ON REPRESENTATIONS OF FINITE GROUPS OVER VALUATION RINGS

BY
Alfredo Jones ${ }^{1}$

Let G be a finite group. Given a ring R, by $R G$ we denote the group ring of G with coefficients in R. By an $R G$-module M we understand a left $R G$ module M that has a finite basis over R. Thus the $R G$-modules afford the representations of G by matrices with entries in R. If R^{\prime} is a ring extension of R we write $R^{\prime} \otimes M$ to denote $R^{\prime} \otimes_{R} M$, and if G is a subgroup of H we let $M^{H}=R H \otimes_{R G} M$. Given a prime p let Z_{p} be the ring of p integral rationals and Q^{*}, with valuation ring Z^{*}, the p-adic completion of the rationals, Q.

In this note we study the representations of a finite group G over Z_{p}. If p is prime to the order of G, it is known that every representation of G over Z_{p} is a unique direct sum of indecomposable representations, and that the indecomposables are the Q-irreducible representations of G (see [2]). In the present paper we wish to consider the case when p divides the order of G.

In the first section we show that, if G is cyclic of order p and ξ is a root of unity of order prime to p, then the representations of G over $Z_{p}[\xi]$ can be determined by extending the method used by Reiner to study the rational integral representations of this group (see [2]). With this result it is possible to construct the representations over Z_{p} of any commutative group with a p-Sylow subgroup of order p.

In Section 2 we consider the problem of the uniqueness of the decomposition into indecomposables. We say that the Krull-Schmidt Theorem holds for $R G$-modules if in any decomposition of an $R G$-module into a direct sum of indecomposable submodules the indecomposable summands are uniquely determined up to $R G$-ismorphism. It is known that the Krull-Schmidt Theorem holds for $Z^{*} G$-modules for every finite group G (see [2]). In [4] Reiner raised the question of whether the theorem holds for $Z_{p} G$-modules. This was answered by Berman and Gudivok [1] who gave an example of a cyclic group for which the theorem fails. ${ }^{2}$ In Theorem 2 of the present paper we prove that for G abelian, if p divides the order of G, then the Krull-Schmidt Theorem holds for $Z_{p} G$-modules if and only if the indecomposable representations of G over Z_{p} are indecomposable over Z^{*}, and that this is equivalent to a condition on the exponent of G. It is shown that this condition is also sufficient for the Krull-Schmidt Theorem to hold when G is a nilpotent group of odd order. This section is essentially independent of the first one, but some representations introduced in Section 1 are used in the proof of Theorem 2.

[^0]1. In this section we use the following notation. θ denotes a root of unity of prime order p, and ξ a root of unity of order q, prime to p. Let $S=Z_{p}[\xi]$, and $R=S[\theta]$. If s is the order of p in the integers modulo q, Φ the Euler function, and $h=\Phi(q) / s$, then there are h primes $\delta_{1}, \cdots, \delta_{h}$ in R, such that $R \delta_{i} \neq R \delta_{j}$ for $i \neq j, \delta_{1} \cdots \delta_{h}=\theta-1$, and $R(\theta-1)^{p-1}=R p$. $n S$ denotes the direct sum of n copies of S.

Let G be a cyclic group of order p, and g a generator of G. S can be considered as an $S G$-module by letting $g c=c$ for all $c \epsilon S . \quad R$ becomes an $S G$ module if we define $g \alpha=\theta \alpha$ for all $\alpha \in R$. Now let $\gamma \in R, \gamma \mid(\theta-1)$, $R \gamma \neq R(\theta-1)$. We can construct an $S G$-module by taking the S-module $S y \oplus R$, direct sum of a free S-module and R, and defining

$$
g y=y+\gamma, \quad g \alpha=\theta \alpha, \quad \alpha \in R
$$

We denote this module (γ, R). We shall now prove that every indecomposable $S G$-module is of one of the types described above.

