ZASSENHAUS' LEMMA ON SECTORIAL NORM-DISTANCES ${ }^{1}$

BY
Norman Oler

1. Introduction

A norm-distance on the Euclidean space, E_{n}, is a function, say F, from $E_{n} \times E_{n}$ to the reals having the properties that for any points P and Q in E_{n} :
(i) $F(P, Q) \geq 0$.
(ii) $F(P, Q)=F(Q, P)$.
(iii) $\quad F(P+\bar{a}, Q+\bar{a})=F(P, Q)$ where \bar{a} is any vector in R_{n} and $P+\bar{a}$, $Q+\bar{a}$ denote respectively the points to which P and Q are translated by \bar{a}.
(iv) $F(P, X)+F(X, Q)=F(P, Q)$ where X is any point of the segment $P Q$.

The translation invariance expressed in (iii) implies that $F(P+\bar{a}, P)$ is independent of P so that $F(P+\bar{a}, P)=f(\bar{a})$ defines a non-negative realvalued function, f, on $R_{n} . \quad f(\bar{a})$ is called the norm-length of the vector \bar{a}. (See for example Cassels [1, Chapter IV].)

In view of (iv), f has the property that

$$
f(t \bar{a})=|t| f(\bar{a})
$$

for any real t.
The gauge body of F at P, P a point of E_{n}, is the set,

$$
B(P, F)=\left\{X \mid X \text { in } E_{n}, F(P, X) \leq 1\right\}
$$

It is a star set having P as center of symmetry. If P is an interior point then $B(P, F)$ is called a star body.

In E_{2} a packing with respect to F, in the sense of Minkowski-Hlawaka, consists of a finite set of points, E, which is admisible with respect to F (i.e. $F(P, Q) \geq 1$ for any two points P and Q of E) and a Jordan polygon, Π, the vertices of which belong to E and which contains the remaining points of E, if any, in its interior. Such a pair, ($\Pi, E)$, will also be called an F-distribution.

The term "sectorial norm-distance" has been introduced by Zassenhaus [2] to describe a norm-distance, F, which has the following special property: The complement of $B(0, F)$ consists of a finite and, because of (ii), an even number of disjoint open convex sets $K_{1}, \cdots, K_{2 r}$; each K_{i} is contained in a sector (i.e. a cone with vertex 0$) S_{i}$ of $E_{n}(i=1, \cdots, 2 r)$; int $S_{i} \cap \operatorname{int} S_{j}=\emptyset$ if $i \neq j$; $\cup S_{i}=E_{n}$.

A vector \bar{a} is said to belong to the sector S_{i} if $0+\bar{a}$ is in S_{i}.
A sectorial norm-distance is non-degenerate if and only if $r>1$. That $r>1$ will always be assumed in what follows.

In E_{2} a sectorial norm-distance gives rise to a classification of triangles into

[^0]two types as observed by N. Smith [3] in his investigation of packings with respect to the particular sectorial norm-distance
$$
F\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right)\right|^{1 / 2} .
$$

He calls a triangle $P Q R$ type I if one of each of the pairs of vectors $\pm \overrightarrow{P Q}, \pm \overrightarrow{Q R}$ and $\pm \overrightarrow{P R}$ belongs to the same sector. All other triangles are called type II.

If $P Q R$ is of type I with, say, $\overrightarrow{P Q}, \overrightarrow{Q R}$ and $\overrightarrow{P R}$ belonging to the same sector then

$$
F(P, Q)+F(Q, R) \leq F(P, R)
$$

This distinction amongst triangles has been exploited by Smith in showing that the slackness (see [1] and [4]) of a packing with respect to the sectorial norm-distance above is non-negative:

$$
\frac{A(\Pi)}{\Delta}+\frac{F(\Pi)}{2}+N-1 \geq 0
$$

where $A(\Pi)$ is the area of the domain bounded by $\Pi, F(\Pi)$ is the length of Π measured by F, N is the number of points of E and Δ is the mesh of the critical lattice relative to F.
In the expression for the slackness function corresponding to a sectorial norm-distance Zassenhaus replaces $\frac{1}{2} \Delta$ by the greatest lower bound of the areas of type II triangles when this is positive. He shows that the resulting modified slackness function is non-negative. His proof depends upon the following lemma.

Let F be a sectorial norm-distance and (II, E) an F-distribution. If no side of I is maximum side of a type I triangle with vertices in E then there exists a triangulation of the domain with boundary Π by means of type II triangles whose vertices are in E.

It is this lemma which is our chief concern here, the object of this paper being to present a new proof. Moreover the lemma will be taken out of the above context to the extent that it holds for any sectorial covering of the plane such as the above but which need not be attached to a sectorial norm-distance function.

2. Triangulations with a sectorial condition

An orientation of E_{2} being fixed let $L_{1}, \cdots, L_{2 r}(r>1)$ be distinct halflines each with end point 0 which are so indexed that the angle from L_{i} to $L_{i+1}\left(i=1, \cdots, 2 r ; L_{2 r+1}=L_{1}\right)$ is positive and, further, L_{k+r} is the reflexion in 0 of $L_{k}(k=1, \cdots, r)$.

