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BY
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In this paper we extend the -symbol of [2]. Our extension is a homo-
morphism of a C*-subalgebra, a, of bounded operators on L(R’) onto the
bounded continuous functions on R X Sn-1. The kernel of this homo-
morphism is the set of all T such that kT and Tk are compact operators for
each C(Rn). We also show that ( and are uniquely determined by
these properties.

Cordes [3] and Seeley [7] have considered on a smaller algebra than ( and
obtained a homomorphism onto the continuous functions on S X S
whose kernel is the compact operators. Our results, which extend theirs,
were obtained after reading their papers.
Our results are stated precisely in 1. The information used about singular

integral operators is discussed in 2. All of it is contained in [2]. The
seminar notes [1] also contain this information.
The author wishes to thank Professor J. Glimm for his help in the prepara-

tion of this article, which is part of the author’s Ph.D. thesis. He also wishes
to thank Professor W. Ambrose for his continued encouragement.

1. The statement of the main results

R will always denote Euclidean n-space (n > 1) and S- will be the unit
sphere in R. We use for the usual scalar product in R and II for
the corresponding norm. The word function will always mean a complex-
valued function. We denote the coordinate functions on R by u, u
and if (a, am) where the a are nonnegative integers, we write

Oal+. .+a,

ua ul u, and Da
Ou OuT"

We use the standard notation C (Rn) for the set of functions defined on R",
whose partial derivatives of all orders exist and are continuous, and use
C’ C(R") for functions in C (R") that have compact support.
We also use the notation BC BC(R" S"-) for the set of 11 bounded

continuous functions on R" (R" [0]) such that/(x, ),y) k(x, y) for
all > 0. Thus BC is essentially the same as the bounded continuous func-
tions on R Sn-. If U is any open set in R", we lso write

B=(U) [f (U) Df is bounded for every a]
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We write BC B’CC(R k.n-1 for the set

(BC) n B(R X [yeR’ll y > 1]).

We consider BC as a B*-algebra with the sup-norm, and conjugation as the
,-operation, denoting the sup-norm by 10 so BC is a subalgebra of BC.
We introduce the following further notation"

B(L) is the set of bounded operators on L2(R).
We wish to remark that we write for the functions e L(R) as well as

for the corresponding multiplication operators of B(L2). Also, if f e L(R)
then f [ f f 2;ifT B(L2) then T sup 0-[ Tf o (Note that
fg denotes the Lebesque integral of g over R).

is the set of B singular integral operators; the inverse image of BC
under the a-symbol in [2]. o’ BC is the restriction of the a-symbol
to .

is the set of compact operators of B(L).
oc [T e B(L) T and T e for every e C(R)].
If A is a set in a topological space, we write A- for the closure of A.

THEOREM 1. There is a C* subalgebra of B(L), which we shall deno by
a a (continuous) homomorphism of a onto BC(R X S-) having the
following properties"

(a) a contains a o.
(b) z is an extension of
(c) The kernel of is o.
(d) The pair (a, ) is maximal with respect to (a)-(c). Precisely, if a is

is a C* subalgebra of B(L) a if a’ is a homomorphism of a into
BC(R X S-) satisfying (a)-(c) with respect to (a, ’), then A a a

This theorem, which is the main result, will be obtained by an extension
procedure that has three parts"

(1) The symbol 0 extends to a continuous homomorphism of the
algebra + o onto BC(R X S-) with kernel o.

(2) a extends by continuity to a homomorphism : of ( o)- onto
(B*C)-. The kernel of is o and the range of is the bounded, uni-
formly continuous functions on R X S-.

(3) IT eB(L) T and T e ( + o)- for every e C]. The
symbol is extended to a by the defining formula

R S"-where (x, ) X T a, and is any C0 function satisfying (x) 1.