Theorem 1. Every SG-module M is isomorphic to a direct sum

$$
\left(\gamma_{1}, R\right) \oplus \cdots \oplus\left(\gamma_{r}, R\right) \oplus n_{0} S \oplus n_{1} R
$$

where $\gamma_{i}\left|\gamma_{i+1}, 1 \leq i<r, \gamma_{r}\right|(\theta-1), R \gamma_{r} \neq R(\theta-1)$. The integers n_{0}, n_{1} are uniquely determined by the isomorphism class of M, and $\gamma_{1}, \cdots, \gamma_{r}$ are determined up to units of R.

Proof. We shall duplicate a proof done by Reiner of a similar result for $Z G$-modules (see [2, p. 506]).

Let $\sigma=1+g+\cdots+g^{p-1}$, and let (σ) be the ideal generated by σ in $S G$. Then $S G /(\sigma) \cong R$. Given an $S G$-module M, let

$$
M_{\sigma}=\{m \in M ; \sigma m=0\} .
$$

Then M_{σ} can be made into an R-module by defining $\theta m=g m$ for all $m \epsilon M_{\circ}$. M_{σ} is finitely generated and torsion-free as an R-module.

Since $(g-1) M \subset M_{\sigma}$, by the invariant factor theorem for modules over principal ideal domains, there exist $b_{1}, \cdots, b_{n} \in M, \gamma_{1}, \cdots, \gamma_{n} \in R$, such that $\boldsymbol{\gamma}_{i} \mid \gamma_{i+1}, 1 \leq i<n$, and

$$
M_{\sigma}=R b_{1} \oplus \cdots \oplus R b_{n}, \quad(g-1) M=R \gamma_{1} b_{1} \oplus \cdots \oplus R \gamma_{n} b_{n}
$$

$\gamma_{1}, \cdots, \gamma_{n}$ are uniquely determined up to units of R by the modules $M_{\sigma},(g-1) M$. From $(g-1) M \supset(\theta-1) M_{\sigma}$ it follows that $\gamma_{n} \mid(\theta-1)$. Assume $R \gamma_{r} \neq R(\theta-1)$ and $\gamma_{r+1}=\cdots=\gamma_{n}=\theta-1$.
M_{σ} is an S-pure submodule of M; hence there exists an S-submodule X of M such that $M=X \oplus M_{\sigma}$. Now consider

$$
L=(g-1) M /(\theta-1) M_{\sigma} \cong R \gamma_{1} / R(\theta-1) \oplus \cdots \oplus R \gamma_{r} / R(\theta-1)
$$

Since $(g-1) M=(g-1) X+(\theta-1) M_{\sigma}$, the natural homomorphism $(g-1) M \rightarrow L$ maps $(g-1) X$ onto L. Hence the composition of the map

$$
x \rightarrow(g-1) x+(\theta-1) M_{\sigma}, \quad x \in X
$$

with the above isomorphism defines a homomorphism ϕ from X onto $R \gamma_{1} / R(\theta-1) \oplus \cdots \oplus R \gamma_{r} / R(\theta-1)$. Let

$$
\phi=\phi_{1}+\cdots+\phi_{r}, \quad \phi_{i}: X \rightarrow R \gamma_{i} / R(\theta-1), \quad 1 \leq i \leq r .
$$

Let x_{1}, \cdots, x_{t} be an S-basis for X. Define $\beta_{i}=(\theta-1) / \gamma_{i}, i \leq i \leq r$, and let $\beta_{1}=\delta_{1} \cdots \delta_{u}, u \leq h$. For $i \leq u$ we write $\delta_{i} \mid \phi_{1}(x)$ if

$$
\phi_{1}(x) \in R \gamma_{1} \delta_{i} / R(\theta-1)
$$

Suppose that for some $j \leq u$ we have

$$
\begin{aligned}
\delta_{i} \nmid \phi_{1}\left(x_{1}\right), & 1 \leq i<j \\
\delta_{j} \mid \phi_{1}\left(x_{1}\right) &
\end{aligned}
$$