Denote by S_{i} the half-open sector bounded by L_{i} and L_{i+1}, which includes L_{i} but not L_{i+1}.

Such a sectorial covering determines a partial ordering of the symmetric pairs of distinct points in E_{2} in the following way.

For any two distinct points P and Q in E_{2} denote the symmetric pair they determine by $P Q$ or $Q P$. Define $P Q$ and $R S$ to be comparable if and only if at
least one of R and S is P or Q, say $S=P$, and either $\overrightarrow{P R}$ or $\overrightarrow{R P}$ belongs to the same sector as $\overrightarrow{P Q}$. Furthermore $P Q \geq P R$ if and only if the rotation of $\overrightarrow{P R}(\overrightarrow{R P})$ to $\overrightarrow{P Q}$ is non-negative, $\overrightarrow{P R}(\overrightarrow{R P})$ and $\overrightarrow{P Q}$ belonging to the same sector. Accordingly $P Q=P R$ if and only if P, Q and R are collinear.

Call a triangle $P Q R$ type I if $P Q, P R$ and $Q R$ are comparable; otherwise call $P Q R$ type II. If $P Q R$ is type I and, say, $P Q<P R<Q R$ then call $P R$ the distinguished side of $P Q R$.

Let E be a finite set of points and Π a Jordan polygon whose vertices are in E and which contains the remaining points of E in its interior. Denote by T the set of triangles with vertices in E such triangles being contained in the closed domain Π^{\prime} bounded by Π. By an E-triangulation of Π^{\prime} will be meant a triangulation by triangles in T the set of whose vertices is precisely E.

Lemma. Let Π, E and T be as above. If no type I triangle in T has distinguished side a side of Π then there exists an E-triangulation of Π^{\prime} no triangle of which is type I.

Proof. We shall show that, under the circumstances of the lemma, with any E-triangulation of Π^{\prime} in which there are type I triangles there exists an E-triangulation of Π^{\prime} in which there are fewer such.

Let $A B C$ be a type I triangle in a particular E-triangulation of Π^{\prime}. Relabeling if need be we can assume that $\overrightarrow{A B}, \overrightarrow{B C}$ and $\overrightarrow{A C}$ belong to the same sector, $S,\left(S=S_{i}\right.$ for some $\left.i, 1 \leq i \leq 2 r\right)$. Then $A C$ is the distinguished side of $A B C$.

According to the hypothesis, $A C$ is not a side of Π and so must be a side of another triangle $A C D$ in that triangulation.

There are the following possibilities in regard to the quadrilateral $A B C D$.
(1) The angle at C in $A B C D, \angle C \geq \pi$. Then $\overrightarrow{C D}$ and $\overrightarrow{A D}$ belong to S, $A C D$ is type I with distinguished side $A D$.
(2) $\angle A \geq \pi$. Then $\overrightarrow{D A}$ and $\overrightarrow{D C}$ belong to $S, A C D$ is type I with distinguished side $D C$.

If $\angle A<\pi$ and $\angle C<\pi$ then either
(3) $A B D$ and $B C D$ are both type II
or (4) $A B D$ or $B C D$ is type I.
Suffice to consider the case in which $A B D$ is type I when the possibilities are:
(4a) $\overrightarrow{A D}$ and $\overrightarrow{B D}$ belong to S. Then $A D$ is distinguished side of $A B D$ and, if $B C D$ is type I, then $D C$ is not its distinguished side.
(4b) $\overrightarrow{A D}$ and $\overrightarrow{B D}$ belong to S. Then $A D$ is not distinguished side of $A B D ; \overrightarrow{D C}$ belongs to $S, B C D$ is type I with $D C$ its distinguished side.
(4c) $\overrightarrow{A D}$ belongs to S. Then $\overrightarrow{D B}$ must belong to $S ; A D$ is not the distinguished side of $A B D ; \overrightarrow{D C}$ belongs to $S, B C D$ is type I with $D C$ its distinguished side.

Summarizing the above possibilities, precisely one of the following holds:
(i) $A B C D$ is convex but neither $A B D$ nor $B C D$ is type I .
(ii) $A D$ is distinguished side of $A C D$ or $A B D$.
(iii) $C D$ is distinguished side of $A C D$ or $B C D$.

If (i) is the case then replacing $A C$ by $B D$ in the given E-triangulation of Π^{\prime} yields one which has fewer type I triangles.

In either of the cases (ii) and (iii), say in (ii), the hypothesis requires that $A D$ be a side of another triangle, $A D E$, in the triangulation. If $A D$ is distinguished side of $A D C$ then consideration of $A C D E$ similar to that given to $A B C D$ leads either to the possibility of a suitable retriangulation and the conclusion we seek or to a further repetition of the argument. If $A D$ is distinguished side of $A B D$ then replacing $A C$ by $B D$ does not increase the number of type I triangles since if $B D C$ is also type I then so is $A D C$. We then apply our argument to $A B D E$.

