))(d+l);
4. a(d+) < a(d)"

5. Ifa(d+l) a (d), then (a(d+l))(d+2) (a(d)) (d+l).

Proof. By induction on a and d.
For a 0 the lemma is obvious. Now we will prove parts (1) and (2) for a > 0.

First let d 1 and let a (k22) + (k) be the (possibly non-reduced) 2-binomial
representation of a. Note that k2 > 2 since a > 0. We have

a(> a- and a(2) 2 + O, ifkl O.

Hence

a(1) a(2) a a(2) + 1,

t -1=0,
ifkl >_
ifkl =0

which proves part (1) when d 1. Now assume we have already proved that
b2 < bI for b < a. It is easy to see thatal2 < a, so the inductive hypothesis implies
that (a(2)) (2) < (a(2)) (1). We already proved that a(2) < a<l/, so (a(2)) (1) < (a(l)) (1).
Since a (2) (a(2)) (2) + a and a (1) (a(l)) (1) + a it follows that a (2) < a l> which
proves part (2).
Now let d >_ 2 and a >_ 1. Assume we have already proved that b(d) < b(d-1) and

b(d) < b(d-l) for any b, and b(d+l) < b(d) and b(d+l) < b(d) for b < a. Let

a= (kdd)+ (dkd-ll)+...+_ ()= ,d+l]+(ld+l ()+...
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be the d and (d + 1)-binomial representations ofa. If b a --a(d) and c a --a(d+l),
then

_;t
c=(ld+l--1) (-- --1

(These expressions are not necessarily the (d 1) and d-binomial representations of
b and c respectively.) To prove that ald+ < aid it is equivalent to prove that b < c.
Assume that on the contrary, b > c. We consider 4 cases:

Case 1. d > 2, , > 2. In this case a bId-> cId>, but b > c, so the induction
hypothesis implies that a bId-l> > c<d-> > cId) a, which is a contradiction.

Case 2. 1, , > 2. In this case we have that b > c, so

a> (d)+ (1)+... + ()=(b_l)ld-l>_cld-1)>_c(d=a,
which is a contradiction.

Case 3. 3 > 2, , 1. In this case

a b(d_)>C(d_l)>c(d)___ [(ld+l--1)l, d-t- (-1)1 +’"+(12-1)1 q-1

Ikd+ + +."+ +(/2-1)+1 >a,

which is a contradiction.

Case 4. 6 1, , 1. In this case

a > (,t)+(dka-ll)+...+_ (k)=(b_l)la-,)>cla-)>cla
d+l,]+ +...+ +(12-1)+1>a,

which is a contradiction.
This proves part (1) of Lemma 4.5 for all a and d. Now we will prove part (2).

Assume that we have already proved part (2) for all integers < a. It is not hard to
see that ala < a for all a > 0, so by the induction hypothesis we have (alal) la+l <

(ala) la) It follows from part (1) that ald+l < ala>, so

a la+> (ala+l>)a+) + a < (ala>) <a+l + a < (aa)a+ a a la), (13)
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which proves Lemma 4.5 (2). Now we will prove part (3) for a > 0. This is clear for
a and d arbitrary. Now let d 1, so a II a 12. Then all inequalities in (13)
are equalities and in particular (a/2) 12 (all/)/2. This implies that all al2 and
an easy calculation shows that this in turn implies that a 0 or 1, so we are done in
this case. Now let d > 2 and a > 1. We have

(a(d+l)) Id+l) a (d+l) --a a id) -a (a(d)) Id)

and by Lemma 4.5 (1) and (2) we also have that (aid+ l))/d+l) (a(d+l)) It) < (a(d)) It).
Hence

(a(d+l)) (d+l) (a(d+l)) (d) (a(d)) (d).

