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AFFINE SURFACES FIBERED BY AFFINE LINES
OVER THE PROJECTIVE LINE

DAVID WRIGHT

0. Pinchuk’s example and Peretz’ follow-up

The classical Jacobian conjecture asserts that if k is a field of characteristic zero and
@: A? — Alis apolynomial map whose Jacobian determinant is a non-zero constant,
then ¢ has a polynomial inverse. A related conjecture, the “‘real Jacobian conjecture”,
asserted that if kK = R and the Jacobian determinant of ¢ is non-vanishing, then ¢ is
a global homeomorphism on R2. This latter statement was shown by S. Pinchuk to
be false by virtue of the following counter-example:

Pinchuk’s example. Let X and Y be variables, and let

t = XY -1
h =tXt+1)

h+1
=Xt +D—).
f=&t+1 ( X )
Furthermore, let p, g € R[X, Y] be defined by

p=f+h

g = —1* —6th(h+ 1) — 170fh — 91h* — 195 fh* — 69h> — T5h* f — ?h“'
Then
a(p,
m 3P _ 241y (134 150) 7 + 2.

3(X,Y)

(This equation can be verified by a symbolic algebra computer program.) One quickly
sees that Xf = 1 (mod ¢), hence 3(p, q)/3(X, Y) has no real zeros; i.e., the map
@: A2 — A2 defined by (p, q) is unramified at all real points. The locus p = 0
contains the component X7+ 1 = 0, whichcan be writtenas Y = (X —-1)/X 2 which
is disconnected. It follows that p = 0 is not both smooth and connected, hence ¢ is
not a diffeomorphism on R2. Thus this polynomial map is a counter-example to the
“real Jacobian conjecture.” The reader is referred to [11] for details.
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590 DAVID WRIGHT

Follow-up by Peretz. In[10], Ronen Peretz observed that the polynomials p and
g in Pinchuk’s example lie in the subring R[z, #, f] C R[Y, XY, X2Y — X]. He
recognized the latter ring with R replaced by C as “merely a special case of the type
of rings that arise in the theory of assymptotics of polynomials” [10, §2]. Peretz
showed there does not exist a pair of polynomials p, g € C[Y, XY, X?Y — X] with
a(p, q)/9(X, Y) non-vanishing (i.e., constant) on A%. This fact is essentially the spe-
cial case m = 2 of the following more general theorem, which appears as Theorem 4
in [10]:

THEOREM 0.1 (PERETZ). There does not exist a pair of polynomials
p,q € ClY, XY, X2Y +aX, X3Y +aX?, ..., X"Y +aX™ 1],

where o € C*,with g—(()‘;—"{,l) non-vanishing (i.e., constant) on Aé.

In §3 of this paper we will generalize Peretz’ theorem by giving a larger class of
subrings of C[X, Y] which could not contain such p and g (Theorem 3.3). We will
furthermore show that the rings in this larger class are precisely the affine coordinate
rings of affine surfaces which are A‘}:-bundles over PL, which are studied in §2. In
§4 we provide some evidence that such objects are significant in the study of the
Jacobian conjecture.

1. Geometric interpretation of the case m =2

Let k be afield of characteristic zero. We first consider the ring k[Y, XY, X 2y X1,
which, for k = R, contains the polynomials p and g of Pinchuk’s example. Fork = C
this is the ring that appears in the above theorem of Peretz, for m = 2. We will give
geometric reasons why no polynomials p, g from this ring could have constant non-
zero jacobian determinant.

PROPOSITION 1.1.  Let k be a field, and let V = P} x P, — A, where A is the
diagonal. V is an affine variety, and the ring k[Y, XY, X*Y — X] can be realized as
its coordinate ring in such a way that the containment k[X, Y] D k[Y, XY, XY — X]
corresponds to the open embedding of . Aﬁ in V which identifies Ai with the complement
of a fiber of one of the standard projections V — P,

Proof. 'We will appeal to two facts which will be proved later in this paper. That
V is affine follows from Theorem 2.3.! Realizing P} x P} as {(xo : x1), (%o : y}

'In this case, V is embedded in P} x P}, which is the Nagata-Hirzebruch surface Fo. In the notation
of Theorem 2,3, we have T = A ~ Do+ F. This tellsus n = 0 and k = 1, so the affineness of V follows
from (3) = (1).
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the diagonal A is defined by x;y0 — xoy1 = 0. Let Uy be the complement in
V = ]P,‘( X ]P,i — A of xo = 0, and let U; be the complement in V of x; = 0.
Then V = Uy U U;. This is all depicted in the following diagram.