Then there exists some x_{k} such that $\delta_{j} \nmid \phi_{1}\left(x_{k}\right)$; otherwise

$$
\phi_{1}(X) \subset R \gamma_{1} \delta_{j} / R(\theta-1) \subset_{\neq} R \gamma_{1} / R(\theta-1)
$$

So if we let $c=\varepsilon\left(\delta_{1} \cdots \delta_{j-1}\right)^{p-1} \epsilon S$, where ε is a unit of R, then

$$
\delta_{i} \nmid \phi_{1}\left(x_{1}+c x_{k}\right),
$$

$$
1 \leq i \leq j
$$

Thus we can get an S-basis x, x_{2}, \cdots, x_{t} of X, such that

$$
\phi_{1}(x)=\alpha \gamma_{1}+R(\theta-1)
$$

where α is prime to β_{1}.
Since $R \gamma_{1}=S \gamma_{1}+R(\theta-1)$, there exists $c \in S$, prime to β_{1}, such that $\alpha \gamma_{1}-c \gamma_{1} \epsilon R(\theta-1)$. If c is not a unit then for some $\delta \mid \gamma_{1}, c=c^{\prime} \varepsilon \delta^{p-1}$, ε unit of $R, c^{\prime} \in S$; therefore $c^{\prime \prime}=c^{\prime}\left(\varepsilon \delta^{p-1}+p / \varepsilon \delta^{p-1}\right)$ has one prime factor less than c, and $\alpha \gamma_{1}-c^{\prime \prime} \gamma_{1} \in R(\theta-1)$. We can then assume that c is a unit of S. Let $\bar{\gamma}_{1}=\gamma_{1}+R(\theta-1)$; then if $x_{1}^{\prime}=c^{-1} x$ we have $\phi_{1}\left(x_{1}^{\prime}\right)=\bar{\gamma}_{1}$. Now for every $i, 1<i \leq t, \phi_{1}\left(x_{i}\right)=\bar{d}_{i} \bar{\gamma}_{i}$ for some $d_{i} \in S$; hence $\phi_{1}\left(x_{i}-d_{i} x_{1}\right)=0$. Therefore, letting $x_{1}^{\prime}=x_{i}-d_{i} x_{1}, 1<i \leq t$, we obtain an S-basis $x_{1}^{\prime}, \cdots, x_{t}^{\prime}$ of X, such that

$$
\phi_{1}\left(x_{1}^{\prime}\right)=\bar{\gamma}_{1}, \quad \phi_{1}\left(x_{2}^{\prime}\right)=\cdots=\phi_{1}\left(x_{t}^{\prime}\right)=0
$$

Let $\beta_{2}=\delta_{1} \cdots \delta_{v}$. We shall now prove that for every $\delta_{j}, i \leq j \leq v$, there exists some $x_{k}^{\prime}, 2 \leq k \leq t$, such that $\delta_{j} \not \backslash \phi_{2}\left(x_{k}^{\prime}\right)$. Assume this is false; then

$$
\phi_{2}\left(S x_{2}^{\prime} \oplus \cdots \oplus S x_{t}^{\prime}\right) \subset R \gamma_{2} \delta_{j} / R(\theta-1)
$$

Now let

$$
\phi\left(\sum_{i=1}^{t} c_{i} x_{i}^{\prime}\right) \in R \gamma_{2} / R(\theta-1), \quad c_{i} \in S, \quad 1 \leq i \leq t
$$