The C operators of [2], 0, are elements of a and agrees with the
a-symbol of [2] on these operators. In fact the entire extension could proceed
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starting with the C operators (provided > 1) instead of . The same
proofs apply. The details regarding this paragraph are in Section 7.
The algebra considered by Seeley in Section II of [7], and also by Cordes

in [3], is a subalgebra of a and a agrees with the a-symbol on these operators.
In fact, ( [T B(L2) :bT and Tk al] where "al" denotes the above
mentioned algebra. If one uses this as a definition of a and applies the method
of (3) together with the results of [7] or [3], one could extend the a-symbol
from a to ( directly.

THEOREM 2. There is a sequence of C functions , m 1, 2, and a
sequence of real numbers , m 1, 2, with the following properties:

(1) Iio 1.
(2) support 0.
(3) Let x R and Sn-1. If A e ( and b, ,(. x)e(’-’’), then

Consequently Range a(A) c spectrum A for every A e a.

(We remark that if f is a function on Rn, support f Ix e R" f(x) 0]-.
If fn is a sequence of functions on R and x Rn, then support fn ---) x if and
only if for every neighborhood N of x, there is an M e R such that n > M
implies support fn c N.)

This theorem is a generalization of a lemma announced by Gohberg [4],
and proved by Seeley in [7] (see Theorem 2.2 of [6] or Theorem 9 of [7]).
Theorem 2 follows easily from the case of T e e, as shown in Section 7 of this
paper. The case of T e is in Proposition 2 of the next section.

2. Prerequisites and further notation

We outline the definition of and the a-symbol. For this, let

F L2(R’) --.)L2(R)
be the Fourier transform. F is an isometry of L (Rn) onto L (Rn).
We are interested first in operators in B(L) of the form F-F, where is

defined on R" [0], (hx) k(x) for }, > 0 and x e R [0] and

C eB([yeR Y > 1]).

In other words, consider those operators T e B(L) for which (Tf) bf^,
where we use f^ for Ff.
F-bF b gives a one to one correspondence of these operators with the

above defined functions. We define ao(F-bF) as the function in B’C given
by ao(F-lbF)(x, y) (y) for (x, y) e R X S-. The range of a0 are the
functions in BC which are independent of the first coordinate. Let us de-
note the set of such functions by B(Sn-) and the corresponding operators
by . Then

(2.1) ao 1 B*(Sn-l). if0 is one to one and onto B*(S-).
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Next we wish to extend -1 to a map of B*C into B(L).
In [2], the authors use spherical harmonics as an example of a sequence

{Yi}, i 0, 1, 2, Y e B*(Sn-1), having the following properties:

(2.2) (a) Yo(x, y) 1 for (x, y)

(b) Each/ e B*C has a unique expansion of the form
n--1k(x, y) =o a(x) Y(O, y), (x, y) R X S

and convergence in the norm of BC (actually better convergence than that),
where a e B (R).

(c) If k 0ai Y is such an expansion, then T ioaiat(Y)
defines an operator in B(L:), the sum converging with respect to the operator
norm,

From (2.2), one extends to a map of B*C into B(L). Let denote
the range of this extension. The map al B,C e turns out to be one to
one, which will be proved at the beginning of the next section (see Proposition
2 and the remarks after it). For the rest of this section we will assume this.
Consequently, 0 (1)- is a well defined map of e, one to one and onto
B*C. The rest of this section is devoted to known properties of a0.

Notation. ’ [Tee: o(T)(R" X S-) has compact support.]

(2.3) (a) a0: BC is linear, one to one and onto. The identity
Ieanda0(I) 1.

(b) If Se and eB(Rn) then S ee and a0(S) a0(S).
(c) IfSeeandCeCthen
(d) IfSe’,thereisaeCsuchthatS S.

These are easy consequences of (2,2).
We shall use the H spaces, for m any integer, and recall their deflation:
H is the set of tempered distributions T on R whose Fourier transform T
comes from a function for which

We shall use the standard properties of these Hilbert spaces.
m >_ 0, then

For instance, if

L R LH [fe )’D fe (R") for lal _< m]

where the D,f’s are distribution derivatives. In particular, H0 L(R’).
We will also need the following additional property of the H spaces (see
(2.7)): if C is any compact subset of R and H(C) is the set of elements
of H with support contained in C, the natural injection of H,(C) into H_
is a compact operator.



