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1. Introduction
A norm-distance on the Euclidean space, E,, is a function, say F, from

E. X E to the reals having the properties that for any points P and Q in En
(i) F(P, Q) >_ O.
(ii) F(P, Q) F(Q, P).
(iii) F(P + d, Q - d) F(P, Q) where d is any vector in R and P - d,

Q -t- d denote respectively the points to which P and Q are translated by d.

(iv) F(P, X) + F(X, Q) F(P, Q) where X is any point of the seg-
ment PQ.

The translation invariance expressed in (iii) implies that F(P + a, P) is
independent of P so that F(P + d, P) f(d) defines a non-negative real-
valued function, f, on R. f(d) is called the norm-length of the vector d.

(See for example Cassels [1, Chapter IV].)
In view of (iv), f has the property that

f(td) It If(d)
for any real t.
The gauge body of F at P, P a point of En, is the set,

B(P, F) {X IX in En F(P, X)

_
1}.

It is a star set having P as center of symmetry. If P is an interior point then
B(P, F) is called a star body.

In E. a packing with respect to F, in the sense of Minkowski-Hlawaka, con-
sists of a finite set of points, E, which is admisible with respect to F (i.e.
F(P, Q) >_ 1 for any two points P and Q of E) and a Jordan polygon, H, the
vertices of which belong to E and which contains the remaining points of E,
if any, in its interior. Such a pair, (II, E), will also be called an F-distribution.
The term "sectorial norm-distance" has been introduced by Zassenhaus

[2] to describe a norm-distance, F, which has the following special property"
The complement of B(0, F) consists of a finite and, because of (ii), an even
number of disjoint open convex sets K1, K2r each Ki is contained in a
sector (i.e. a cone with vertex 0) Si of E (i 1, 2r); int S nint S.
ifij;[.JS= En.
A vector d is said to belong to the sector S if 0 -t- d is in S.
A sectorial norm-distance is non-degenerate if and only if r > 1. That

r > 1 will always be assumed in what follows.
In E2 a sectorial norm-distance gives rise to a classification of triangles into
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two types as observed by N. Smith [3] in his investigation of packings with
respect to the particular sectorial norm-distance

F((xl, yl), (x., y.)) I(x - y)11/.
He calls a triangle PQR type I if one of each of the pairs of vectors PQ, :=I::QR
and 4--R belongs to the same sector. All other triangles are called type II.

If PQR is of type I with, say, P--, Q-- and -R belonging to the same sector
then

F(P, Q) + F(Q, R) <_ F(P, R).

This distinction amongst triangles has been exploited by Smith in showing
that the slackness (see [1] and [4]) of u packing with respect to the sectorial
norm-distance above is non-negative"

A(H) F(II)
N-I>0A 2

where A (II) is the area of he domain bounded by II, F(II) is he length of II
measured by F, N is the number of points of E nd A is the mesh of the
critical lattice relative to F.
In the expression for the slackness function corresponding to a sectorial

norm-distance Zassenhaus replaces 1/2A by the greatest lower bound of the
areas of type II triangles when this is positive. He shows that the resulting
modified slckness function is non-negative. His proof depends upon the
following lemmm

Let F be a sectorial norm-distance and (II, E) an F-distribution. If no
side of II is maximum side of a type I triangle with vertices in E then there
exists u triangulution of the domain with boundary II by means of type II
triangles whose vertices re in E.

It is this lemma which is our chief concern here, the object of this paper
being to present new proof. Moreover the lemma will be tuken out of the
above context to the extent that it holds for any sectorial covering of the plane
such as the above but which need not be attached to a sectorial norm-distance
function.

2. Triangulations with a sectorial condition

An orientation of E being fixed let L, L (r > 1) be distinct half-
lines each with end point 0 which are so indexed that the angle from L to
L+ (i 1, 2r; L2r+ L1) is positive and, further, L+ is the reflexion
in0ofL (k 1, ...,r).
Denote by S the half-open sector bounded by L and L+, which includes

L but not L+.
Such a sectorial covering determines a partial ordering of the symmetric

pairs of distinct points in E i the following way.
For any two distinct points P and Q in E denote the symmetric pair they

determine by PQ or QP. Define PQ and RS to be comparable if and only if at
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least one of R and S is P or Q, say S P, and either P- or R-fi belongs to
the same sector as P--. Furthermore PQ >_ PR if and only if the rotation of
P-R(-’P) to P-- is non-negative, fiR(-fi) and P-- belonging to the same sector.
Accordingly PQ PR if and only if P, Q and R are collinear.

Call a triangle PQR type I if PQ, PR and QR are comparable; otherwise call
PQR type II. If PQR is type I and, say, PQ < PR < QR then call PR the
distinguished side of PQR.

Let E be a finite set of points and II a Jordan polygon whose vertices are in
E and which contains the remaining points of E in its interior. Denote by T
the set of triangles with vertices in E such triangles being contained in the
closed domain II’ bounded by H. By an E-triangulation of II’ will be meant a
triangulation by triangles in T the set of whose vertices is precisely E.

LEMMA. Let II, E and T be as above. If no type I triangle in T has distin-
guished side a side of II then there exists an E-triangulation of IY no triangle of
which is type I.

Proof. We shall show that, under the circumstances of the lemma, with
any E-triangulation of IY in which there are type I triangles there exists an
E-triangulation of II’ in which there are fewer such.