The above procedure, if it does not terminate with a suitable retriangulation, gives rise to a sequence, $P_{1} Q_{1}(=A C), P_{2} Q_{2}, \cdots$ of distinguished sides of type I triangles in T. There being but finitely many triangles in T and $P_{i} Q_{i}$ being completely determined by $P_{i-1} Q_{i-1}(i>1)$ this sequence must be periodic. The proof will be complete upon showing that this is not possible.

Since the number of sectors is greater than 2 we can and shall choose a rectangular coordinate system in which $S-\{0\}$ lies in the right half-plane. Then if $\overrightarrow{P Q}$ belongs to S we shall say that $Q(P)$ is to the right (left) of $P(Q)$.

Looking again at the way in which the sequence $\left(P_{i} Q_{i}\right)$ arises we observe that $\left(P_{i}\right)$ and $\left(Q_{i}\right)$ are alternately stationary:

$$
\begin{array}{rlrl}
P_{1} & =P_{2} & =\cdots=P_{i_{1}} & \left(i_{1} \geq 1\right) \\
Q_{i_{1}} & =Q_{i_{1}+1} & =\cdots=Q_{i_{2}} & \\
\left(i_{2} \geq i_{1}\right)
\end{array}
$$

and so on where either $P_{j+1} \neq P_{j}$ and $Q_{j+1}=Q_{j}$ or $P_{j+1}=P_{j}$ and $Q_{j+1} \neq Q_{j}(j=1,2, \cdots)$.

We observe further that if Q_{1} is to the right (left) of P_{1} then Q_{i} is to the right (left) of P_{i} for each i. Moreover the orientation of $P_{i} Q_{i} X\left(X=Q_{i+1}\right.$ if $Q_{i+1} \neq Q_{i}, X=P_{i+1}$ if $P_{i+1} \neq P_{i}$) is the same for each i. Indeed it is the same for each $P_{i} Q_{i} X$ where $X=Q_{j}$ if $P_{j}=P_{i}(j>i), X=P_{j}$ if $Q_{j}=Q_{i}(j>i)$.

The subsequence $P_{i_{1}} Q_{i_{1}}, P_{i_{2}} Q_{i_{2}}, \cdots$ in which i_{1}, i_{2}, \cdots are as above determines a polygonal path $P_{i_{1}} Q_{i_{2}} P_{i_{3}} \cdots$ which does not cross itself. Thus if it has multiple points then these are either vertices or belong to sides whose end points are multiple points while it is such that by a local variation of its vertices it can be made simple, i.e. it is the limit of simple paths.

Our concern then is with a class, K, of polygonal paths: namely, $A_{1} A_{2} \ldots$ belongs to K if and only if
(a) it is the limit of simple paths;
(b) $A_{2 k}$ is to the right of $A_{2 k-1}$ and $A_{2 k+1}$ for $k=1,2, \cdots$ or $A_{2 k}$ is to the left of $A_{2 k-1}$ and $A_{2 k+1}$ for $k=1,2, \cdots$;

(c) the orientations of $A_{i} A_{i+1} A_{i+2}$ and $A_{i+1} A_{i+2} A_{i+3}$ are opposite for $i=1,2, \cdots$;

We wish to show that K contains no closed path $\alpha=A_{1} A_{2} \cdots$,

$$
A_{n+r}=A_{r}, \quad r=1,2, \cdots
$$

In any such path either of the conditions (b) and (c) requires that n be even. In view of (a) there are interior angles defined at the vertices of α and (c) is equivalent to their being alternately greater than and less than π.

We may suppose that the first alternative in (b) holds: each vertex with even index is to the right of the vertex preceding and of the vertex following. Then there exists a vertex of odd index say $A_{2 l+1}$ which is not to the right of any other and one of even index say $A_{2 r}$ which is not to the left of any other. Thus α is contained in a strip bounded on the left by a vertical line through $A_{2 l+1}$ and on the right by a vertical line through $A_{2 r}$. But this implies that the interior angles at $A_{2 l+1}$ and $A_{2 r}$ are each less than π violating condition (c). Thus K contains no closed path and the proof is complete.

We conclude by remarking that each of the above conditions is necessary. The accompanying figures illustrate (i), conditions (b) and (c) but not (a); (ii), (c) and (a) but not (b) ; (iii), (a) and (b) but not (c).

References

1. J. W. S. Cassels, An introduction to the geometry of numbers, Berlin, Springer-Verlag, 1959.
2. H. Zassenhaus, Statistical geometry of numbers, Prentice-Hall, in press.
3. N. E. Smith, On a packing problem of statistical geometry of numbers, McGill University Thesis, 1951.
4. N Oler, The slackness of finite packings in E_{2}, Amer. Math. Monthly, vol. 69 (1962), pp. 511-514.

[^0]: Received January 17, 1964.
 ${ }^{1}$ Supported by the National Science Foundation.

