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SHARP UPPER BOUNDS FOR THE BETTI NUMBERS OF,
COHEN-MACAULAY MODULES

JUAN ELIAS

Introduction

At the end of the last century Hilbert proved his celebrated theorem of syzygies for
homogeneous ideals of polynomial rings, [Hil90]. This result has been extended and
generalized to several different settings. For instance, Serre characterized Noetherian
regular local rings as Noetherian local tings with finite global dimension.

This work is concerned with the Betti numbers of finitely generated modules M
over Noetherian regular local rings and polynomial rings. In this case Hilbert’s and
Serre’s results imply that the projective dimension of M is finite. Since for such
modules projective implies free, a natural problem to consider is to compute the
range of Betti numbers, in particular to find sharp lower and upper bounds for the
Betti numbers.

For the lower bounds there is the conjecture of Buchsbaum-Eisenbud [BE77].
This conjecture predicts that the i-th Betti number of a finite length module M over
a regular local ring R of dimension d is at least (,a.). This bound has been proved in
several cases; see [ChE92] for a reference list of the known results.
On the other hand the problem of finding sharp upper bounds for the Betti numbers

has been extensively studied. Macaulay gave examples of height two prime ideals
with arbitrarily large number of generators, i.e. first Betti number [Mac27]. Many
upper bounds for the number of generators can be found in the literature; see for
example [Sa178], [ERV91 ].

Robbiano, Valla and the author of this paper gave a sharp upper bound for the
number of generators of a perfect ideal in terms of its initial degree and multiplicity
[ERV91]. The key point of the proof is the result where we maximize some com-
binatorial functions defined in the set of allowed Hilbert functions. We will refer to
this result as the Key Lemma; see Theorem 3.5. Using similar techniques we gave
in [EGV94] a sharp upper bound for the last Betti number of a perfect ideal, i.e.
Cohen-Macaulay type. As a corollary we obtained sharp upper bounds for all Betti
numbers of height three perfect ideals.

Bigatti and Hulett, using the combinatorics of lex-segment ideals, found in the
characteristic zero ground field case sharp upper bounds for the Betti numbers of
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perfect ideals with given Hilbert function [Big93], [Hu193]. Hulett extended the
result to modules with fixed Hilbert function [HulPh]. Recently Pardue extended to
any ground field the result of Bigatti-Hulett [Par94]. From the result of Bigatti and
Hulett, the computation of minimal free resolutions for stable ideals [EK90], and
the Key Lemma, Valla gave, in the characteristic zero case, sharp upper bounds for
the Betti numbers of perfect ideals in terms of their initial degree and multiplicity
[Va194]. In [E1i96], we dealt with the problem of finding sharp upper bounds for the
Betti numbers of modules. We gave a sharp upper bound for the first Betti number
of Cohen-Macaulay modules in terms of the 0-th Betti number and multiplicity; the
proof does not extend to higher Betti numbers.

The basic underlying technique of these results is the study of combinatorics
of Hilbert functions, in particular the combinatorics of binomial and sub-binomial
transforms. It is well known that these transforms play a central role in combinatorial
and computational commutative algebra; see [Sta83]. Recall that the Hilbert functions
of standard k-algebras were characterized by Macaulay in terms of the binomial
transforms of their values [Sta78]. Similar results for several types of k-algebras can
be found in the bibliography: characterizations of the Hilbert functions of reduced k-
algebras [GMR83], Cohen-Macaulay, Gorenstein [Sta78], and necessary conditions
for the Hilbert functions of integral k-algebras [Sta91 ]. In [Gree88], Green gave
an upper bound for the .dimension of the quotient of a k-vector space generated by
forms of the same degree by a linear form in terms of the sub-binomial transform of
its dimension. From this result and the characterization of Hilbert functions due to
Macaulay, we proved the Key Lemma in [ERV91 ]; see also [Eli91 ]. The proof of this
lemma is too complicated, so an easy proof of this lemma should clarify the main
results of [ERV91], [EGV94], and [Va194].

The main purpose of this paper is to give sharp upper bounds for Betti numbers of
finitely generated Cohen-Macaulay modules. We compute explicitly upper bounds
for all Betti numbers of finitely generated Cohen-Macaulay modules over Noetherian
regular local rings (resp. finitely generated graded Cohen-Macaulay modules over
polynomial rings) in terms of the 0-th Betti number and multiplicity. The residue
field in the local case or the coefficient field in the polynomial case is assumed to
be general. We prove that the upper bounds are sharp for modules over polynomial
rings or regular Noetherian local rings. This result improves the sharp statement of
[Va194] for ideals.

The second purpose of this paper is to obtain a good knowledge of the behavior of
the binomial and sub-binomial transforms. The combinatorial techniques developed
in this paper have importance by themselves; the main result is Proposition 2.5. From
this result we get the sharp statement of this paper, a short an easy proof of the Key
Lemma, and some other interesting results about the behavior of the binomial and
sub-binomial transforms, see Corollay 2.6. Some of these results were proved in the
three codimensional case in [Eli91 ].

The contents of this paper are the following. The aim of the second section is
to study and to develop combinatorial techniques in order to handle binomial and
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sub-binomial transforms. In the third section we apply the techniques developed in
section two to Hilbert functions, we prove the Key Lemma as a corollary and the
generalization to any ground field of the main result of [Va194]. In the fourth section
we study the combinatorics ofthe Betti numbers from the point ofview oflex-segment
ideals. For each h we define a numerical function *i (h, b, e) that will
be the upper bound for the i-th Betti number of modules of codimension h, 0-th
Betti number b, and multiplicity e. In the main result of this section we prove that
there exists a split Cohen-Macaulay module Me’ with maximal Betti numbers(h,b,e)

i(Mh,b,e)) dPi(h, b, e), 0 h, i.e. the bounds of the Betti numbers are
achieved simultaneously. In section four we prove the main result of this paper,
Theorem 4.6: for all h the integer dPi(h, b, e) is a sharp upper bound
for the i-th Betti number of codimension h modules with 0-th Betti number b and
multiplicity e. We end the paper with some explicit examples and values of the
bounds.

1. Notations

Throughout this paper (R, rn) will be a Noetherian regular local ring of dimension
d with residue field k. We will denote by S the associated graded ring of R, i.e. the
polynomial ring S k[Xl Xd]; S,, is the k-vector space of degree n forms.