P} x P} = {(x0 : x1), (00 : Y1)

Yo=0
x;=0 X()=0
x1y0 — xoy1 =0
»n=0

Let X = %, and let Ao = k[X]. The complement of xo = 0 in P! x P} is
Proj Aol yo, y1], and A is defined here by the equation yoX — y; = 0 (homoge-
neous in yg, y;). Note that Uj is the complement of A in Proj Ag[yo, ¥1], and since
Aolyo, y11 = Aolyo, yoX — y1] we have
Yo
Uy = SpecAy | ——
° pec o [)’OX - }’1]
Yo
= Speck[X,Y], where Y = ——.
pe YoX —y

Setting X' = % = X ~land A = k[X'], we similarly have

Spec A [————yi—-—]

U
: Yo—nX’'

Y1
Yo —nX’
An easy computation shows Y’ = X 2y — X. Since V = Uy U U, we have
F'(V) = TUy) NT(Uy) = k[X, YINk[X', Y]
= k[X,Y]1Nk[X"', X?Y — X].

= Speck[X',Y'], where Y =

From Theorem 3.1, with m = 2, we obtain I'(V) = k[Y, XY, X?Y — X], and
V = Speck[Y, XY, X2Y — X]. The containment k[X, Y] D k[Y, XY, X?Y — X]
obviously corresponds to the embedding Up (= A2) C V, so the proposition is
proved. O
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Remark. For the case k£ = R, we have
V =Pk x Pk — A = SpecR[Y, XY, X?Y — X]

Identifying Aé with Uy as above, we see that Pinchuk’s map ¢ = (p, ¢) extends to a
mapg: V - Anza. The following proposition shows that the extended map ¢ “folds”
(i.e., has vanishing jacobian determinant) along the complement V — Uj.

PROPOSITION 1.2. Themap §: V — A2 defined by Pinchuk’s polynomials (p, q)
has jacobian determinant zero at all points (real or complex) of V — Up.

Proof. Inthe notation of the previous proof, wehave V—Uy C U, = Spec R[X’, Y'],
where we calculate the jacobian determinant with respect to the variables X’ and Y’.
Since X = X’ 'and Y = X"?Y’ + X’, we have

Wpg) _ Apg) X Y)
X, Y)  aX,Y) aX'.Y)
Ap.q) X, XY +X)

2

(by the chain rule)

(X, Y) (X', Y
_dpg | -3 O
T AX,Y) | 2XxY'+1 X?
_d(p,q)

T X, Y) =D

= —(+ [+ U3+ 15h) P+ f2  (by (1))
Writing ¢ and f in terms of X’ and Y’, we get
t=XY, f=+DXXY'Q +1)+ 11X,

which shows that X’ divides ¢ and f ink[X’, Y']. ThereforeX 2 divides a(p,q)/9(X’,
Y’). Since X’ = 0 defines the complementary fiberin U,, we see thatd(p, ¢)/3(X’, Y")
vanishes along it. O

In light of Proposition 1.1, Peretz’ Theorem (0.1) is equivalent to the following
unpublished theorem:

THEOREM 1.3 (KUMAR-MURTHY-NORI). There does not exist §: P x Pt —
A — AL such that 3|y, is étale.

Sketch of proof. The statement @|y, is étale is equivalent to the assertion that
a(p, q)/3(X, Y) is a non-zero constant, i.e., @|y, is unramified; flatness is automatic
under this hypothesis [2, Ch. V, Prop. 3.5]. Therefore, by Proposition 1.1, this theorem
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is the m = 2 case of Theorem 3.3, so we only sketch the proof as conceived by Kumar,
Murthy, and Nori. Let V = P x Pt — A, A = C[Y, XY, X?Y — X] = T'(V),
and let X', Y’, Uy, and U, be as in the proof of Proposition 1.1. Such a ¢ is given
by p,q € A withd(p, q)/3(X,Y) € C*. Kumar-Murthy-Nori observed that ¢ must
in fact be étale on all of V. This results from the fact that 3(p, q)/9(X’,Y’) =
—3(p,q)/9(X, Y) (as in (2) of the proof of Proposition 1.2). This also shows that
dpAdq =dX AdY = —dX' AdY’, and this 2-form is a generator for Qi/c» since it
generates on both of the open sets Up and U,. Hence Q% sc is free. The containment

Clp, q] C A induces from the De Rham sequences of C[ p, g] and A the commutative
diagram

Ql —_—
Clpql/C o eCipal/C

! l

d
1 2
QA/cc - QA/c
in which we have

pdq +— dpAdq

w — dX AdY

for some w € Q) ,c- It is then shown that the equation dw = dX A dY is im-
possible because dX A dY is not integrable. This uses the graded structure on
A = C[Y, XY, X?Y — X] and Q4,c determined by setting deg X = —1,deg¥ = 1.
Since dX A dY is homogeneous of degree O, if it is integrable it should lift to a
homogeneous 1-form of degree zero, which can be shown by a direct argument not
to be the case. [

We conclude this section by again pointing out that Pclc X ]P‘fC — A is an affine
variety, by Theorem 2.3, and observing that it is an Al-bundle over PL (via either
of its two canonical projections onto ]P‘}:). In the next section we will describe the
coordinate rings of all affine A{-bundles over P, and see that these include rings
of the type which appear in Theorem 0.1, i.e. those of the form C[Y, XY, X?Y +
aX, X3Y +aX?,...,X"Y + aX™ '], m > 2. We will then prove Theorem 3.3,
which includes Theorem 0.1 and generalizes Theorem 1.3, replacing Pl x PL — A
by a larger class of Al.-bundles over P..