Then $\phi_{1}\left(\sum_{i=1}^{t} c_{i} x_{i}^{\prime}\right)=\phi_{1}\left(c_{1} x_{1}^{\prime}\right)=0$, so $\beta_{1} \mid c_{1}$; hence $\beta_{i} \mid c_{1}, 1 \leq i \leq r$, and from this $\phi_{i}\left(c_{1} x_{i}^{\prime}\right)=0,1 \leq i \leq t$; consequently

$$
\phi\left(\sum_{i=1}^{t} c_{i} x_{i}^{\prime}\right)=\phi\left(\sum_{i=2}^{t} c_{i} x_{i}^{\prime}\right) \in R \gamma_{2} \delta_{j} / R(\theta-1) \subset_{\neq} R \gamma_{2} / R(\theta-1)
$$

which is a contradiction.
As before, we can now construct a new basis $x_{1}^{\prime \prime}, \cdots, x_{t}^{\prime \prime}$ of X, such that

$$
\phi_{2}\left(x_{2}^{\prime \prime}\right)=\bar{\gamma}_{2}, \quad \phi_{2}\left(x_{1}^{\prime \prime}\right)=\phi_{2}\left(x_{3}^{\prime \prime}\right)=\cdots=\phi_{2}\left(x_{t}^{\prime \prime}\right)=0
$$

It is easily verified that with the method used to construct this basis we get
$\phi_{1}\left(x_{1}^{\prime \prime}\right)=\phi_{1}\left(x_{1}^{\prime}\right)=\bar{\gamma}_{1}, \quad \phi_{1}\left(x_{2}^{\prime \prime}\right)=\phi_{1}\left(x_{2}^{\prime}\right)=\cdots=\phi_{1}\left(x_{t}^{\prime \prime}\right)=\phi_{1}\left(x_{t}^{\prime}\right)=0$.
Repeating this process we obtain a basis z_{1}, \cdots, z_{t} of X, such that

$$
\begin{array}{ll}
\phi\left(z_{i}\right)=\phi_{i}\left(z_{i}\right)=\bar{\gamma}_{i}, & 1 \leq i \leq r \\
\phi\left(z_{i}\right)=0, & r<i \leq t
\end{array}
$$

Hence there exist $m_{i} \in M_{\sigma}, 1 \leq i \leq t$, such that

$$
\begin{array}{lrl}
(g-1) z_{i}=\gamma_{i} b_{i}+(\theta-1) m_{i}, & & 1 \leq i \leq r \\
(g-1) z_{i}=(\theta-1) m_{i}, & & r<i \leq t
\end{array}
$$

If we let $y_{i}=z_{i}-m_{i}, 1 \leq i \leq t$, then

$$
\begin{array}{ll}
(g-1) y_{i}=\gamma_{i} b_{i}, & 1 \leq i \leq r \\
(g-1) y_{i}=0, & r<i \leq t
\end{array}
$$

and

$$
M=S y_{1} \oplus \cdots \oplus S y_{t} \oplus R b_{1} \oplus \cdots \oplus R b_{n}
$$

Therefore

$$
M \cong\left(\gamma_{1}, R\right) \oplus \cdots \oplus\left(\gamma_{r}, R\right) \oplus(t-r) S \oplus(n-r) R
$$

Consider now

$$
\begin{gathered}
M=\left(\gamma_{1}, R\right) \oplus \cdots \oplus\left(\gamma_{r}, R\right) \oplus n_{0} S \oplus n_{1} R, \\
\gamma_{i} \mid \gamma_{i+1}, \\
\gamma_{r} \mid(\theta-1), \quad R \gamma_{r} \neq R(\theta-1)
\end{gathered}
$$

It is easily verified that the invariant factors of the pair of modules $M_{\sigma},(g-1) M$ are

$$
\gamma_{1}, \cdots, \gamma_{r}, \gamma_{r+1}=\cdots=\gamma_{n}=\theta-1
$$

Since under any isomorphism of $S G$-modules, $M \cong M^{\prime}, M_{\sigma}$ is mapped onto M_{σ}^{\prime} and $(g-1) M$ onto $(g-1) M^{\prime}$, the numbers $\gamma_{1}, \cdots, \gamma_{r}$ and $n-r=n_{1}$ are determined by the isomorphism class of M. Therefore, given the S-rank of M, n_{0} is also determined.