432 STUART M. NEWBERGER

We introduce the following further notation"

H.
[RB(52) "R(H.) c H.; R]H has a bounded

Rk B[Hk, H+I] for every integer
extension

As usual B(X, Y) denotes the bounded operators from X to Y where X
and Y are normed linear spaces.

If m is a positive integer,

(tt, [R B(L2) R HI, has a bounded extension R B[Hk, Hk+l] for
every integer ] such that -m < ] _< m- 1].

Clearly
We continue with known properties of 0.

(2.4) IfS, S.ethenS1S $3 + RwhereS3e(,Re(Randa0(Sa)
z0(S1)z0(S.). Denote S by S S.

(2.5) IfSe(thenS* S + R where S* is the adjoint of S, Seand
a0(Sa) a0(S)- (the complex conjugate of z0(S) ). Clearly (S) S.

For (2.4) and (2.5) see [1, Theorem 4, page 71]. For the C operators of
[2] or [1] we have R e 5 if > 1 ([] is the largest integer n such that n < ).
We will use only that R e which is proved in [2] as well as in [1].

(2.6) (R* (, (*, (Rm. This follows easily from the duality between
H and H_. See [6].

(2.7) If h e C, R e then R and Rh are compact.

Proof. By (2.6) and by taking adjoints, it suffices to show
proof is clear from the following diagram:

The

Ho R H b H(C) i

Here C is the support of h which is compact in R and i is the injection which
is compact in B(H(C), Ho).

3. The first extension

Our first task is to prove - B’C --, B(L) is one to one, and then to
show that a0 ( -- BC is continuous. For this we need a lemma concerning
Fourier transforms. The statement is essentially Lemma 15 of [7]; the
simpler proof is due to the author.

Recall that the Schwartz Space $ [f C’(R) supn u, D#f] <
for every a (a,..., a) and (1,..., ) where, > 0are
integers]. If f e 8, the Fourier transform,

f" (y) (2#)-’ f fe-("
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maps 8 one-one onto 8.
If f e $ and ti > 0, let f(x) ’/f(x), x R.

then we write B(x, r) [y eRn y x < r].
Also, ifxeRnandr > 0

LEMMA 1. Let > O. Then there is a $ such that (a) for every > 0,
If b 1, (b) if E lye y > ] then there is a o > 0 such that

for eyery > o, f < , (c) for any and > O,

support (e(")) [yeR- {0} ]]y/]]yl] < ].

Proof. Let A() [yeR" {0} IlY/IlY[I ll < ]. By uniform
continuity of the map y --+ Y/II Y on lye -} < y < 2] there is an
r > 0 such that for every e S"-1, B(, r) c A (). Next note that there is
a e$ such that f] f 1 and support B(0, r) so that
support [()(. )] B(, r).
We show that is the desired function. Let T :x x, x e R". For

(a)

Similarly, for (b) f 1’’ [
For (c) first note (f)^(y) --n/=f^(y/8):
(support (f^)). Next note that
two facts we have that

< e if i is sufficiently large.
Therefore support (f) a

(f^)(. ). From these

support [ ei(’’)] support [e(")]
/i support (b^)( ) c /tB(, r) c A() A().

(Of course if E c R" we are using/tE [ix x e E].), Q.E.D.
The proofs of the following two propositions use the argument of the corre-

sponding Theorem 2.2 of [6].

PROPOSITION 1. Theorem 2 is valid if in (3), a is replaced by C

Proof. We wish to construct a sequence of Co functions, m 1, 2,
and a sequence of real numbers it= ’ m, m 1, 2, satisfying the proper-
ties of Theorem 2 for T e ,.
ByLemma lthereisasequencefeSandi T m,m 1, 2,...,such

that
(a) lf [ 1,

1 m F(b) J,,,,]f[ <</ ;>^ [yR IlY][ > 1/m]and
(c) support [f e" ".’ =.: .c [ye R [01 Y/[[ Y < 1/m].