2. A{-bundles over P{,

We begin with some preliminaries. Let V be a variety over C (which in this
discussion includes being reduced, irreducible, and separated). Given another variety
X and a morphism 7: V — X, we say that V is an A}c-bundle over X (via ) if X



594 DAVID WRIGHT

has a cover {X;} such that 7 ~' (X;) is compatibly isomorphic to X; x A}C foralli. An
obvious weaker condition is that 7 is a flat morphism and for each point p € X, the
scheme-theoretic fiber 7 ~!(p) is isomorphic to A,'c( »» k(p) being the residue field at
p, in which case we say V is an Al-ﬁbration over X. In turn, a stronger condition
is that V is a rank one vector bundle, or line bundle, over X. The main result of [7]
asserts that if V is an A!-fibration over X, then it is an A{-bundle.? Let us also note
that if X is 1-dimensional, as in the case X = ]P’}C, flatness is automatic, so that V is
an A(}:-bundle if and only if each fiber of 7 is an A!. The main result of [3] says that
n-space bundles are vector bundles in the case where X is affine. The following easy
theorem futher clarifies the relationship between Al-bundles and line bundles:

LEMMA 2.1. Let V be a variety withamap n: V — X making V an Aé-bundle
over X. Then V is a line bundle if and only if w admits a section.

Proof. A line bundle has a zero section (and possibly other global sections), so
one implication is trivial. Conversely, assume V is an A}C-bundle and let {X;} be a
cover of X such that 7 ~!(X;) = X; x AL. Then w~!(X;) is the trivial line bundle
over X;, since its coordinate ring is a polynomial ring in one variable over I'(X;), and
any section of |, gives rise to a choice of variable, unique up to multiplication by a
unit in I'(X;). We can view the A}C-bundle V as being constructed from gluing data
over intersections X; N X;. The existence of a section provides a compatible choice
of variable (i.e., a canonical “origin”), giving rise to sheaf of rank one projective
Ox-modules making V is a line bundle over X. 0O

The following is a well-known fact about on ruled surfaces.

LEMMA 2.2. Let S be a non-singular projective surface, B a non-singular curve.
Let T: S — B be a morphism making S a birationally ruled surface, i.e., S is
birationally equivalent to B x P{ with & being compatible with the projection B x
]P’fC — B. Then the general fiber of T is isomorphic to ]F"é:. Every fiber not isomorphic
to ]P’}: is singular. Every singular fiber is a connected union of curves isomorphic to
]P’(}:. In each singular fiber there exists a component having self-intersection —1.
If E is a component having multiplicity one in a singular fiber, then there exists a
component E' # E of the same fiber with (E'’*) = —1.

Proof. Compatibility of 7 with the projection onto B implies that each excep-
tional curve for the birational map from S to B x P«]c must be contained in some
fiber of 7. If we take remove from B the finite set of points whose fibers contain
exceptional curves and/or fundamental points, we get an open set By C B such that

2This result is not known to be true for n-space fibrations for n > 2, except when n = 2 and 7 is an
affine morphism [12].
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71(Bo) = By x PL; hence the general fiber of 7 is isomorphic to P{. Thus 7
satisfies the hypothesis of [9, Lemma 2.2, p. 115], which tells us all the facts as-
serted above (and more) regarding singular fibers. Finally, a non-singular fiber must
have arithmetic genus zero, since arithmetic genus is constant amongst fibers of a flat
morphism, hence it is isomorphic to IP(IC. O

THEOREM 2.3. Let V be a variety withamap m: V — ]P’}: making V an A‘}:-
bundle over ]P’fc. Then V can be embedded as an open subvariety in a Nagata-
Hirzebruch surface F, in such a way that V. = F, — T where T is a section, and
the canonical projection F,, — Mc extends m. In this situation, T ~ D, + kF (D,
being the special section in F,, F a fiber). Moreover, the following conditions are
equivalent:

(1) V is affine.
(2) V isnotaline bundle (i.e., by virtue of Lemma 2.1, w does not admit a section).
B k=n+1.

The integers n and k are uniquely determined by V and .

Proof. We assume the reader is familiar with the Nagata-Hirzebruch surfaces
and their properties, as well as basic surface theory. We may embed V as an open
subvartiety of a projective surface S, and by blowing up some points not in V we may
assume 7 extends to amap 7: S — IP}C, putting us in the situation of Lemma 2.2.

We claim that each reducible fiber of 7 has a component not intersecting V with
self-intersection —1. Let F be a reducible fiber, and let E be the (unique) component
intersecting V. Since V is an Al-bundle, E has multiplicity one in F, and Lemma
2.2 asserts the existence of another component with self-intersection —1, proving the
claim.