Let M be a finitely generated R-module, we denote by HM the Hilbert function
of M, and by eo(M) the multiplicity of M. Let dpte(M) be the projective dimension
of M, and i(M) will be the i-th Betti number of M, 0 dpl(M). The
codimension of M is the integer h(M) dim(R) dim(M). Notice that the 0-
th Betti number is the minimal number of generators of M. As usual we write
o(M) v(M). We will use the corresponding notations for graded modules over
the polynomial ring S.
We will denote by O) the element of Sb with i-th coordinate and 0 otherwise,

b. A monomial of Sb is an element of the form aogi where a is a monomial
of S. Let < be the lex ordering of S, X > > Xd. We can extend this ordering
to Sb in the following way: we assume that w < w2 < < Wb. Given two
monomials aio)i, ajo)j of Sb, then aio)i > ajo)j if and only if > j or j and
ai > aj with respect to the lex ordering of S. Let F be a submodule of sb; we say
that F is a monomial submodule of Sb if F is generated by monomials. We denote
by Ft the piece of degree of F. We say that F is a lex submodule if F is a monomial
submodule and for all t, Ft is the vector space generated by the first HF(t) monomials
with respect to the lex ordering. A lex-vector space W C St is a k-vector subspace
of St generated by the first dimk(W) monomials with respect the lex ordering. If
L is a lex-segment vector space (resp. monomial ideal), we will denote by c(L) the
(unique) k-basis (resp. generating system) of L formed by monomials.
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2. Combinatorial behavior of the binomial and sub-binomial transforms

Let m, be positive integers. Let us consider the t-binomial expansion of m"

m----(t) q_ (tall) "+- -I- \j(m),](aj(m)
where at > at-i > > aj(m) >_ j (m) > 1. We define the (t, u)-sub-binomial
transform of m by

(at--u)_+_ Iat-l-u) d--""m(t)(u)
\ t-

+ aj(m)-
\ j(m)

We put Ot)u) 0, and mt)l) mt). Notice that ml)0 m. We define the
t-binomial transform of m by

m(t)_. (at-+-l) (at-l-t-l) (aj(m) d-ll)\t+l
+ +’"+

\j(m) +

it+h-l), i.e., the dimension of the vectorFor a positive integer we put q(t, h) h-l
space of forms of degree in h indeterminates; if < 0 we put q (t, h) 0. We write
p(t, h, s) q(t, h) q(t s, h) for all s > 0; notice that p(t, h, s) q(t, h) for
all s > + 1.

The main results about the binomial and sub-binomial transform are due to Macaulay
and Green [Sta78], [Gree88]"

PROPOSITION 2.1. Let W be a vector subspace of St. If k is an infinite field then
for a general linearform L then:

(i) Macaulay:
(ii) Green:

Codim(Sl W) _< Codim(W) (t).
Codim(W + (L)/(L)) < Codim(W)tt>.

Assume that k is a generalfield. Then these bounds are achievedfor any lex-segment
vector space.

The link between the binomial and sub-binomial transforms is the following equal-
ity [ERV91]" given integers > 1, 0 < m < q(t, h), we have

h-I

m(t> E m(t)(ii.
i=o

(1)

Let W be a lex-segment vector space of St of codimension m, where S
k[X Xh]. Recall that for a lex-segment vector space, Xh is a generic form
in the sense of Proposition 2.1, and that W + (Xh)/(Xh) is a lex-segment vector
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space of k[X1 Xh-1]; see [ERV91]. If we denote by an overbar the pass to the
quotient by Xh-u+l Xh, from Proposition 2.1 we get

dimk(St/W) m(t)(u). (2)

In the following result we will give recursive formulae for the sub-binomial and
binomial transforms:

PROPOSITION 2.2.
u < h. Then:

Let t, u, rn be integers, q(t, h 1) < rn < q(t, h) 1, <

(i) (m+ 1)(t)(u)-m(t)(u) (m+ 1-q(t, h- 1))(t-1)(u)-(m-q(t, h- 1))(t-1)(u),
(ii) (rn + l) (t) rn (t) (rn + q(t, h 1)) (t-l) (rn q(t, h 1)) (t-i).

Proof. (i) Let W C St be the lex-segment vector space such that dimk(St / W)
m, and let W+ C St be the lex-segment vector space such that dimk(St / W+) rn + 1.
From the equality (2) we deduce

(m + 1)()(,) m(t)() dimk(St/W+) dimk(St/W)

Card(to(W) \ to(W+)).

Since rn > q(t, h 1) is the number of monomials without X1, we have W+ C W C
X St- and hence W+ C W C X1 St- 1. Let L C X1S be a lex-segment vector space;
we will denote by L!Xl the lex-segment vector space defined by the monomials
Xr/X1, Xr L. Notice that x(W/X1) x(W)/X, so dividing the elements of
to(W) and x(W+) by X1, we have

(m + 1)(t)(u) m(t)(u) Card(x(W/X) \ t((W+/X1))
dimk(St_l/(W+/Xl)) dimk(St_l/(W/X1))
dimk(St_l/W+/X1) dimk(St_l/W/Xl).

Since W/X and W+/XI are lex-segment subspaces of St-l, from the equality (2)
we obtain (i).

(ii) The proof is similar to the previous one. r-1

COROLLARY 2.3. Let r, t, u, a, b be integers such that < r < t, < u < h,
and p(t, h, r) < a < b < q(t, h). Thenfor all k 0 r we have

b(t)(u) a(t)(u) (b p(t, h, k))(t-k)(u) (a p(t, h, k))(t-k)(u).

Proof. First of all notice that

p(t, h, k) q(t, h -1) + q(t l, h -1) + + q(t k + l, h -1),
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for all k 0 r. Repeatedly applying Proposition 2.2 (i) we get for all p(t, h, r) <
m < q(t, h) l,

(m + 1)/t)(u m(t)(u) (m + p(t, h, k))(t-k)(u) (m p(t, h, k))(t-k)(u).

Hence

b-1

b(t)(u) a(t)(u) ((m + 1)(t)(u) m(t)(u))
m=a

(b p(t, h, k))(t-k)(u) (a p(t, h, k))(t-k)(u).

We will denote the first derivative of the sub-binomial transform by

D(m, t, u) (m + 1)lt)(u m(t)(u),

and the first derivative of the binomial transform by

A(m, t) (m + 1) (t) m

Given non-negative integers u < h, t, let D,(h, t, u) be the list with D(m, t, u)
as m-component, m 0 q(t, h) 1. We write D,(h, t, U)m D(m, t, u),
D,(h, 0, u) {1}. In a similar way we define the list A*(t, h) with A(m, t) as m-
component, m 0 q(t, h) 1. It is worth to notice that from Proposition 2.2
we get:

(i) D(m, t, u) D(m q(t, h 1), 1, u),
(ii) A(m, t) A(m q(t, h 1), 1).

Given lists 1 {a am},/2 {bl bn}, we will denote by/1 u 12 the
joint list {al am, b bn }.

PROPOSITION 2.4. Given integers h > 1, > 1, < u < h we have"

(i) D,(h, t, u) D,(h 1, t, u) D,(h, 1, u).
(ii) D,(h, t, u) D,(h 1, t, u) D,(h 1, 1, u) u D,(h 1, O, u),.

h-u

(iii) D,(h, 1, u) {0, 0 1} ifh u then D,(h, t, h) {0, 0 0}.
(iv) A*(n, h) A*(n, h 1) L A*(n 1, h).
(v) A*(n, h) A*(n, h 1) tt A*(n 1, h 1) u... A*(1, h 1) Ii {h}.
(vi) A*(n, 2) {1, 1, 2}.