Now let G be a commutative group, $G=G_{1} \times G_{2}$, where G_{1} has exponent q prime to p and G_{2} has ordered p, and let ξ be a root of unity whose order divides q. Then $Z_{p}[\xi]$ can be made into an irreducible $Z_{p} G_{1}$-module with the elements of G_{1} acting by multiplication by the powers of ξ. Denote

$$
g x=\xi^{\alpha(g)} x, \quad \text { for } \quad x \in Z_{p}[\xi], g \in G_{1} .
$$

Then, given an indecomposable $Z_{p}[\xi] G_{2}$-module N, define a $Z_{p} G$-module N_{α} to
be the additive group N with the elements of G acting by

$$
g_{1} g_{2} n=\xi^{\alpha\left(g_{1}\right)} g_{2} n, \quad \text { for } \quad g_{1} \in G_{1}, g_{2} \in G_{2}, n \in N
$$

It is easily verified that N_{α} is an indecomposable $Z_{p} G$-module and that, if N^{\prime} is another indecomposable $Z_{p}[\xi] G_{2}$-module, then $N_{\alpha} \cong N_{\alpha}^{\prime}$ if and only if $N \cong N^{\prime}$.

Given any indecomposable $Z_{p} G$-module M let $M_{G_{1}}$ be the $Z_{p} G_{1}$-module obtained by restricting the operators to G_{1}. Since p is prime to the order of $G_{1}, M_{G_{1}}$ is the direct sum of irreducible submodules. Multiplication by the elements of G_{2} permutes isomorphic components of $M_{G_{1}}$. Since M is indecomposable, it follows that all the components of $M_{G_{1}}$ are isomorphic. The irreducible $Z_{p} G_{1}$-modules are of the form $Z_{p}[\xi]$, therefore $M_{G_{1}} \cong Z_{p}[\xi] \otimes M^{\prime}$ for some Z_{p}-module M^{\prime}, where $g(x \otimes m)=g x \otimes m$ for $x \in Z_{p}[\xi], m \in M^{\prime}$. Now considering the action of G_{2} on $M, N=Z_{p}[\xi] \otimes M^{\prime}$ can be made into an indecomposable $Z_{p}[\xi] G_{2}$-module, and M can be obtained from N in themanner described above.
2. Theorem 2. Let G be a commutative group. If p divides the order of G, then the Krull-Schmidt Theorem holds for $Z_{p} G$-modules if and only if G has exponent $q p^{n}$ where either $q=1$ or p is a primitive root modulo q. The theorem also holds if G is a nilpotent group of odd order satisfying this condition.

Proof. To show that the theorem holds when the given condition is satisfied we shall prove that for every irreducible $Q G$-module $M, Q^{*} \otimes M$ is an irreducible $Q^{*} G$-module. It follows that every irreducible $Q^{*} G$-module can be obtained from a $Q G$-module by tensoring with Q^{*}, and this implies that every $Z^{*} G$-module comes from a $Z_{p} G$-module (see [2]). From this, and the fact that for $Z_{p} G$-modules Z^{*}-isomorphism implies Z_{p}-isomorphism, it follows that for every indecomposable $Z_{p} G$-module $M, Z^{*} \otimes M$ is indecomposable. Then the Krull-Schmidt Theorem for $Z_{p} G$-modules is a consequence of the theorem for $Z^{*} G$-modules.

Let G be a commutative group satisfying the condition. Every irreducible $Q G$-module M is of the form $M \cong Q[X] /(f)$, where f is a cyclotomic polynomial of some order dividing $q p^{n}$, and where the elements of G act by multiplication by X and the powers of X. By the hypothesis on $q p^{n}, f$ is irreducible over Q^{*}, hence $Q^{*} \otimes M$ is an irreducible $Q^{*} G$-module.