Let ABC be a type I triangle in a particular E-triangulation of IY. Relabel-
ing if need be we can assume that A---, - and -*C belong to the same sector,
S, (S S for some i, 1 _< i <_ 2r). Then AC is the distinguished side of
ABC.

According to the hypothesis, AC is not a side of II and so must be a side of
another triangle ACD in that triangulation.
There are the following possibilities in regard to the quadrilateral ABCD.

(1) The angle at C in ABCD, A C >_ ’. Then - and A belong to S,
ACD is type I with distinguished side AD.

(2) A >_ r. ThenD-- and -C belong to S, ACDistypeI with dis-
tinguished side DC.

If A A < r and AC < r then either

(3) ABD and BCD are both type II
or (4) ABDorBCDistypeI.

Suffice to consider the case in which ABD is type I when the possibilities
are:

(4a) A-- and B belong to S. Then AD is distinguished side of ABD
and, if BCD is type I, then DC is not its distinguished side.

(4b) A-- and --’D belong to S. Then AD is not distinguished side of
ABD; -’C belongs to S, BCD is type I with DC its distinguished side.

(4c) XD belongs to S. Then D-- must belong to S; AD is not the dis-
tinguished side of ABD; b-’C belongs to S, BCD is type I with DC its distin-
guished side.
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Summarizing the above possibilities, precisely one of the following holds:

(i) ABCD is convex but neither ABD nor BCD is type I.
(ii) AD is distinguished side of ACD or ABD.
(iii) CD is distinguished side of ACD or BCD.
If (i) is the case then replacing AC by BD in the given E-triangulation of

II’ yields one which has fewer type I triangles.
In either of the cases (ii) and (iii), say in (ii), the hypothesis requires that

AD be a side of another triangle, ADE, in the triangulation. If AD is dis-
tinguished side of ADC then consideration of ACDE similar to that given to
ABCD leads either to the possibility of a suitable retriangulation and the
conclusion we seek or to a further repetition of the argument. If AD is dis-
tinguished side of ABD then replacing AC by BD does not increase the number
of type I triangles since if BDC is also type I then so is ADC. We then apply
our argument to ABDE.
The above procedure, if it does not terminate with a suitable retriangulation,

gives rise to a sequence, P Q(--AC), P Q,... of distinguished sides of
type I triangles in T. There being but finitely many triangles in T and P Q
being completely determined by P_ Q_ (i > 1) this sequence must be
periodic. The proof will be complete upon showing that this is not possible.

Since the number of sectors is greater than 2 we can and shall choose a
rectangular coordinate system in which S {0} lies in the right half-plane.
Then if -Q belongs to S we shall say that Q(P) is to the right (left) of P(Q).

Looking again at the way in which the sequence (P Q) arises we observe
that (P) and (Q) are alternately stationary:

P P P (i >_ 1)

Q Q+ Q i >_. i
and so on where either P+ P and Q.+ Q. or P.+ P. and
Q+ q (j 1, 2, --.).
We observe further that if Q is to the right (left) of P then Q is to the

right (left) of P for each i. Moreover the orientution of P Q X (X Q+
if Q+ Q, X P+ if P+ P) is the sume for euch i. Indeed it is the
sume for each PQX where X Q if P P(j > i), X P if
Q-= Q (j > i).
The subsequence P Q, P Q,... in which i, i,.., are as above

determines a polygonal path P QP which does not cross itself. Thus
if it has multiple points then these are either vertices or belong to sides whose
end points are multiple points while it is such that by a local variation of its
vertices it can be made simple, i.e. it is the limit of simple paths.
Our concern then is with a class, K, of polygonal paths" namely, A A

belongs to K if and only if

(a) it is the limit of simple paths;
(b) A is to the right of A_ and A+ for/c 1, 2, or A is to the

left of A_ and A+ for k 1, 2,
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At
A,

A+

(c) the orientations of Ai Ai+l A+2 and A+1 A,.+2 A+3 are opposite for
i- 1,2,...

We wish to show that K contains no closed path A A2

An+r At, r 1, 2, ....
In any such path either of the conditions (b) and (c) requires that n be

even. In view of (a) there are interior angles defined at the vertices of a and
(c) is equivalent to their being alternately greater than and less than r.
We may suppose that the first alternative in (b) holds: each vertex with

even index is to the right of the vertex preceding and of the vertex following.
Then there exists a vertex of odd index say A2+1 which is not to the right of any
other and one of even index say Ar which is not to the left of any other. Thus
a is contained in a strip bounded on the left by a vertical line through A2+1
and on the right by a vertical line through A:r. But this implies that the
interior angles at A+t and Ar are each less than r violating condition (c).
Thus K contains no closed path and the proof is complete.
We conclude by remarking that each of the above conditions is necessary.

The accompanying figures illustrate (i), conditions (b) and (c) but not (a);
(iN), (c) and (a) but not (b); (iii), (a) and (b) but not (c).

REFERENCES

1. J. W. S. CASSELS, An introduction to the geometry of numbers, Berlin, Springer-Verlag,
1959.

2. H. ZASSENHA_US, Statistical geometry of numbers, Prentice-Hall, in press.
3. N. E. SMITH, On a packing problem of statistical geometry of numbers, McGill Univers-

ity Thesis, 1951.
4. N OLER, The slackness of finite packings in E., Amer..Math. Monthly, vol. 69 (1962),

pp. 511-514.

UNIVERSITY OF PENNSYLVANIA
PHILADELPHIA PENNSYLVANIA