Let g f(. x)e" Since translation does not affect the support
of the Fourier transform (if f e g (f(. x)) e-(")f^) we have that

Rsupportg=c [ye [0] [[Y/{]Yll l] < I/m].
LetTeaCl,xR"andeS"-. Then

(Tf)^(y) (y0(T)(0, y/l[ Y [I)f^(Y)
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Lfor every f (Rn). Notice that z0(T) is continuous on [0] X Sn-1 and that
oo(T)(x, ) a0(T)(O, (). Now, using the fact that the Fourier transform
is an isometry on L (R) we get that

Tg. oo( T) (x, )g,n I10 -"-> 0 as m ., RNow, there are 0e C0 support em lye y g 2/m] e 1
and 1 on [yeR" ]]y l/m]. Let0 fO/]]f0]]0. Then
0 and , m 1, 2, satisfy (1) and (2) of Theorem 2. For (3), note
that

(g)O(. x)/]fO[o and fO0 M > 0

by (b). Then

T o(T)(x, ) o
Te o(T)(x, ) o/f o
+ T o(T)(x, ) ()(" x)ilo/(if [0.

By (b) g (g)O(. x)]o 0 from which (3) follows, Q.E.D.

PROPOSITION 2. If and m 1, 2, are the sequences constructed
R n--1in Proposition 1, then for every BC, x and S

where (- x)e(’-’).

Proof. Properties (1) and (2) of Theorem 2 imply that 0 1 and
support x. This means that

B(3.1) ]]a a(x)oO as m for everyae (R)

BFurther, if Y B Sn-l) a R

a;(Y) a(x)Y(x, ) [o a(7(Y) Y(x, ) [0

+ Y(x, )(a a(x))][o.
The first of the terms on the right side tends to zero as m by Proposition
.1, the second by (3.1). Therefore

(3.2) az;(Y) a(x)Y(x, ) 0 as m .
The rest follows at once by additivity and continuity using (2.2), Q.E.D.
From Proposition 2, it follows that if z(k) 0, then

I(x, )] (x, ) ll0 0 a m

so that k 0. Therefore z7 BC is one to one and its inverse defines
zo BC.
Theorem 2 for the case A e is now just a restatement of Proposition 2.
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LEMMA 2. If A and T oo then

I(yo(A)[o _< A + T

Proof. Let z e R and e S-1. If A we have by the part of Theorem
2 just proved, that there are , m 1, 2,... such that

IIo 1, support B(x, l/m)
and

]A- zo(A)(x,)loO as m .
If f e L(R) and X is the characteristic function of B(x, l/m) then

by the dominated convergence theorem. Therefore 0 weakly. Let
Te. Then T0inL:,because T TifCeC, 1 on
on B(x, 1) and T is compact. Consequently

d + T (d + T) [0 I0(d)(x, )

-] (A + T)- (A)(x, ) [o.
Since (A + T) a(A)(x, ) o 0 by the above, the result follows,
Q.E.D.
We now prove the necessary algebraic facts for the first extension. It is

convenient to introduce the following C* algebra.

DEFINITION. [T e B(L) T T e for all e C].
LEMMA 3. (a) is a C* algebra and o is a closed (self joint) two sed

eal in .
(b) IT eB(L) CT Te for every e C].
(c) o.
(d) e.

Proof. (a) Let M, Me and eC.
MIM- MM (Mt- Mt)M+Mt(M- M);

(M- M )* M- M.
Using these formulas, it is easy to see that is a C* algebra. o is

closed in B(L) since is closed. o is a vector space and if T eo
and M e , then TM e so that (TM) TM) e . T eo implies
CTM e so that TM e . Therefore TM eo and this means o is a
right ideal in . T* (T)* and CT* (T)*; it follows, since is a
self adjoint, that o is self adjoint. Then MT (T’M*)* e to;hence
o is a two-sided ideal.