We can contract the component whose existence is established above, and continue
until this fiber, and every fiber, is irreducible, thus isomorphic to P}, by Lemma
2.2. The resulting surface S is then a IP’}C-bundle,3 hence is isomorphic to one of
the Nagata surfaces F,. Recall that the Picard group of F, is freely generated
by the classes of D, (the special section) and F (a fiber), and that (Dﬁ) = —n,
(F - D,) = 1, and of course (F?) = 0. This determines the intersection theory in
Fn. One sees that the complement T = F, — V has one point in each fiber of 7,
hence it maps isomorphically to Pi.. Clearly (T, F) = 1, and from this and the above
information, one deduces that T ~ D, + kF for some integer k. Note, then, that
(T - D) = ((Dn +kF) - Dy) = (D?) + k(F - D,) = —n + k.

If V is affine it cannot contain a subvariety isomorphic to ]P?C, hence 7 does not
admit a section. Hence (1) = (2).

3This is because S is geometrically ruled; see [8, Ch 'V, §2].
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Assume k < n. Then (T - D,) < 0. If (T - D,) < 0, then T = D, (since both
are prime divisors). Therefore V = F, — D,, which is known to be a line bundle. If
(T - D,) =0, then D, C V, which shows that 7 admits a section. This establishes
2)=(@3).

Assume k > n + 1. We know that V is affine if its complement T is the support
of an ample divisor,* which, since T is irreducible, means T itself is ample. By the
Nakai-Moishezon Criterion [8, Ch. V, Thm. 1.10, p. 365], we must show (T - C) > 0
for all irreducible curves C. Since T ~ D, + kF, we have (T?) = —n + 2k > 0,
so the condition holds for C = T. Also, (T - D,) = —n+k >0and (T - F) =1,
verifying the condition when C is D, or any fiber. Any other C must have positive
intersection with a fiber and non-negative intersection with D,. From this it follows
that (T - C) > 0. Therefore V is affine. This shows (3) = (1), completing the
circle.

Lastly we establish the essential uniqueness the embedding V < F, extending
7, from which will follow the uniqueness of n and k. Suppose V is also embedded in
Fm, as in the theorem, with V = F,, — T’, T’ being a section, with T’ ~ D,, + £F’
(D, the special section in F,,, F' a fiber). This determines a 7 -compatible birational
map ¢: F, --» F,,. The fact that ¢ is 7w-compatible implies that T (being a section
for ) is not an exceptional curve for ¢; i.e., T does not collapse. Hence T maps to
T’, and 7 is an isomorphism at all but finitely many points of 7. These points are
precisely the fundamental points of ¢. We show no such fundamental points exist.
Assuming x were such a point, we proceed to minimally resolve ¢ at x by blowing
up x and its infinitely near exceptional points; the birational map that ¢ induces
on this surface will again be called ¢. Let E denote the union of rational curves
obtained in the process and note that ¢ must collapse E to a single point x’ on T’.
(This follows from the -compatibility and the fact that all other points in the fiber
of x’ lie in V, as embedded in F,,.) This shows that, in fact, the last blow-up was
redundant, contradicting the minimality of the resolution. Hence ¢ is an isomorphism
(som = n), and ¢(T) = T’ (so £ = k), concluding the proof. O

3. Coordinate rings of affine Al.-bundles over P{

The connection between Theorem 0.1 and affine varieties which are Al-bundles
over P}, is illuminated when we examine the “gluing data” which patches together
two copies of A(z: ‘to construct such a bundle V as their union. This leads to an explicit
description of I'(V) as a subring of C[X, Y], corresponding to the containment of
one of the Asin V.

Let V be an Al-bundle over P{. with structure map w: V — PL. Choose X
such that the function field of P}: is C(X), and let Uy = n~!(Spec C[X]), U; =

4According to Goodman’s criterion for surfaces [5, Thm. 2], this condition is also necessary for V to
be affine.
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n~!(Spec C[X~'1). Then V = Uy U U,. Both Uy and U; are Al-bundles over A,
and since these are known to be trivial, we have Uy = Aé and U, = Aé.

THEOREM 3.1. Let V = Uy U U, and X be as above and assume further that V
is affine. There exists Y € I'(V) such that

3) Uy = Spec C[X, Y] U, = SpecC[X', Y']

where

@ X=X"' Y=X"Y+uX""+uX" +  tan X
wherem > 2 and oy, ..., a1 € C, not all zero. Moreover, letting A = I'(V), we
have

A =C[t03th"'vtm]

where

) o =Y
t = XY
h=XY+aX
B = X3Y+011X2 +ar X
tn = X"Y +a1 X" '+ X" 4t ap X (=),

In fact, A is a free module over Clty, t,,] with basis {1,t1, ..., tu—1}.

Conversely, given ty, ..., ty asin (5) with oy, ...,an—; € C, not all zero, then

letting A = Clty, ..., tn), and letting X' and Y' be defined by (4), we have Spec A =
Uo U Uy, where Uy and U, are as in (3), and Spec A is an Al-bundle over P{, =
Spec C[X] U Spec C[X'] by virtue of the containments C[X] C C[X, Y], C[X'] C
CIx’, Y'].