Proof. If m < q (t, h 1) then

D,(h, t, U)m D,(h 1, t, U)m.
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by the definition of D.. For rn > q (t, h 1), by Proposition 2.2 we have

D.(h, t, U)m D.(h, 1, U)m_q(t,h_l).

hence we get the first equality. From (i) we deduce the second one. The third equality
follows from a straightforward computation. The results for A* are proved in a similar
way.

Up to now the behavior of the sub-binomial and binomial transforms seems to be
symmetric; the different values of the first derivatives breaks this symmetry. For this
we will first give results about the sub-binomial transforms. From these results and
the equality (1) we will deduce some properties of binomial transforms.

In the following result we will give the basic properties on the first derivatives
of the sub-binomial transform; this is the key result for further developments of this
paper. We will apply these results to the values of Hilbert functions, and study the
derivatives of (m, t, u) m(t)(u), where rn Hs/l(t)and < u < h. For this
reason we will study these derivatives under the assumptions 0 < rn < q(t, h), and
l<u<h.

PROPOSITION 2.5. Let u be an integer such that < u < h.

(P1) Given integers t, rn such that 0 < rn < q(t, h), we have

m(t+l)(u) < m(t)(u).

(P2) Given integers t, m, a such that 0 < rn + a < q (t, h), 0 < m, a, we have

m(t)(u) <_ (m + a)(t)(u) a(t)(u).

(P3) Given integers t, m, s, a such that 0 < m, a, and 0 < rn + a < p(t, h, s),
we have

(m + a)(t)(u) a(t)(u) < p(t, h, S)(t)(u) (p(t, h, s) m)(t)(u).

(P4) Given integers tl, t2, rn such that tl < t2, 0 < rn < q(t, h), we have

q(tl, h)(t,)(u) (q(tl, h) m)(t,)(u) q(t2, h)(t2)(u) (q(t2, h) m)(t2)(u).

(P5) Given integers tl, t2, m, s such that tl < t2, 0 < rn < p(tl, h, s), we have

p(t2, h, S)(t2)(u) (p(t2, h, s) m)(t2)(u)
< p(tl, h, S)(t,)(u) (p(tl, h, s) m)(t,)(u)

Proof. The equality (P4) follows from Corollary 2.3. Given an integer u, <
u < h, we will prove by induction on the triplets h, m, the inequalities (P1), (P2)
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and (P3) for all a. We will consider in that set of integers the lexicographic ordering,
i.e., {h, m, t} > {h’, m’, t’} if and only if the first non-zero integer from the left of
{h h’, rn m’, t’} is positive.

If h u then all sub-binomial transforms appearing in (P1), (P2), and (P3) are
zero, so we get the inequalities (P1), (P2), and (P3). Hence we may assume u < h 1.

Assume that (P1), (P2), and (P3) hold for all triplets {h’, m’, t’} < {h, m, t}; we
will prove the inequalities for {h, m, }.

First we prove (P1). Assume that rn > p(t + 1, h, 1). Then

m(t)(u) p(t + 1, h, 1)(t)(u) + m(t)(u) p(t + 1, h, 1)(t)(u),
> p(t + 1, h, 1)(t)(u) + (m p(t + 1, h, 1))(t)(u)

by (P2) and induction on m, since 0 < rn p(t + 1, h, 1) < rn

> p(t + 1, h, 1)(t+l)(u) + (m p(t + 1, h, 1))(t)(u
by (P1) and induction on m, since rn > p(t + 1, h, 1)

p(t + 1, h, 1)lt+l(u + m(t+l)(u) p(t + 1, h, 1)(t+l)(u)
by Corollary 2.3 applied to the parameters 1, + 1, u, p(t + 1, h, 1), tn

m(t+l)(u)

Assume now that rn < p(t + 1, h, 1). Let k > 1 be the biggest integer such
that p(t + 1, h, k) < rn + l. Notice that for fixed and h, p(t, h, s) is an increasing
function ofs. Ifk then we havem < p(t + 1, h, 2)-p(t + 1, h, 1) q(t, h- 1);
by induction on h we get (P 1). Let us assume that k > 2, then we have

m(t)(u) (m + 1)(t+l)(u l(t+l)(u)
by Corollary 2.3 applied to 1, + 1, u, l, m +

(m + l)(t+l)(u) p(t + 1, h, k)(t+l)(u) + p(t + 1, h, k)(t+l)(u) l(t+l)(u)
> (m + 1- p(t + 1, h, k))(t+l)(u) + p(t + 1, h, k)lt+l)(u)- l(t+l)(u)

by (P2) applied to t + 1, m + p(t + 1, h, k), p(t + 1, h, k)

and induction on m since m + p(t + 1, h, k) < m.

If p(t + 1, h, k) < rn + then by (P3) applied to + 1, p(t + 1, h, k) l, k, rn +
p(t + 1, h, k), and induction on rn we get (P1) from the last inequality. Assume that
p(t + 1, h, k) rn + I. If k > 3 then we have

m(t)(u) >_ p(t + 1, h, k)(t+l)(u) p(t + 1, h, k 1)(t+l)(u)
+ p(t + 1, h, k 1)(t+l)(u) l(t+l)(u)

> (p(t + 1, h, k) p(t + 1, h, k 1))(t+l)(u)
+ p(t + 1, h, k 1)(t+l)(u) /(t+l)(u)
by (P2) and induction on m,

sincep(t+l,h,k)-p(t+l,h,k-1) < m
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m(t+l)(u)

by (P3) applied to + 1, p(t + 1, h, k 1) l, k 1,

p(t + 1, h, k) p(t + 1, h, k l) and induction on m,

since0_<p(t+l,h,k-1)-I <m

Letus assumek 2. Then we have m p(t+ 1, h, 2)-p(t+ 1, h, 1) q(t,h-1),
so by induction on h we get (P1).
Now we prove (P2). If p(t, h, 1) < a then

(m + a)(t)(u) a(t)(u) (m + a p(t, h, k))(t-k)(u) (a p(t, h, k))(t-k)(u)
by Corollary 2.3

>_ m(t-k)(u)

by (P2) and induction on

>_ m(t)(u)

by (P1) and induction on t.

Let us assume thata < p(t,h, 1). Ifm+a _< p(t,h, 1) q(t,h- 1) thenby
induction on h we get (P2).

Let us assume m + a > p(t, h, 1). We put R m + a p(t, h, 1), notice that
m > R > 0. IfR < a then

(m + a)(t)(u) a(t)(u) (m + a)ltlu p(t, h, 1)ltu
+ p(t, h, 1)(t)(u) a(t)(u)

> R(t)(u) d- p(t, h, 1)(t)(u) a(t)(u)

by (P2) applied to t, R, p(t, h, 1)
and induction on m since R < rn

>_ m(t)(u)

by (P3) applied to t, p(t, h, l) a, l, m + a p(t, h, 1)
and induction on m since p(t, h, 1) a < m

Assume R > a, then we have m > p(t, h, 1) > a and

(m + a)(t)(u) a(t)(u) (m + a)(t)(u) m(t)(u) q-- m(t)(u) a(t)(u)

>_ a(t)(u) d- m(t)(u) a(t)(u)

by (P2) and induction on m, since a < m

m(t)(u).