(b) Let t be the right side of the equality in the statement of (b).
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Clearly 0re c azl. Let T e 91Zl and e C’. There is a e C such
that 7 . Then T T e 1oo which implies that
OT- TCel implies that T- Tbe. By addition, T- T
which means T e

(c) This is (2.7).
(d) Let See and CeC’. Note that e; therefore

7S- oSe(R and S- Sobe6h
by (2.4). Since 0 is one-one, o S S o which implies that

by addition and (c) S e 9Z then follows from (b), Q.E.D.

LEMMA 4 (the first extension).
(a) e n {o}.
(b) Let 63 + o (vector space direct sum). Then 63 is a self-adjoint

algebra and oo is a closed (self-adjoint) two-sided ideal of 63.
(c) Let a 63BC be defined by a(S + K) a(S) where Se,

K e oo. Then is a continuous, algebra homomorphism of 63 onto BC
with kernel 3.

(d) (A [o <_ A for every A e 63.

Proof. (a) If Aeanl, then a0(A) 0 by Lemma 2; A 0 by
(2.3).

(b) The assertion concerning o follows from Lemma 3, since also by
Lemma 3, 63 c . That 63 is an algebra now follows from (2.4), that it is
self adjoint follows from (2.5).

(c) We now show that a is a homomorphism. Let B e 63; then

B S W T
where Se, Te, i 1, 2. ThenB1B2 SoS. Taby (2.4) and
the fact that oo is a two-sided ideal containing 6h. Similarly

B S --T4
by (2.5) where T e 1o, i 3, 4. Therefore

and
a.(B B) 0($1 o S.) a0(S)a0(S.) ax(B)(r(B.)

a(B*) a0(S1) q0(kl)-- al(B)-.

a is onto because a0 is onto. Kernel o’1 "--,’loc because a0 is one-one.
(d) ]al(S -t-/1) [0 [q0(S1)[0 S1 + M by Lemma 2.

proves that al is continuous, Q.E.D.
This

4. The second extension

LEMMA 5 (the second extension). Let a2 63- -* B=C) be the unique
continuous extension of r to the C* algebra 63- where (BC) is the closure of
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B’C in BC. Then as is a continuous homomorphism of 53-onto (BC) with
kernel oe. r(B) Io <_ B for every Be 53-.

Let 53---> 53-/K be defined by

(A A + K
and "r B-/K - (BOOC) defined by

Then . is an isometric isomorphism of 53-/5 onto (BC)-.
To prove Lemma 5, we shall use some facts about B. algebras [5 p. 241

and pp. 311-314].

1. A homomorphism of a B*-Mgebra into a B*-Mgebra is continuous and
has closed range.

2. A closed two-sided ideal of a B* algebra is self adjoint and the quotient
space is a B* algebra.

3. A isomorphism of a B* algebra into a B* algebra is isometric.

Proof of Lemma 5. The lemma follows easily from 1, 2, and 3 above once
we prove kernel ,oo. Clearly 1o c kernel . Let B e kernel
and b e C. There is a sequence Bn e 53 such that Bn--* B. From (2.3)
we see that b ’; therefore

hB (k(e + o))- (, + ,)-

is contained in the algebra considered in [3] or [7]. Since a.(B) 0, it
follows from Theorem 2 of [3] or Corollary 29 of [7] that kB . Since
B , we have also that Bb e, so that B e o. For completeness, we
shall sketch a separate argument to show that B e . It is the argument
of the proof of Theorem 4 of [3] adapted to the algebras of this paper.
We wish to show that kB e *. Since there is a e C such that

it suffices to show that B e ,loo. Thus it is enough to show that the kernel
of + is
We will need the one point compactification of R which is identified with

Sn. Then C(S X S-) (= the continuous functions on S X S-) is
imbedded isometrically into BC(R X S-1) by restriction.

Recall that IT eB(L) (Tf)"(y) g(y/[{ y I])f^(y)and if k(x,) =
g(), (X, ) e Rn X Sn-l, then k e B’C].