The second of these equalities (as well as (13)) implies that ald+ aid, while the
first implies by induction on a that

((ald+l)ld+l) Id+2 ((ald+)ldl)Id+

Since (ald+)Id+ (ald+)ld+2 and (ald) Id (ald)ld+, we get

(a(d+l)) (d+2) ((ald+l))(d+2))(d+2) + a (d+l) ((a(d+l))(d+l)) (d+2) d-a (d+l)

(d+ 1) a Id Idl It+((a(d))(d)) Id+l) -’1- a/d+l) ((ald))(d+l) -I- (a

Parts (4) and (5) follow from (2) and (3) and the facts that ad aId a and
(ad)d+ (ald)Id+ --2aId + a. rq

In ], Aramova, Herzog, and Hibi developed Gr6bner basis theory for exterior
algebras. They showed that with minor modifications Gr6bner basis theory known
from polynomial rings carries over. So in what follows we will let R be the polynomial
ring S or the exterior algebra E on X xn. We will freely cite results proved only
in the case of polynomial rings, since the proofs in the case of exterior algebras
are identical. We extend the definition of a Gotzmann vector space given in 2 to
subspaces of E" A vector space V Ed is called Gotzmann, if codim(V El, Ed+l)
codim(V, Ed)(d. We use the term syzygies to denote a minimal set of generators for
the first syzygy module.

LEMMA 4.6. Let V c_ Rd be a Gotzmann vector space. Let I (V) and
J in(l). Suppose that gl gr is a basis for V Id such that the syzygies on
in(g) in(gr) are linear. Then the syzygies on gl gr are linear.

Proof. As Jd is a Gotzmann vector space, J is generated by in(gl) in(gr).
Thus the syzygies of J are linear.

Let to (to ton) be a weight vector such that in(l) in<o(l). We add a
new variable and homogenize I with respect to to, as in [5, p.343]. We denote by
[ the ideal obtained in this way. By [5, 1517] we have that R[t]/[ is a flat family
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over k[t] whose fiber over 0 is R/J. Therefore the syzygies of over R[t] are linear
in x xn. They provide a (non-minimal) generating set of syzygies when we set

1. The fiber of R[t]/l over is R/l, hence the syzygies of I over R are linear.

PROPOSITION 4.7. Let V c_ Rd be a Gotzmann vector space. Ifg gr is a
basisfor V, then the syzygies on gl gr are linear.

Proof. Let ! (V) and J gin(I), where gin(I) denotes the generic initial
ideal of I. Assume that we are in general coordinates, so that gin(l) in(l). We
have that Jd is Gotzmann and is generated by in(gl) in(gr). The ideal J is
generated by Jd; this follows from Gotzmann and Aramova-Herzog-Hibi Persistence
Theorems. If R is an exterior algebra or char(k) 0, then J is a strongly stable
ideal ([1], [5, Ch. 15]). So the syzygies on in(gl) in(gr) are linear. Applying
Lemma 4.6, we get that the syzygies on g gr are linear.

It remains to consider the case when R is a polynomial ring and char(k) -7/: 0.
Following [1], let inm(gi) be the monomial such that in(g/) otiinm(gi) for some
t E k. Then inm(gl) inm(gr) form a basis of Jd. We will show that the syzygies
on the inm(gi)’s are linear. Since the syzygies on the inm(gi)’s do not depend on k [2,
Corollary 5.3], [3, Theorem 1.3 (b)], we can replace k with any field of characteristic
0. By the first part of the proof we have that the syzygies on the inm(gi)’s are linear.
This implies that the syzygies on the in(g/)’s are linear, so by Lemma 4.6 the syzygies
on the gi’s are linear.

We are ready to prove Theorem 4.2. One ofthe steps in the proofofTheorem 4.2 (3)
is to show that we can assume that the module M has the form (14). In this step we
use ideas from Bigatti’s dissertation 1995 which were also used by Aramova, Herzog,
and Hibi ].

ProofofTheorem 4.2. First we will show that it is enough to assume that M has
the form

M (S/ll)l ) (S/I2)2 ... (S/lk)k, (14)

where I1, 12 Ik are ideals in S. That we can make this assumption with respect
to parts (1) and (2) of Theorem 4.2 follows from the Hulett-Pardue theorem [8], [9],
[13], [14]. However, there is a very simple direct proof, so we present it here. Define
a partial order >- on the elements of F of the form fei (where 0 f E S) as follows:

fei >- gej iff < j.