We will prove (P3). If s then p(t, h, s) p(t, h 1, + 1), and by induction
on h we get (P3), so we can assume s >_ 2. Let r >_ be the least integer such



514 JUAN ELIAS

that p(t, h, r) > m + a, notice that r < s. The first step is devoted to prove
that we only need to consider the case r s. Assume that r < s, and m >
p(t, h, s) p(t, h, s 1). Then we have

p(t, h, S)lt)(u (p(t, h, s) m)lt)(u
p(t, h, s)<t)(u p(t, h, s 1)tl(u
+ p(t, h, s 1)(t)(u) (p(t, h, s) m)t)(u)

>_ (p(t, h, s) m)(t)u) (p(t, h, s 1) m)(t)u)
+ p(t, h, s 1)(t)u) (p(t, h, s) m)lt)u
by (P3) applied to t, p(t, h, s) p(t, h, s 1), s, p(t, h, s 1) m

and induction on m, since p(t, h, s) p(t, h, s 1) < m

p(t, h, s 1)(t)(u) (p(t, h, s 1) m)(t)(u).

We repeat this process until we obtain either

p(t, h, S)(t)(u) (p(t, h, s) m)(t)(u) >_ p(t, h, r)(t)(u) (p(t, h, r) m)(t)(u),

or there exists to, r + < to < s, such that m < p(t, h, 09) p(t, h, to 1). In this
case we have

p(t, h, to)(t)(u) (p(t, h, to) m)(t)(u)
q(t to + 1, h 1)(t-o+l)u) (q(t to + 1, h 1) m)(t-to+l)(u)
by Corollary 2.3 applied to to 1, t, u, p(t, h, to) m, p(t, h, to)

q(t r + 1, h 1)(t-r+l)(u) (q(t r + 1, h 1) m)(t-r+l)(u)
by (P4) applied to to + 1, r + 1, m

p(t, h, r)(t)u) (p(t, h, r) m)(t)u)
by Corollary 2.3 applied to r 1, t, u, p(t, h, r m), p(t, h, r).

Hence we may assume that r s, and then p(t, h, s 1) < m + a <_ p(t, h, s). In
order to establish (P3) we need to consider two cases

(I) Assume that a > p(t, h, s- 1). Then we have

p(t, h, s)(t)(u) (p(t, h, s) m)(t)(u)
q(t s + 1, h 1)/t_s+l>u (q(t s + 1, h 1) m)(t-s+l)(u)
by Corollary 2.3

>_ (m + a p(t, h, s 1))(t-s+l)(u) (a p(t, h, s 1))(t-s+l)(u)
by (P3) applied to s + 1, m, 1, a p(t, h, s 1)
and induction on t, since s + <

(m + a)(t)(u) a(t)(u)

by Corollary 2.3.
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(II) Assume that a < p(t, h, s 1). Let R =.p(t, h, s) (m + a) > O. If R 0
then we trivially get (P3). Hence we may assume R > 0. If R < rn then we have

p(t, h, s)<,>u) (p(t, h, s) m)(t>u)
p(t, h, s)lt)u (m + a)<t)u)
+ (m + a)(t)(u) (p(t, h, s) m)(t)(u)

> (p(t, h, s) m)(t)(u) a(t)(u)

+ (m + a)(t)(u) (p(t, h, s) m)(t)(u)
by (P3) applied to t, R, s, a, and induction on m, since R < rn

(m + a)(t)(u) a(t)(u)

Assume that R > m. In this case we have rn < R < p(t, h, s)- p(t, h, s- 1). Let
O < w rn + a p(t, h, s -1) <m;thenwehave

p(t, h, S)(t)(u (p(t, h, s) m)(t)(u)
p(t, h, s)(t>(u) (p(t, h, s) (m W))(t)(u)
+ (p(t, h, s) (m w))(t)(u) (p(t, h, s) m)(t>(u)

>_ p(t, h, s 1)(t>(u) a(t)(u)

+ (p(t, h, s) (m w))(t>(u) (p(t, h, s) m)(t)(u)
by (P3) applied to t, m w, s, a and induction on m, since m w < m

p(t, h, s 1)(t)(u) a(t)(u)

+ (q(t -s + 1, h 1) (m w))(t-s+li(u)
(q(t s + 1, h 1) m)<t-s+l>u)
by Corollary 2.3

>_ p(t, h, s 1)<t)(u) a{t)(u) d-

by (P2) applied to s + 1, to, q (t s + 1, h 1) m

and induction on m, since w < m

p(t, h, s 1)<t)<u) a<t)u) + (w + p(t, h, s 1))(t)<u) p(t, h, s 1)(t)<u)
by Corollary 2.3

(m + a)(t)(u) a(t)(u).

Hence (P3) holds.
Let us consider integers tl, t2, m, s under the hypothesis of (P5). From Corol-

lary 2.3 we get

p(tl, h, s)<t,>u) (p(t, h, s) m)(t,)(u)
p(t2, h, s + t2 tl)(t2)(u) (p(t2, h, s + t2 tl) m)(t2)(u);

from (P3) applied to t2, m, s + t2 tl, p(t2, h, s) rn we get (P5).
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CORLLARY 2.6. For all positive integers m, t, u, <_ u <_ h, m < q (t, h), we
have

(i) m(t)(u) >_ m(t+l)(u),
(ii) m (t) >_ m (t+l).

Proof. (i) is the inequality (P1). By (i) and the equality (1) we get (ii)"

h-1 h-1

m (t) Y m(t)(i) >_ Y m(t+l)(i) m (t+l).
i=0 i=0

COROLLARY 2.7. Let a, b, tl, t2 be non-negative integers such that tl <_ t2, <_
s < t2 d- 1, a < p(tl, h, s), b _< p(t2, h, s), and <_ u <_ h. Then the following
conditions hold:

(i) Ifa + b <_ p(tl, h, s) then

a(t)(u) q- b<t)<u) < (a + b)(t)(u).

(ii) Ifa + b > p(tl, h, s) then

a(t,)(u) -I-- b(t2)(u) <_ p(tl, h, S)(t,)(u) + (a + b p(q, h, s))<t:><u).

(iii) lfa + b < p(q, h, s) then

a (t’) -t- b Its) < (a + b) (t’).

(iv) Ifa + b > p(t, h, s) then

a (t’) -k- b<t> < p(q, h, S) (t’) -- (a + b p(tl, h, S)) (t2).

Proof. (i)

a(t)(u) -I- b(t2)(u) < a(t)(u) q- b(t)(u)
by (P1)

<_ a(t,)(u) + ((a + b)(t)(u) a(t,)(u))
by (P2)

(a + b)(t,)(u).
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(ii)Assumethata+b > p(tl,h,s). LetA =a+b-p(tl,h,s),B p(tl,h,s)-
a, then we have

a(t)(u) d- b(t2)(u) a(t)(u) d- (A + B)(t2)(u)
a(t>(u) + A(t2>(u) + ((A + B)t>u) AIt>u))

< a(t)(u) --I- (A)(t)(u)
+ p(t2, h, s)lt>fu (p(t2, h, s) (p(tl, h, s) a))lt2>fu
by (P3)

< a(t,)(u) d- Ait>(u + (p(t, h, s)t>u) a(t)(u))
by (P5)

p(t, h, s)(t)u) + (a + b P(h, h, s))(t)u).