Let C. [T B(L) T is a multiplication by + c, where b e C and
c is a constant].
Note that if T e 5C then T e( and a0(T) k; if T e 5C, then T e( and

a0(T)(x, }) k(x) + c. It is easily seen from the theory .of multiplication
operators on B(ff) and the Stone-Weierstrass theorem that a.]- and
a.l/tC are isometrics with C(S-) and C(S) respectively, where C(Sn-’)
and C(S) are imbedded in C(S >< S-’) in the obvious way. It follows
easily that /](C-) and /1() are isometries with C(S-’) and C(S)
also.
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Let 5C3 be the algebra generated by 5C- and C-.
and (2.3) (d) it is easy to see that

Then by using (2.2)

(e’ + ,oo)- c (c + ,oo)-.

Therefore it is sufficient to show that kernel (5C3 + :fc)- is :oo.
continuity we have

By

((c + x,oo)-) c ((c + oo))- (c)-,

so it is sufficient to show that -1(K(5C3))- is one-one.
We note that 6t-/1 is a commutative B* algebra with identity.

if B, B 6t, then
B B B B e kernel oc;

For

and by continuity the same holds for $-.

Let K(C)-; then is a commutative B* algebra with identity.
The finite sums (a)(T), a -, T - are dense in 2 and so

"y (o C t._

Let t be a multiplicative linear functional on L. Then tl(SC-) and
1() are multiplicative linear functionals, so by the above stated isome-
tries there is a Sn- and an x S such that (H) ,(H)() and

(H) ,(H)(x)

whenever H e (3C-) and H e K(3C). Since t is continuous and the finite
sums are dense, (L) "(L)(x, ) for all L e2. Now if ,(L) 0 then
(L) 0 for every multiplicative linear functional t; since 2 is semisimple,
L 0, Q.E.D.
We postpone the characterization of (BC) to Section 6.

5. The third extension

In this section we define a and extend z to a.
Theorem 1.

We then prove (d) of

DEFINITION. a [A e B(L) ,,A and A (- for 11 e C].
We will need to know that a ; this, together with several other de-

scriptions of a is the subject of the next lemma. The definition of 9 is
given in Section 3.

LEMMA 6. Let

a [A e 9 A e6t- for all

as [A e 9 A e qt- for all

a [A B L A and A for all

Then a ( a a.
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Proof. Let k eC. al a. follows from the fact that kA- A
forAeand c -. Next we prove that afromwhich
i 1, 2 is immediate. For this let Aea. There is a CeC such that. ThenCA-,

and
(A) (A) kernel z o
(A) (A) kernel o,

so that CA A e o. Thus A by Lemma 3.
Clearly a a. If A e a, then

CA A -c ((e + o))-c (e’ + )-.

Since A A e X, we have A (e’ + x)-also, Q.E.D.

LEMMA 7 (the third extension), a is a C* algebra containing -. There
is a unique continuous, homomorphism from g into BC(R X S--) such
that a-

Proof. (i) a is a C* algebra containing -. Clearly, a is a linear space.
LetA,AeaandCeCo;thereisaCeCsuchthat . Then

(5.1) (AA) (A- A)A + (A)(A) e +- -by Lemma 6; therefore a is an algebra. If A e a

(5.2) A* (A)* e -so that a is self adjoint; a is closed since - is closed. Clearly a contains

sn--I(ii) Definition of . Let x eR, e Define

a(A)(x, ) z(A)(x, )

whereCeC,(x) landAea.
Suppose , e C and (x) (x) 1. Then

( A)(x, ) (x)z( A)(x, )

a(A)(x, ) z(:A)(x, ) ( A)(x, ).

Therefore is well defined, a extends a, as is easily seen from the definition.
R"(iii) a is a homomorphism from a into BC. Let A e a. If x e and

e C, 1 on a neighborhood N of x in Rn, then (A)(y, ) a(A)(y,
for every (y, ) e N X S-. This shows that z(A) is a continuous function
on R XSn-. Also,

a(A)(x,) a(A)(x,) A A ,
where C,0 1 and (x) 1. Therefore a(A) e BC and
i(A) ]0 A

n n--1Let xeR e Let (x) 1 in (5.1); then it is easy to see that
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(r(A A)(x, ) r(A)(x, )r(A)(x, ). Similarly, using (5.2) one sees
that (r(A*)(x, ) a(A)(x, )-. The simple proof is left to the reader.