Proof. Certainly we can choose Y € I'(Up), Y' € I'(U;) such that Uy =
Spec C[X, Y1, U, = Spec C[X’, Y'], where X’ = X~!. These preliminary choices,
however, will need to be modified. Note that Uy N U; = Spec C[X, X -ly] =
Spec C[X, X~', Y'], whence C[X, X~!,Y] = C[X, X~', Y'] (both viewed as sub-
rings of the function field C(V)). From this it follows that Y’ = BX™Y + f(X, X~1),
where B € C*, m € Z, and f(X,X™") = Y v; X' is a Laurant polynomial in
X with coefficients in C. If f(X, X~!) = 0, the retractions C[X, Y] — C[X],
CI[X’,Y'] — C[X'] sending Y and Y’, respectively, to O are compatible and deter-
mine a section for the structure map . Since V is affine, this violates Theorem 2.3’s
condition (2) for affineness; hence f(X, X~!) # 0. Replacing Y by BY, we may
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assume B = 1. Now replace Y by ¥ + Y, vitm X' (a legitimate replacement for
Y in C[X, Y]) to effect v; = O for i > m. In similar fashion, after replacing Y’ by
Y=Y X =Y =Y, viX' wehavev; = Ofori < 0. Note thatif m < 1all
coefficients v; are zero, i.e., f(X, X -1y = 0, which is impossible, as shown above.
Hence m > 2 and, letting «; = v,,—;, we have arranged (4).

Since V = UpyUU,, we have A = T'(Up) NT'(U;) = C[X, YINC[X’, Y']. Clearly
the elements &, . . . , ¢, as defined in (5) lie in C[X, Y]. The equations ¢,, = Y',t;_; =
X't —a;,i =1,...,m, and tp = X't; show that fy, ..., t, € C[X’, Y'] as well.
So letting R = Cl[1, ..., t,] we have R C A and thus the following series of ring
containments:

(6) Cloo,tnl € RS AC CIX, Y]

We claim that R is a free C-module with basis {1, ¢, ..., t,,— }. Toward proving this,
we first calculate the rank of R as a C[#, #,,]-module by adjoining 1/¢, to all the rings
in (6). Since X = 1, /1y, R[to'l] contains X, Y, and Y ~! and we have

(7 Clto, 15", tm] € RIt5'1 = Al;'1=CIX, ¥, Y711,

Note that C[#, 7, ' tn]1=C[Y, Y™, t,] and that #,, has degree m as a polynomial in
X over the ring C[Y, Y1, the leading coefficient being Y, a unit. It follows that the
rank of C[X, ¥, Y~!] over C[to, to‘l , tm], and hence the rank of R over Clz, t,,], is m.
To prove the claim it suffices to show that{1, ¢, ..., t,—1} generate R as a C[z, t,]-
module. Since R is generated as a C[#, t,,]-module by monomialsin {1, ¢, ..., t—1},
it suffices to show that for i, j € {1,...,m — 1}, t;tj = Y_, hety with hy € Cltg, 1,0].
This, in turn will follow if we can show #;¢; = t;_1tj41 + Y, hete With by € Clig, t].
Note from (5) that f; = X (tj_1 +o;_1) (setting g = 0) and tj 41 = X (¢; +a;), whence
i (t; + o) = tj41(ti—1 +a;—1). This can be written as £;¢; = t;_1tj11 — ajt; + i1,
accomplishing the goal and proving the claim.

It remains to show R = A. By the first equality in (7), it suffices to show that
if f € Aand tof € R, then f € R. Given such an f, then using the basis
(1,11, ... tmet), Wewrite to f = bo+Y 1, bit;, where by, by, . . ., by € Cltg, ).
Fori =0,...,m — 1, write b; = ¢; + tyd; with ¢; € Cl[t,,], d; € Clty, t,,], and set

m—1
®) fi=f—do— ) d;.
i=l1
Then

m—1
fofi = tof —todo — Zditoti
i=1

m—1 m—1
b + Z bit; — tody — Z tod;t;
i=1 i=1
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m—1

= (bo — todo) + Y _ (bi — tod)t;

i=1

m—1
= ¢co+ ZC,’ti.
i=1

We restate the resulting equation:
m—1
Q) tofi=co+ ) citi.
i=1
Now we observe that fj € A ¢ C[X’, Y'], and we view equation (9) as a polynomial
equation in the indeterminants X’ and Y’. From (5) we have t,, = Y', tp = X""Y’ —

O(]X/—Olzx/z—' . ~—am_1X"”_l,andt,- = X’m—iY’—oz,-—ai.,.lX’—- . ~—am_1X/m_l_i
fori = 1,...,m — 1. One sees that fy has degree m as a polynomial in X’, and, for
i=1,...,m—1,¢ hasdegreem —i. Since cy, ..., cp—1 € C[t,,] = C[Y'], the left

side of equation (7) has degree > m while the right side of the equation has degree
< m — 1. It follows that f =0, i.e., f =dy+ Z;’:ll d;t; (see (8)); hence f € R as
desired.