(iii) Assume that a + b <_ p(t, h, s); then we have

h-1

a (t) -{ b (t2) E(altmlu) -I- bt2(u))
i=0

h-1

< E(a -k-
i=o

by (i)

(a + b)(t’).

(iv) Assume that a + b > p(tl, h, s); then we have

h-1

a (tm) + b(t2) E(a(t)(u) + b(t2)(u))
i=0

h-l

< E(p(t, h, s)(t,)u) + (a + b p(t2, h, s))(tE)U))
i=0

by (ii)

p(t, h, s) It + (a + b p(t2, h, s)) t21.

3. Maximizing combinatorial functions

Let H" N ---, N be a numerical function; we say that H is admissible if there
exists a graded k-algebra A S/I with Hilbert function HA H. The following
result ([Mac27], [Sta78]) gives a characterization of admissible functions.

PROPOSITION 3.1 (MACAULAY). Let H: N -- N be a numerical function; H
is admissible if and only if H(i + 1) _< H(i) (i) for all >_ O. Moreover, for each
numericalfunction H satisfying the above conditions there exists a lex-segment ideal
I C S such that Hs/t H.



518 JUAN ELIAS

We will denote by ff’h,e,s the set of admissible functions such that

(i) H(1) h,
(ii) Yi>_o n(i) e,
(iii) s s(H) Min{n n(n) q(n, h)}.

We will denote by .’h,e the set of admissible functions satisfying (i) and (ii). We say
that s(H) is the initial degree of H and we define the initial degree of an ideal I C S
by s(1) s(Hs/1). The initial degree of an ideal I C R is defined in a similar way.

Remark 3.2. Notice that ffh,e,s (resp..]h,e) is the set ofHilbert functions ofgraded
Artinian k-algebras of codimension h, multiplicity e and initial degree s (resp. the
set of Hilbert functions of graded Artinian k-algebras of codimension h and multipli-
city e).

For all u, 1 < u < h, let us consider the following function defined on the set of
admissible functions"

with

Z’0(u)" a’’h e ----+ I

r0u)(H) := H()u) H(t)(t)u).
t>l

Given an admissible numerical function H we write

H() "= r()(1)(H) y H(n)(n),
n>l

h-1

H <> := rO(u)(H) j’.H(n)<n>.
u=O n>

We will denote by the lexicographic ordering on the set a’’h,e’, given functions
H1, H2 .Th,e, HI # H2, then H H2 if there exists an integer no such that
Hi (n) H2(n) for n 0 no and H (no + 1) > H2 (no + 1). It is easy to see
that r0(u is not an increasing function on the set .h,e,s (resp..TZh,e) with respect to
the lexicographic ordering. Hence in order to maximize r0(u in .T’h,e,s and .T’h,e we
cannot proceed by induction with respect to the lexicographic ordering. We need to
jump several admissible functions each step. First we give the candidates to maximize
these functions.

Definition 3.3. Given integers h, e, let t(e) be the integer such that q(t(e)
"t(e)-I1, h + 1) _< e < q(t(e), h q- 1). We define the integer r(e) e z..,n=o q(n, h)

e q(t(e) 1, h q- 1) >_ 0 and r(e) < q(t(e), h).
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Given integers h, e we consider the numerical function

q(n,h) n=0 t(e)-I
n(h,e)(n) r(e) n t(e)

0 n > t(e).

It is easy to see that n(h,e) is an admissible numerical function; i.e., there exists a
height h lex-segment ideal I (e) C S k[X1 Xh] with nS/l(e) n(h,e). Notice
that n(h,e is maximal with respect to the lexicographic ordering in the set ’h,e.

Given integers h, e, s we consider the numerical function

q(n, h) n 0 s
p(n,h,s) n s -1

H(h,e,s)(n) r n
0 n>t

s-1 t-Iwith r e Y-n=0 q(n, h) n=s p(n, h, s) > 0 and r < p(t, h, s). Notice that
n(h,e,s is an admissible numerical function; i.e., there exists a height h lex-segment
ideal l(e, s) C S k[X Xh] with nS/l(e,s) n(h,e,s). Notice that n(h,e,s) is
maximal with respect to the lexicographic ordering in the set .h,e,..

In order to obtain sharp bounds for the Betti numbers in the local case we need to
prove:

PROPOSITION 3.4. Let R, m) be an h-dimensional regular Noetherian local ring
with residuefield k Aim. Thenfor all e > h + 1, s > 2, there exist perfect ideals
J(e) C R, J(e,s) C R such that HR/S(e) Hs/t(e) and i(R/J(e)) i(S/l(e))
for h; the corresponding results holdfor J(e, s).

Proof. Let A C Nh be the set of multi-indices appearing in the monomials of
I (e). Let U be the monomial ideal of B Z[XI Xh] generated by XK, K A.
If X Xh is a minimal system of generators of m then we define J (e) as the ideal
of R generated by xK, K A.

Let L. be the free B-resolution of B/U constructed by Eliahou and Kervaire
[EK90, Theorem 2.1]. By [EK90], Remark 2 to Proposition 2.6, L. (R)z R is a
minimal resolution of R/J(e) and i(R/J(e)) rankz(Li), 0 h. A similar
argument proves that i(S/l (e)) rankz(Li), so i(R/J(e)) i(S/l (e)). Since

Xl Xh is a system of parameters of R we get HR/Je) ns/l(e). For the ideal
J (e, s) we proceed in a similar way. ll

The following result is the so-called Key Lemma; see [ERV91 ], Lemma 3.9, 4.1,
4.3.

THEOREM 3.5 (KEY LEMMA). Given integers h, u, e, s, thefunction H(h,e (resp.
H(h,e,s)) maximizes Hl>(u in the set a’’h,e (resp. .’h,e,s).
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Proof. We prove the result for ’h,e,s. Given H ff’h,e,s we define the discrepancy
between H and n(h,e,s) as follows: if H n(h,e,s) then

d(H) Min{i H(i) H(h,e,s)(i)}.

Notice that d d(H) > s. If H n(h,e,s) then we define d oz. Assume that
d < oz. Let j Max{n H(n) :/: 0}; we put a H(d) and b H(j).
We consider the following two cases.
(I) If a + b < p(d, h, s) then we consider the admissible numerical function

H(n) n =0 d-

F(n)=
H(n)+b n=d
H(n) n=d+ j-1
0 n>j.

Notice that F H, and from Corollary 2.7 (i) we obtain Ho(u < Fil(u.
(II) If a + b > p(d, h, s) then we consider the admissible numerical function

F(n)

H(n) n =0 d-
p(d, h, s) n d
H(n) n=d+l j-1
a + b- p(d,h,s) n j
0 n>j+l.