For a nonzero element r i>l fiei define the initial form of r with respect
to >-, in>.(r), to be 3ej, where j min{i f/ 0}. For any x SI we
have in>.(Nd N xFd-) C_ in(N)d fq xFd_, so dim(Nd f3 xFd-) dim(in>.(Nd N
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XFd_l) < dim(in>.(N)d t-I XFd_l). This implies that dim Nd >_. dim(in>-(N)d). Let
M’ F/in>. (N). For any d we have dim MJ dim Md and from the above discus-

sion it also follows that dim Mm’d > dim Md, so to prove Theorem 4.2 (1) and (2) we
can replace M by M’ and assume that M has the desired form (14).
Now assume that the hypothesis of Theorem 4.2 (3) is satisfied. Let >hlex denote

the homogeneous lexicographic order on monomials in S. Define the homogeneous
lexicographic order > on monomials in F to be the lexicographic product of >- and
>hlex; i.e.,

mei > nei if < j or/= j and m >hlex n.

Let in> (N) I(1)1 )I(2)2... l(k)k, where the l(J)’s are monomial ideals
in S. The hypothesis of Theorem 4.2 (3) implies that for 1 < j < k, "(j)

"d-deg j -I-
(j) S1 and I(dJde. C Sd-degj is a Gotzmann vector space. Then Proposition 4.7-deg j tGj-

implies that if gl gr form a basis of Nd, then the syzygies on in(gl) in(gr)
are linear. For 1 _< i, j _< r let mij in(gi)/GCD(in(gi), in(gj)) and for 1 _< <
j _< r let hij be the remainder of mjigi mij gj with respect to gl gr when we
perform the division algorithm [5, 15.6 and 15.7]. Then deg hij d + 1 whenever
hij O. But in(hij) is a minimal generator of in> (N) when hij 0 and in> (N)
does not have minimal generators in degree d + 1, so all hij 0. By the Buchberger
criterion [5, Theorem 15.8] this implies that the gi’s form a Gr6bner basis for N,
hence the in(g/)’s generate in> (N). This shows that to prove Theorem 4.2 (3) we can
replace M by F in> (N) and thus assume that M has the form (14).

Let Hj(n) Hs/6 (n) be the Hilbert function of S/Ij and Hj(n) H-g/-i (n) be

the Hilbert function of S/lj, where I is the image of I in S. Let aj deg j. We can
assume without loss of generality that a 0 >_ a2 > a3 > >_ ak. Then 0
and for any n >_ 0,

k k

dim Mn E dim(S/lj)n_a Hj<n aj) and
j=l j=l

k k

dim"n E )--

dim(S/lj)n-a E-j(n aj).
j=l j=l

By Green’s theorem [7], Lemma 4.5 (1), and Lemma 4.4 (1) it follows that

k k k

dimd y"j(d aj) <_ Hj(d aj)(d-a) < E Hj(d aj)(d-p)
j=l j=l j=l

<_ (Hj(d-aj)) =(dimMd)(d_p),
j=l (d-p)
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which proves part (1) ofTheorem 4.2. ByMacaulay’s theorem 12], Lemma4.5 (2),
and Lemma 4.4 (2) it follows that

k k k

dimMd+l ’ Hj(d + aj) _< Hj(d aj)ld-a) <

_
Hj(d aj) (d-p)

j=l j=l j=l

< Hj (d aj (dim Md)(d-p), (15)
j=l

which proves part (2) of Theorem 4.2.
To prove part (3) note that dim Md+ (dim Md)(d-p) implies that all inequalities

in (15) are equalities. Then for 1 < j < k wehave Hj (d+ -aj) Hj (d-aj) Id-a>
Hj(d aj)<d-p) so by the Gotzmann Persistence Theorem [6] and Lemma 4.5 (3) it
follows that Hj(d +2-aj) (Hj(d-aj)(d-a))(d+l-a.) (Hj(d-aj)(d-P))(d+l-p).
Applying Lemma 4.4 (4) we get

k k

dim Me+2 Hj(d + 2 ay) (Hj(d aj)(d-P)) (d+l-p)
j----1 j=:l

Hj (d aj) (d-p) (dim Md+l (d+l-p)

j=l

which proves Theorem 4.2 (3). El
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