If a’ is a homomorphism of a into BC which extends ., then (A) (x, )
(A)(x, ) if b(x) 1, so that a is unique, Q.E.D.

LEMMA 8. The kernel of is o. Consequently, as in Lemma 5, r induces
an isometric isomorphism of a/ into BC which extends

Proof. Since a extends a., kernel
Then bA e kernel al(B-= o. Then CA kA e where k k, so
that A e ,oo, Q.E.D.
We now prove Theorem l(d). This will follow immediately from the

following slightly more general result.

LEMMA 9. Let be a subalgebra of B(L) and let (B- . Also suppose
there is an algebra homonorphism a’ of 9 into the continuous (not necessarily
bounded) functions on R X S’- with kernel o, which is an extension of
(rlS-. Then ( and ’Proof. We will need the fact that BC UC (= the bounded uniformly
continuous functions on R X S-); this will be proved in the next section.

Let G e. If e C’, then z’(G) z’(G)e UC, so that there is
anA e(B- such that CG- Aekernel ’ oo. But oc (B- so that
G e(-. Since kG Gk ekernel a oo, G e(B- also. Therefore
G(.

q’(G)(x, ) a’(G)(x, ) a(G)(x, ) if (x) 1,

because ’ extends al(-, Q.E.D.

Proof of Theorem 1 (d). Suppose ((’, a’) satisfies (a)-(c) of Theorem 1.
Then a’ -. a’le ao and a’l: 0 so that ’1 a. Since
a homomorphism, on a C* algebra is continuous a’l(- a. Now, an
application of Lemma 9 completes the proof, Q.E.D.
The proof of Theorem 1 is now complete, except for the statement about

the range of a.

6. The range of
In this section we show that maps a onto BC(R" X S-) and (B- onto

the bounded uniformly continuous functions on R X S"-.
DEFINITION. Let UC(Rn) be the set of bounded, uniformly continuous

functions on R.
We will consider UC(R’) as a closed subspace of the sup-normed Banach

space of bounded continuous functions on

LEMMA 10. Bc(R") is a dense subset of UC(R’).

Proof. It follows from the mean value theorem on R that if x, y e R" and
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fe (R ,then

If(x) f(y) -< n(maxl-I-- D,f I1)11 x y Ii
where g ]] supn, g] for g e UC(R’). Therefore B’(R’) UC(R).
Suppose f e UC(R). Let , n 1, 2, be an approximate identity

in Rn. That is, $ e C, support 0 as n , , 0, and f 1.
Then f (the convolution of f with ) converges to f, uniformly on

C LR. Also, f e (Rn) and D.(f ) f D.C. Since f e and
D. e C L, we have that

D.(f ) 1]. f * (D.$) ]]. IIf ]]flD,, I.
BThis means that f , (R) Q.E.D.

DFmlTION. UC UC(R X S-) [kBC(R X S-) k is uni-
formly continuous on R X S-].
UC will be considered as a closed subspace of BC; and it follows from the

mean value theorem that B*C UC.

LEptA 11. (B*C) UC. Consequently a(-) UC.

Proof. Let m (x, ) x and n (x, ) be the coordinate functions
for R X Sn-. Then f f(m) for f UC(R) is an isometry of UC(R)
into BC(R X S-). Similarly f f(v) for f C(S-) (the continuous
functions on Sn-l) is an isometry of C(Sn-) into BC(R X S-).
We observe that C(S-1) (B*C) by the Stone-Weierstrass theorem,

and UC(R) (BC) by Lemma 10. This symbol is meant in the
sense of the above mentioned isometrics.

sn--lLet keUCand e > 0. Then for each 0e there exists > 0 such
n--1thatif ][-- 0]] < for eS then [k(x, ) k(x, $0) < e for every

R
By compactness of S-, there exist e and > 0, for i 1, m

such that the above holds for with , and the sets

are a covering for S-x. Next we observe that there exist ff e C(S-),
i 1, m such that 0 ff 1, support ff U and 1 ff.
Let k ,k(, ,)ff,(n). Then kx e (BC) and k k]0 < e,
Q.E.D.