Notice that F H, and from Corollary 2.7 (ii) we obtain H0(u < F()(u).
Hence we have proved that ifH H(h,e,s) then there exists an admissible numerical

function F

__
H in .Y’h,e,s with Ho(u < F()(u). Since H(h,e,) is the maximum of JC’h,e,

with respect to the lexicographic ordering we deduce the result.

COROLLARY 3.6. Let h, e, s be integers.

(i) Thefunction H(h,e maximizes H() and H() in the set ff’h,e,
(ii) Thefunction H(h,e,s) maximizes H() and H0 in the set h,e,s.

We end this section by generalizing the main result of [Va194] to any ground field;
recall that the results of [Va194] are valid in characteristic zero. We prove this result as
a corollary of the Key Lemma. First we need to translate the Key Lemma in terms of
the combinatorics of lex-segment ideals. The following two statements are implicit
in [Va194] and were suggested to the author by G. Valla; the second one is equivalent
to the Key Lemma.

al ahLet rn X Xh be a monomial of S; we denote max(m) for the integer
max{/ ai > 0}. If I is a lex-segment ideal we write maxu(1) for the cardinal ofthe set

hof monomials rn x(1) such that max(m) u. Notice that v(I) u= maxu(l).
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PROPOSITION 3.7. Let I be a height h lex-segment ideal of S. Then

maxu(1) ,()(h-u+l)(Hs/l)

for all u h.

Proof We denote by In the ideal In I + (Xn+l Xh)/(Xn+l Xh) of
the polynomial ring Tn k[X Xn], n h. It is easy to prove that

maxu(l) v(lu) v(l,,-l).

From [ERV91 ], Theorem 2.9, we deduce

maxu(1) eo(Tu-/lu-)

E nr,_,/l,_, (t)
t>o

E Hs/l(t)(t)(h-u+l)
t>_O

by equality (2)

rOh-,+)(Hs/t).

From this result and Theorem 3.5 it is straightforward to prove:

THEOREM 3.8 (LEX VERSION OF THE KEY LEMMA). Let e, s be integers.

(i) For all height h lex-segment ideals I C S, e eo(S/I), we have

maxu(l) < max(i (e)).

(ii) For all height h lex-segment ideals I C S, e eo(S/l) s s(l), we have

maxu(I) < max(I (e, s)).

Let us recall that Eliahou and Kervaire computed the Betti numbers of stable ideals
[EK90]. They proved that if ! is an stable ideal, then

(max(m)fli(S/l)-- E \ i-1rnr(1)

From this and the Lex Version of the Key Lemma we can maximize the Betti numbers
on the set of lex-segment ideals. This is the purpose of the next result.
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PROPOSITION 3.9. Let e, s be integers.

(i) For all height h lex-segment ideals I C S, e eo(S/I), we have

i(S/I) < i(S/l(e))

fori --0 h.
(ii) For all height h lex-segment ideals I C S, e eo(S/I), s s(1), we have

i(S/I) < i(S/I (e, s))

fori --0 h.

The corresponding results holdfor a regular local ring.

The proofs of the upper bounds of Betti numbers of ideals are based on several
reductions ([ERV91 ], [EGV94], [Va194], [Eli96]). We summarize and generalize to
modules without any restriction on the ground field these reductions in the Lex Reduc-
tion Step below. The allowed transformations conserve the multiplicity, codimension,
and the 0-th Betti number and do not decrease the higher Betti numbers.

Lex Reduction Step

1. LetM be a Cohen-Macaulay R-module ofcodimension h dim(R)-dim(M),
multiplicity e and depth s. Without loss of generality we may assume that k
is infinite, so a generic set of elements c ts rn \ m2 form a regular
sequence on M. If we denote by ( )* the tensoring by R/(t as)R then
we have dim(R*) h, i(M*) i(M), eo(M) eo(M*), and M* is an
Artinian R*-module. Hence we may assume that M is an Artinian R-module
of codimension h.

2. We denote by grtc(M) the associated graded module of M. From [HRV86] it
follows that N grm(M) is an S grm(R)-module with i(N) >_ i(M) for
all 0 h. On the other hand it is well known that eo(N) eo(M) and
it is easy to see that/0 =/0(N) =/0(M). Hence we may assume that M is
an Artinian graded quotient of S with multiplicity e and codimension h.

3, Given a homogeneous submodule F of S# we will denote by Lt(F) the mono-
mial submodule of S generated by the leading terms of the elements of F
with respect to the lexicographic ordering of Sa. Let us consider a minimal
resolution of M:

with/i =/i (M). Notice that ker(tp0) C S is a homogeneous submodule of
S, so Lt (ker(qg0)) is a direct sum of monomial ideals of S:

Lt(ker(cpo)) lj.
j=l
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By [HRV86], L ))go S/Ij is an Artinian S-module of multiplicity e,
/30(L) =/30(M), and i(L) >_ fli(M).

4. Let Jj be the lex-segment ideal of S with the same Hilbert function as Ij. Note
that fli(L) ,jfl i(S/lj), h, and from the Bigatti-Hulett-Pardue
result we get

h ([Big93], [Hu193] and [Par94]). Hence L’ )j# S/Jj, is an
Artinian graded S-module ofmultiplicity e, splitting as a direct sum ofquotients
of S by lex-segment ideals and satisfies o(L’) /30(L), fli(L’) >_ /i(L),

h. We will say that L’ is alex reduction of M.

Notice that h h(M) h(L’), eo(M) eo(L’), o(M) o(L’) and i(M) <

i (L’) for h.
For graded modules over S we proceed in a similar way. In the case of ideals, i.e.,

M R/I (resp. M S/l), we may assume that s(I) s(l’) where L’ S/I’ is a
lex reduction of M.

Let I (e) be the lex-segment ideal defined at the beginning of this section. Recall
that I (e) is the lex-segment ideal of S k[X1 Xh] such that nR/l(e) n(h,e),
e > h + 1. Then we also denote by I (e) the extension of I (e) C S k[X Xh]
tO the ring k[X Xd], d > h. Notice that the multiplicity and Betti numbers of
I (e) and its extension are the same. We proceed in a similar way with I (e, s).

Let R be a Noetherian regular local ring of dimension d, d > h, and let x xd
be a system ofgenerators ofm. Let A C 1h be the set ofmulti-indices appearing in the
monomials of I (e). We define J (e) as the ideal of R generated by xr, K A. Since
the cosets of Xh+l Xd in R/J(e) form a regular sequence, from Proposition 3.4
we deduce that the multiplicity and Betti numbers of I (e) and J (e) are the same. For
the ideal J (e, s) we proceed in a similar way.

From the Lex version of the Key Lemma and the Lex Reduction Step we get the
main result of [Va194] in the graded case. From the Key Lemma and Proposition 3.4
we get the corresponding result for local rings, completing the result of Valla:

THEOREM 3.10. Let R be a Noetherian regular local ring ofdimension d.

(i) Let I be a height h perfect ideal ofR, e eo(R/I). Thenfor all h,

ii(R/l) < [3i(S/l (e)).