We now prove the converse. Denoting by (Up)x the principal open set in Uy
defined by the function X, we have (Up)x = Spec C[X, X1 Y]= (U))x. Hence a
prevariety V = Uy U U can be glued together. The containments C[X] c C[X, Y]
and C[X'] ¢ C[X',Y'] define amap n: V — ]P’}: = Spec C[X] U Spec C[X']
making V an Al-bundle over P{.. This morphism shows that V is separated (i.e., a
variety) since it separates points in Uy — U; from points in U; — Uy. We claim that
7 does not admit a section. Such a section would give compatible ring retractions
¢o: C[X, Y] —» C[X], ¢1: C[X',Y'] > C[X']. This is impossible, for if ¢o(¥Y) =
h(X), then we would have ¢; (Y') = ¢ (X" Y4+ a1 X" '+ X" 24 - a1 X) =
X"h(X) 4+ o1 X" ' + 02 X™ 2 + .-+ + @1 X, which cannot lie within C[X’]. The
claim is proved, and Theorem 2.3 tells us that V is affine. Just as before, we can show
that T'(Up) NT(Uy) = A =Clty, ..., tn). Therefore V = Spec A. O

Relationship between Theorem 2.3 and Theorem 3.1. It is natural to ask: For V
an affine Al.-bundle over P, what is the relationship between the data of Theorem
3.1 (the integer m and the polynomial a; X! 4+ 0 X2 + - - + &,,_1 X) and that
of Theorem 2.3 (the integers n and k). The author has established that m = n + 24,
where d = k—n (whichis necessarily > 1by (1) = (3) of Theorem 2.3). The proof
is a calculation and will not be given here. However,the author has not found a good
way to recover n and k from m and the polynomial a; X"~ !+, X" 24 - - 4ot X.

Peretz’ Theorem (Thm. 0.1) is related to the following conjecture:

CONJECTURE 3.2 (GEOMETRIC FORMULATION). Let V be an affine variety which
is an Al-bundle over Pi,, U = V — F, where F is a fiber in V. There does not exist
f: V- Aé such that f|y is étale.
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Equivalently, by virtue of Theorem 3.1:

CONJECTURE 3.2 (ALGEBRAIC FORMULATION). There does not exist a pair of poly-
nomials

p,q € C[to,tl,...,tm] C C[X, Yl,

wherety, ty, ..., by, are as in (5) of Theorem 3.1 (¢y, . . . a1 € C, not all zero), with
33(({(1% non-vanishing (i.e. constant) on Aé.

The following theorem proves a special case of the above conjecture.

THEOREM 3.3. Conjecture 3.2 holds in the case where the coefficient a is non-
zero.

Remark. This statement may seem a bit peculiar, but it includes Peretz’ result
(Theorem 0.1), which is precisely the case oy # 0,000 = - - - = -1 = 0.

Proof. Letting A = C[#, t,...,t,], we are in the situation of Theorem 3.1,
and we will freely refer to its various notations Suppose there exists p, ¢ € A with
g—((% € C— {0}. We can easily arrange that 222 3 x Y) = 1,so thatin Q% ¢ We have
dpAdq = dX AdY. In the diagram below, the rows are from the De Rham sequence
for A and C[X, Y], respectively. These sequences are exact by [6, Thm. 113 (We will
only need the exactness of the second row.) The fact that A — C[X, Y] induces an
open embedding of affine varieties insures that the vertical maps are injective (hence
they are denoted as containments).

A 4 Qe 4 Qe 2 dpadg
n N N I

d d
Cix,Yl — Qé:[x,)']/c — Q%:[x,y]/c > dX AdY

h — XdY —pdq ~— 0.

Since d(XdY — pdq) = dX AdY —dp A dgq = 0, there exists (by exactness)
h € C[X,Y] with dh = XdY — pdq. Along the fiber F = V — Uy, pdq is
clearly holomorphic since p and g lie in A. However, we claim that X dY has a

5The theorem of Grothendieck quoted asserts that the cohomology in the middle positions calculate
the complex cohomology H'(W, C), for W = Spec Aand W = Aé respectively, so the exactness follows
from the simple-connectivity of W in each case. Simple-connectivity (in fact, contractibility) of Aé is well
known. Although, as we point out above, exactness of the top row is not needed here, we note that simple-
connectlvny of the bundle V = Spec A follows from the surjectivity of the map of fundamental groups
T (AC) — 1(V) arising from the open embedding A C V; this is surjective because complement of
A% in V has real codimension two.
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pole of order 1 along F. This derives from the fact that F is defined by X' = 0 on
U, = SpecC[X', Y'], where X' and Y’ are as in (4). One easily sees from (4) that

X=X""and? = X"Y —a; X' —a;X? — - — a1 X", so that
1 -_—
XdYy = }—’d (X’mY/ —a X _a2X/2 ——— gy X l)

1 B =

= —}F[(mxlm by —a; = 20X — -+ — (m — Dap_ 1 X™ 2)dX’

- X"dy']

= (mX/m_ZY/ —OllX/_I _ 20(2 — = (m - 1)am_1X’m"3) dx’'

—x"dy’.