LEM 12. a maps a onto BC(R X S-).
Proof. Let f be a C function on R such that 0 < y(t) E 1 for Itl <

and f(t) 0 if tl . Let g be a C function on R such that g(t) 1
for tl 1, 0 a(t) 1 for 1 [ti 2, d g(t) 0 for tl > 1.

Let f(t) f(t n), g(t) g(t n), n 0, 1,..., and

o= E:-0A >o.
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Let hn and )n, n 0, 1, be the functions on R defined by

n(X) f(ll x I)/O( x II), (x) Z(ll x

Then (1) n ,)n C, (2) , (3) :=0 1, (4)

support n support + ,
(5) :=0n 4, (6) 0 n,n 1, (7)n(X) 0if X]] n+2.
Now let k e BC. Then k e UC so by Lemmas 5 and 11 there is anA e -such that a(A) and

If h C define

B h =0 +iA++i h, i 0, 1;

by (7) this is a finite sum. It is easy to see that B is linear; we now show
that B is a bounded operator on C in the L norm and therefore extends by
continuity to an element B B(L). By (4) we have that the terms of the
sum are orthogonal so that

E:-o +A++ ll ([ } ]o + 1) E:-o I +

( k o + 1) f :=o +i ][h by the monotone convergence theorem

(] k Io + 1) f:=o (I+ ) ]h by (6)

4(1 k ]o + 1) h by (5).

If e C, there is an integer M 0 such that :+ +i 0 for
m > M,i 0,1. Then

M MBi -o+iA+i+i and Bi o :+ A+ :+i

so that B and B e -. Therefore B e a, i 0, 1.
n--1Let A BoWBea. Let xeR, e and(x) 1.

Then

(A) (x, ) (tU0)(x, ) + (U)(x, )

o(x)(x)(x)(x, )(x)

+ o(x)+(x)+,(x)(x, ):+(x)

(x, )2-0 (x) (x, )

by (3), (2) and the fact that (x) 0 if j > 2M + 1, Q.E.D.
The proof of Theorem I is now complete.
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7. Concluding remarks
In this section we discuss the relation of the C operators of [2], f _> 0 to

the algebra (. We will also complete the proof of Theorem 2. Notice that
f’la(C operators).

Let Ca denote the C operators. Then we wish to remark that

(Ca + ’o)- ( if>O

and in any case, Ca + 1o c a and zlCa is the z-symbol of [2]. This
follows from the fact (see [2]) that if H Ca and z0 denotes the z-symbol of
[2] on Ca (an extension of that on () then H o a T, a e C(Rn),
Ti e a and z0(H)= "oazo(Ti), the first sum converging in B(L2),
the second in BC. It is easily seen that if k is a bounded, continuous function
on Rn, then the corresponding multiplication e a, and z() (x, ) k(x).
Therefore H e a and

z(H) -’,=o z(a.)z(T) "0o ai zo(T) zo(H).
If > 0 then Ca(Rn) UC(R) so that He(B-. Thus

6 =e+ooCa+o-;
this means that (Ca + 1o)- (B-.

Finally we finish the proof of Theorem 2. In Section 3, Proposition 2,
we proved it for the case A (. We will show that the same functions ,
and numbers tim work for (. In the proof of Lemma 2 it is shown that
Tm-- 0 if T e 1o,; this establishes the theorem for A e(B ( + 1oo.
Then an easy continuity argument proves the assertion for A e (B-. Finally,
if x R and e Sn-, there is a compact neighborhood N of x such that
support m N. Also there is a eC such that 1 on N so that
kk . Therefore, if A e a, we have A ACk and z(Atl,)(x, )
z(A)(x, ). The theorem follows from these facts and its truth for (B-.
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