For all integers e, h such that e > h + 1, there exists a perfect height h ideal
J(e) C R with e(R/J(e)) e and i(R/J(e)) i(S/l(e)), 0 h.

(ii) Let I be a height h perfect ideal of R with initial degree s and e eo(R/l).
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Thenfor all h,

i(R/l) < i(S/I(e,s)).

For all integers e, h, s such that e > h + 1, s > 2, there exists a perfect
height h ideal J(e,s) C R with initial degree s, e(R/J(e,s)) e and
i(R/J(e,s)) i(S/l(e,s)), 0 h.

The corresponding results holdfor graded modules over S.

4. Combinatorics of Betti numbers

The purpose of this section is to define and compute explicitly the upper bounds
for the Betti numbers of Cohen-Macaulay modules. We will construct split modules
with maximal Betti numbers; i.e., we prove the sharp statement of the main result of
this paper.

Recall that Valla [Va194, Theorem 3.10] explicitly computed the upper bounds for
the Betti numbers of perfect ideals: given integers h, e, e > h + 1, the upper bound
for the i-th Betti number of a perfect height h ideal of multiplicity e is

i(S/I(e))
i-

(q(t(e)- 1,1 + 1)+ r(e)<t(e))(h-l)),
l=i-1

h. For the definitions of r(e) and t(e) see Definition 3.3.
Let be an integer, < < h. We write i (h, b, e) for the maximum of

b

’ [i (S/l (ej))
j=l

with el +... + et, e and ej > h + 1, for j 1 b}. The next section is devoted
to proving that *i is the sharp bound for the i-th Betti number. Notice that . is the
function of [E1i96].

In the main result of this section we compute i (h, b, e) explicitly: we give a set
of integers (e) b(e), el (e) +... + b(e) e, j(e) > h + 1, maximizing

yjb= fli (S/I (ej)) for all h. Notice that the maximum is achieved for a set
of integers independent of i. We define the integers ej (e) as follows: given integers
h, b, e > b(h + 1), we consider

j*(h, e, b) Max{j e >_ bq(j, h -i- 1)} > 1.

Notice that if b then j* (h, e, 1) (e) 1. We put j* j* (h, e, b), and we
define p and W by

e bq(j*, h + 1) q(j* + 1, h)p + W,
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with W < q(j* + 1, h). We define the integers ej (e) by

q(j* + 1, h + 1)

ej(e) q(j*, h + 1) + W

q(j*, h + 1)

i=1 p

=p-I-

i=p+2 b.

The main result of this section is the following:

THEOREM 4.1. For all h,

b

i(h, b, e)

_
i(S/I (ej(e))).

j=l

Proof. Given integers h, l, e, we write

F(h, I, e) q(t(e) 1,1 + 1) + r(e)(t(e))(h-l),

SO dPi(h, b, e) is the maximum of

l=i-1
i- 1

F(h, l, ej),
j=l

with el d- -I- eb e and ej >_ h + 1, for j 6 1 b}. Hence in order to prove
the result we only need to prove:

Claim. For all 0 h the set of integers el (e) eb(e) maximizes
the function Yjb__.l F(h, l, ej ).

LEMMA 4.2. Let a, b be integers such that t(a) > t(b) + 1.

(i) Assume r(a) + r(b) < q(t(b),h). Let us consider the transformation
(a, b) -- (a-r(a), b+r(a)). Thent(a-r(a)) t(a),t(b+r(a)) t(b),
r(a r(a)) O, r(b + r(a)) r(a) + r(b), and

F(h, 1, a) + F(h, 1, b) < F(h, 1, a r(a)) + F(h, 1, b + r(a)).

(ii) Assume r(a) + r(b) q(t(b), h). Let us consider the transformation
(a, b) (a r(a), b + r(a)). Then t(a r(a)) t(a), t(b + r(a))
t(b) + 1, r(a r(a)) r(b + r(a)) O, and

F(h, 1, a) + F(h, 1, b) < F(h, 1, a r(a)) + F(h, l, b + r(a)).
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(iii) Assume r(a) + r(b) > q(t(b), h). If , q(t(b), h) r(b) let us consider
the transformation (a, b) (a ’, b + ,). Then t(a ,) t(a),
t(b + y) t(b) + 1, r(a ,) r(a) ’, r(b + ,) O, and

F(h,l,a)+ F(h,l,b) < F(h,l,a- ,)+ F(h,l,b+ y).

(iv) Assume r (a O. If, q (t (b h) r (b let us consider the transformation
(a, b) (a 1,, b + ?’). Then t(a ,) t(a) 1, t(b + ,) t(b) + 1,
r(a ,) q(t(a) 1, h) ’, r(b + ,) O, and

F(h,l,a) + F(h,l,b) F(h,l,a ,) + F(h,l,b + y).

Proof. We will denote by A(x) the integer

A(x) F(h, l, a x) + F(h, l, b + x) F(h, l, a) F(h, l, b).

The aim of the lemma is to prove A(x) > 0 for some values of x.
(i) If r(a) + r(b) < q(t(b), h) then it is easy to prove that t(a r(a)) t(a),

t(b + r(a)) t(b), r(a r(a)) 0, and r(b + r(a)) r(a) + r(b).
Notice that A(r(a)) (r(a) + r(b))(t(b))(h-l) r(a)(t(a))(h-l) r(b)(t(b))(h-l).

From Corollary 2.7 (i) we get A(r(a)) > 0.
(ii) If r(a) + r(b) q(t(b), h) then t(a r(a)) t(a), t(b + r(a)) t(b) + 1,

r(a r(a)) r(b + r(a)) O.

A(r(a)) q(t(b), + 1) q(t(b) 1, + 1) r(a)(t(a))(h-l) r(b)(t(b))(h-l)

q(t(b), h)(t(b))(h-l) r(b)(t(b))(h-l) r(a)(t(a))(h-l)

> 0 by Corollary 2.7(i) with s t(a) +

(iii) Assume r(a) + r(b) > q(t(b), h). We write y q(t(b), h) r(b). Then
t(a y) t(a), t(b + y) t(b) + 1, r(a y) r(a) ,, r(b + ,) O.

A(,) (r(a) + r(b) q(t(b), h))(t(a))(h-l) -- q(t(b), 1)

r(a)(t(a))(h-l) r(b)(t(b))(h-l)
>_ 0 by Corollary 2.7 (ii) with s t(a) + 1.