The presence of term —a; X '~! in the last expression together with the fact thato; 3 0
shows that X dY has a pole of order 1 along F, establishing the claim. It follows that
X dY — pdq = dh also has a pole of order 1 along F. Thus h must have a pole along
F as well. Considering 4 as an element of C[X’, X, Y’], this says h ¢ C[X', Y'],
i.e., as a Laurant polynomial in X’, h has negative order. But then g—’,% has order
< —2, and since

oh oh
dh = —dX'+ —dY’,
X’ + Yy’
we see that dh must have a pole of order > 2 along F, contradicting our previous
conclusion that the order of this poleis 1. O

Remark. Theorem 3.3 answers Conjecture 3.2 affirmatively in the case m = 2
(since we must have «; # 0 in this case), so the simplest unresolved case is when
m = 3, a; = 0. Here we can easily arrange that oy = 1 (replace Y by oY), leading
us to consider:

SIMPLEST UNRESOLVED CASE OF CONJECTURE 3.2. There does not exist a counter-
example(p, q) to the Jacobian conjecture with p, q € C[Y, XY, X?Y, X3Y + X].

Note that, setting deg X = —1 and deg Y = 2, the ring C[Y, XY, XY, X3Y + X]isa
graded ring, giving an action of the algebraic group G, on V = Spec C[Y, XY, X?Y,
X3Y + X]. This structure may be useful in solving this special case.

4. Connection to the Jacobian conjecture

The two-dimensional Jacobian conjecture, which asserts that an étale map f =
(p,q): AZ — Al isanisomorphism, remains unproved, even (to the author’s knowl-
edge) in the case where the integral closure of C[p, q]in C[X, Y] is smooth. We will
refer to this latter condition as the case of “smooth integral closure”.
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We begin by establishing a criterion for affineness which will be needed in the
proof of Theorem 4.3.

PROPOSITION 4.1. Let W = Spec A be an affine scheme, with A a normal Noethe-
rian domain. Let Z be an irreducible subvariety of codimension one in W which is
locally defined by one equation, set-theoretically. Then W — Z is affine.

Proof. Set V.= W — Z. Let a be the radical ideal in A defining Z, and let
qi,...,q, be the height one primes of A containing a; these correspond to the
irreducible components of Z. Let B = I'(V, Oy). Normality implies that

B= () A,

htq=1
qa#q)...ar

We claim that aB = B. If not, choose a prime ideal 3 in B containing aB, and let
p =P N A. Then p O a. We have a local containment A, C Bgg. Our assumption
about Z says that there exists f € Ap suchthat,/fA, = aA,. This says f has zeros
only along the components Z in Spec Ay, i.e, those divisors of Spec A, corresponding
to the height one primes q; Ay (for those g; contained in p). Noting that all height
one localizations of By are height one localizations of B and of Ay, we see that f has
no zeros in the divisors of Spec By, hence 1/f € By. But this is impossible since
f € aA, C BBy, establishing the claim.

Choose generators f, ..., f; for a. The principal open sets Wy, cover V = W —Z
and Vy, = Wy, sowehave V = Vj, U ... U Vy. It follows from [8, Ex. 2.28, p. 81]
that V is affine. 0O

COROLLARY 4.2. Let W be an irreducible normal affine surface over C which
contains A% as an open subvariety. Let Z be a subvariety of pure codimension one
in W. Then W — Z is affine.

Proof. By Proposition 4.1, we need only to show that all curves on W are locally
defined by one equation, set-theoretically. We only need to check this property at the
singular points of W, which are discrete. Let p be a singular point. According to [9,
Thm. 6.6 (1)], p is a rational singularity, which implies that the divisor class group
of the local ring O, w is a torsion group [4, Thms. 1.4 and 1.5]. Hence O, w has the
property that all height one primes are the radicals of principal ideals, which is the
needed result. [

Note. The assumption “W contains A%: as an open subvariety” can be replaced
by the assumption “W contains a cylinderlike open subvariety”, since this is precisely
what is needed to evoke [9, Thm. 6.6 (1)].

The following theorem shows that a counter-example to the Jacobian conjecture
would lead to a situation resembling the one whose non-existence is asserted by
Conjecture 3.2 (geometric formulation).
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THEOREM 4.3. If the Jacobian conjecture is false, there exists a normal affine
variety V containing U = Aé as an open subvariety having the following properties:
(DF = V — U is a rational curve whose normalization is A(}: and each singular
point of F has a one-point desingularization; (2) there is a map m: V — ]P’é: such
that F is the set-theoretic fiber of a point 7 € ]P’é:, and the restrictionmap n|y: U —
IP’é: —{z} = A}C is the projection onto a coordinate line; and (3) there is a map
f: V- A%: such that f\y is étale; . If the Jacobian conjecture is false in the case
of “smooth integral closure”, V can be chosen to be smooth and F = Aé:.

Proof._ Let f = (p,q): U — U’, where U = U’ = AZ, be an étale morphism,
and let f S — P be a minimal resolution of the birational map P% --» P%
determined by f. Thg minimality of the resolution assures that the only Ross1ble
exceptional curve for f having self-intersection —1 is the proper transform L of the
line at infinity L in ]P%. One easily verifies that § — U is a simply connected union
of smooth rational curves, having normal crossings, and containing L. Moreover, L
must map into the complement of U’.