(iv) Assume r(a) 0. If , q(t(b), h) r(b) then t(a /) t(a) 1,
t(b + ,) t(b) + 1, r(a ,) q(t(a) 1, h) ,, and r(b + ,) 0. Again we
can compute A(,):

A(y) q(t(a) 2, + 1) + (q(t(a) 1, h) /)(t(a)-l)(h-l) + q(t(b), + 1)
-q(t(a)- 1, h- 1)- q(t(b)- 1, -F 1)- r(b)(t(b))(h-l)
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--q(t(a)- 1, h)(t(a)-l)(h-l) + (q(t(a)- 1, h)- ’)(t(a)-l)(h-l)
d- q(t(b), h)(t(b))(h-l) r(b)(t<b))<h-t)
-q(t(b), h)<t<b)><h-) d- (q(t(b), h) Y)<t<b)>h-t)
+ q(t(b), h)<,b))h-) r(b)<t<b)>h-) 0 by (P4)

COROLLARY 4.3. Given integers e eb, e d-. "Web e, there exist integers
t, e eb, e d- d- eb e, such that

(i) _,jb= F(h, 1, ej) <_ -.gb.=l F(h, 1, ej),
<. <_ < (t+l h+l).(ii) q(t,h + l) s e eb q

Proof. First step is to prove that we can assume t(ej) t(el) I_< for all
_< j, _< b. Let us assume that there exist j, such that (ej) (el) >_ 2. Notice

that the integer[ t(ej) t(el) drops one under the transformations (ii) and (iii) of
the last result. The output of (i) satisfies the hypothesis of (iv), so (i) followed by (iv)
drops (ej) (el) at least one. Notice that under the transformations (i) (iv)
the integer F(h, l, ej) + F(h, l, el) does not decrease. Hence, repeatedly applying
the transformations (i) (iv) we obtain a new set of integers {e eb} such that

-b F(h )< F(h ej)= ey ,bj=l
v < t(e’i) <... < t(e’) < v + 1,

q(v-l,h+l)<e’ <...<

< q(v, h d- 1) _< es+ <_ <_ eb < q(v d- 1, h d- 1)

for some integers v, < s < b. Hence there exist integers < s < s < S2 _< b such
that

and

0 r(e)=...= r(ei,) < r(es,+) <_... <_ r(es) < q(v,h)

r0--r(es+) r(ei2) < (es2+l) <... < r(eb) < q(v + 1, h).

According to the sign of q(v, h) r(e) r(e) we will apply Corollary 2.7 (i) or (ii)

(e)to the pairs {e ej }, s, j s2 + b. If q(v, h) > r(e -t- r then

we replace e by e -t- r(e) and ej by q(v, h -t- 1). From Corollary 2.7 (i) we get

F(h, 1, e -+- F(h, 1, ej) < F(h, 1, e -I- r(ej)) -t- F(h, l, q(v, h)).

If q(v,h) < r(ei) d- r(ej) then we replace e by q(v,h + 1) and ej by e d- ej
q(v, h + 1). From Corollary 2.7 (ii) we get

F(h,l, ei)-I- F(h,l, ej) < F(h,l,q(v,h-i-1)) + F(h,l,e d- -q(v,h + l)).
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such thatWe can repeatedly apply this procedure until we get integers e, eb
e 4-...+eb =eand

b b

j=l j=l

and one of the following conditions holds:

<. < < (v+l h+l).(1) q(v, h + 1) < e eb q
<. _< < (v,h+l)=(2) q(v- l,h + l) < el_ eb q es+ =eb.

Notice that (ii) is (1) (resp. (2)) for v (resp. v 1); i.e., we get (ii). r"l

Now we are able to prove the claim. From the last corollary we may assume that
there exists an integer 0 < s < b such that

q(t, h + 1) _< e _< _< es < q(t + 1, h + 1) es+ eb.

If s 0 then we are done; otherwise we have t j* (h, e, b) and

0 < r(e) < < r(es) < q(t + 1, h).

From Corollary 2.7 (i), (ii), see proof of the last result, there exists a new set of
such thatintegers e e e / 4- e e 4- 4- es and

-.s F(h )< F(h= ,ey ,
j= ,e)),

ej--q(t 4- 1, h 4- 1), for j-- p,

ep+ q(t, h + l) + W <_ q(t + l, h + l),

ej =q(t,h+ 1), for j =p+2 s,

for some integer p < s. Notice thatby definition ej ej (e), j 1, s, ej ej (e),
j s + b, so the claim is proved.

Definition 4.4.
split S-module

Let h b, e > b(h 4- 1) be integers; we will denote by Mg the(h,b,e)

b S
M(h’b’e) l(ei)"__.

In the local case we define

b

Ml R
(h,b,e) J(F,i)"_.
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From the last result we get:

g has multi-THEOREM 4.5. Given integers h, b, e >_ b(h + 1) the module M(h,b,e
plicity e, codimension h, b as O-th Betti number and

i(Mh,b,e)) dPi(h, b, e)

for all h. The corresponding properties holdsfor M(h,b,e)"

Next result is the main result of this paper. We will prove it in the local case; the
graded case is done in a similar way.

THOEREM 4.6. Let R be a Noetherian regular local ring ofdimension d. Let M
be afinitely generated Cohen-Macaulay R-module, thenfor all h,

i(M) < dPi(h(M), o(M), eo(M)).

This bound is sharp: for all h b > and e > b(h + 1) the module M M(h,b,e)

satisfies h(M) h, o(M) b, eo(M) e, and i(M) i(h, b, e)for all
i-1 h.

Proof. From now on we let b /0(M), h h(M), e eo(M). Let N
])jb__l S/Ij be a lex reduction of M, so e eo(N), ej eo(S/lj), el +... + eb e,
h(N) h, o(N) b, andi(N) > i(M),i b. HencefromTheorem3.10
we have

#i (M) <_ ,i (N) #i "< #i l’eejj=l j=l

From Theorem 4.1 and the definition of i we deduce

i(M) < dPi(h, b, e) dPi(h(M), /o(M), eo(M))

for h. The sharp statement follows from Theorem 4.5.

Remark 4.7. Recall that for non-Cohen-Macaulay modules there is not an upper
bound for the number of generators; see [ERV91 ].

gRemark 4.8. Assume that k is a characteristic zero field. Notice that M(h,b,e
is itself a ring. From [GGR86] we can lift this S k[Xl Xh]-module to a
S[Z] k[X Xh Z]-module ltdg’lift that is also a reduced ring. See also(h,b,e)
[ERV91 ], [EGV94], [Va194].

We end the paper giving some explicit computations.
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Example We compute explicitly the module Mg In this case we have(3,3,19)"

el 10, e2 5, e3 4, and Mg S/I(IO) S/I(5) S/I(4), where I(10)(3,3,19)
is the ideal generated by X3, X2y, XY2, XYZ, XZ2, X2Z, y3, y2z, yz2, Z3, I(5)
is the ideal generated by X2, XY, y2, YZ, XZ, Z3, I (4) is the ideal generated by X2,
XY, y2, YZ XZ Z2 The module Mg M has Betti numbers/50(M) 3,(3,3,19)
/I(M) v(M) 22,/2(M) 31,/53(M) 12. The Hilbert function of M is
HM {3, 9, 7, 0 }.

Example 2. In the following table we compute some values of the upper bounds
of the Betti numbers for h 3 and fl0 2:

e0 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
fll 12 12 12 13 13 14 16 16 16 17 17 18 20 20 20
/2 16 16 16 18 18 20 23 23 23 25 25 27 30 30 30
/3 6 6 6 7 7 8 9 9 9 10 10 11 12 12 12
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