Let W = f 1(U’). Note that W contains U as an open subvariety (because the
resolution of IP2 --3 ]P’2 does not blow up any points of U), and that f restricts to a
proper morphlsm W — U'’. The situation is depicted in the diagram below:

~

Floy = w c s ~
f
LN
U IP% --> ]P%
U U
v = A2 L a2 - v

Clx,Yl <«— Cip,ql.

Let U’ be the normalization of U’ in W. Then U’ = Spec B, where B is the integral
closure of C[p, q] in C[X, Y]. We know that U is an open subvarlety of U’ [12,
Prop. 3.1]. We have maps f: U — U’ extending f and g: W — U’ such that
f lw = f o g. The map g is birational. Any curve collapsed by g must have the
property that its closure in § lies entirely within W, since W = f 1(U"), and outside
of U. Also, any such curve must map via f to a Qomt in U’, by the commutativity
f lw = f o g. Therefore, by the remarks above, L is not among these curves. All
such curves are exceptional curves for f as well, hence have self-intersection < —2.
It follows that the image of the exceptional locus of g is the singular locus of U’.
In particular, the integral closure U’ is smooth if and only if g is an isomorphism
G.e., U’ = W), and this holds precisely when W is affine, as affineness precludes the

existence of any exceptional curves for g, since these are complete curves contained
in W.
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These considerations insure that the contractions which map W to U’ also map S
to a complete surface S containing U’, with § — W mapping isomorphically to S — U’
Since U’ is affine, § — U’ is connected [5, Corollary to Thm. 1], hence sois § — W.

Let Dy, ..., D, be the connected components (note: not the irreducible compo-
nents) of W — U. The removal of W — U from S — U leaves § — W, which is
connected. From the simple-connectivity of S — U we conclude that each D; has
precisely one point in its closure which is not in D;, and that point lies on § — W.
Therefore D; contains precisely one non-complete component F;, this component’s
closure containing the missing point. We must have F; = Al and all other com-
ponents of D; isomorphic to PZ. It follows from the discussion above that F; maps
birationally and injectively to an affine curve F; (possibly singular) which is closed
in U, and that all other components of D; contract to points of F; which are singular
points of U'. These points are the only possible singularities of F;. All singularities
of F; have one-point desingularizations, and F; has one point at infinity. We have
U’ — U = UF;. Observe that in the case of “smooth integral closure” (U’ = W),
we have D; = F;, sothat U’ — U is the disjoint union of the curves F;, which are
isomorphic to A¢..

If the two-dimensional Jacobian conjecture is false there exists f = (p, q) as above
which is not an isomorphism. It is well-known (see [13, Thm. 3.3], for example) that
this is equivalent to the condition C[X, Y] is not integral over C[p, q], i.e., the union
U’ — U = UF, is non-empty. According to a theorem of Abhyankar [1, Cor. 18.15],
the polynomials p and g can be chosen so that the curves p = 0 and g = 0 each have
two points at infinity in IP%. These two points, call them x and y, must lie on both
curves. Let us note that these two points are precisely the points of indeterminacy for
the birational map f: ]P% -3 ]P%, hence the resolution of f blows up only these two
points and “infinitely near” points above them. We conclude that each component D;
of W — U maps entirely to one of these two points on IP2, since D; does not contain
L. Assume that Dy maps to y.

Let V be the surface U’ — (F, U --- U F,). By Corollary 4.2, V is affine, and
V = U U F;. Without loss of generahty we may assume that x and y are the points
at infinity on the lines X = 0 and Y = 0, respectively, and that the component D,
of W — U contracts to the point y. We may also assume that the first blow-up in the
resolution is centered at x. This blow-up resolves the “projection from x”, giving
a morphism to PL. extending the map U — AL corresponding to the containment
C[X] — C[X, Y]. This morphism sends the proper transform of the line at infinity
L on PZ to the point at infinity in P} and induces morphisms from all subsequent
surfaces obtained in the resolution process to P&.. In particular, we get a morphism
T8 - ]P’1 Since the component D, of W — U contracts to x on ]PC, it maps to
the point at mﬁmty on P«c It follows that 7 factors through the contractions which
collapse D, to Fj, giving a morphism 7r: V — IP" with 7 ! (point at co) = F, set-
theoretically. (The fiber may be reduced.) In the case of “smooth integral closure”,
F| = Fy, and this curve is non-singular.
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Setting F = Fl, we have:

F — ptatoo

n

vV S5 PL
U u
AL = U 5 AL

These observations conclude the proof of Theorem 4.3. O

Remark. We do not know that F has multiplicity one in the fiber, even in the case
of “smooth integral closure”. If, however, F is smooth and 7 ~!(point at c0) = F

scheme-theoretically, then V is an AL-bundle over PL via the map V > PL. Hence
we are in the situation of Conjecture 2.4, which would rule out this possibility.

Acknowledgment. The author is indebted to his friend and colleague Mohan
Kumar (who modestly declines co-authorship) for a number of helpful discussions
which produced many details in this paper, including the particulars of Theorems 2.3,
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