Suppose G has exponent $q p^{n}$ where p is not a primitive root modulo q, then, since G has a homomorphic image that is cyclic of order $q p$, it is sufficient to show that the theorem fails when G is cyclic of order $q p$.

Using the notation of Theorem 1, $\theta-1$ has a proper divisor δ in R, so letting $\gamma=(\theta-1) / \delta$ we get

$$
(1, R) \oplus S \oplus R \cong(\delta, R) \oplus(\gamma, R)
$$

Let $\delta=\delta_{0}+\delta_{1} \theta+\cdots+\delta_{p-2} \theta^{p-2}$ and $\gamma=\gamma_{0}+\gamma_{1} \theta+\cdots+\gamma_{p-2} \theta^{p-2}$.

Let $\tilde{\xi}$ be a matrix over Z_{p} which represents multiplication by ξ in S, and denote

$$
U=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -\tilde{\xi} \\
\tilde{\xi} & 0 & \cdots & . & . \\
0 & \tilde{\xi} & \cdots & . & . \\
. & . & \cdots & . & . \\
0 & 0 & \cdots & \tilde{\xi} & -\tilde{\xi}
\end{array}\right]
$$

We then obtain two different decompositions of a Z_{p}-representation of G into indecomposables by mapping the generator of G into

$$
\left[\begin{array}{cccc}
\tilde{\xi} & 0 & \cdots & 0 \\
\tilde{\xi} & & & \\
0 & & U & \\
\cdot & & &
\end{array}\right] \oplus \tilde{\xi} \oplus U \sim\left[\begin{array}{cccc}
\tilde{\xi} & 0 & \cdots & 0 \\
\tilde{\xi} \tilde{\delta}_{0} & & & \\
\cdot & & U & \\
\cdot & & &
\end{array}\right] \oplus\left[\begin{array}{cccc}
\tilde{\xi} & 0 & \cdots & 0 \\
\tilde{\xi} \tilde{\delta}_{p-2} & & & \\
\cdot & & U & \\
\cdot & & & \\
\tilde{\xi} \tilde{\gamma}_{p-2} & & &
\end{array}\right]
$$

Let G be any finite group and M^{*} an irreducible $Q^{*} G$-module. Let $|G|$ denote the order of G and let $|G| M^{*}$ be the direct sum of $|G|$ copies of M^{*}. It can be shown from Artin's Theorem on induced characters (see [2, p. 281]) that there exist cyclic subgroups $\left\{H_{i}\right\}$ of G, and for each H_{i} a $Q^{*} H_{i}$-module M_{i}^{*} and integers $n_{i}, n_{i}^{\prime} \geq 0$, such that

$$
|G| M^{*} \oplus \sum n_{i}\left(M_{i}^{*}\right)^{G} \cong \sum n_{i}\left(M_{i}^{*}\right)^{G} .
$$

Suppose that the exponent of G satisfies the given condition; then this condition is also satisfied by all the subgroups H_{i}, so by the first part of our proof every $Q^{*} H_{i}$-module comes from a $Q H_{i}$-module. It follows that there exists a $Q G$-module N such that $|G| M^{*}=Q \otimes N$. Now let M be an irreducible $Q G$-module and suppose that $Q^{*} \otimes M \cong \sum M_{i}^{*}$ where $\left\{M_{i}^{*}\right\}$ are irreducible $Q^{*} G$-modules. Applying the above considerations to these modules we get $Q G$-modules $\left\{N_{i}\right\}$ such that $|G| M_{i}^{*}=Q^{*} \otimes N_{i}$; hence $|G| M \cong \sum N_{i}$, so the irreducible components of the modules $\left\{N_{i}\right\}$ are all isomorphic to M. From this it follows that the modules $\left\{M_{i}^{*}\right\}$ are all isomorphic.

If we now assume G nilpotent and of odd order, by the results of Roquette [5], $\operatorname{Hom}_{Q^{*} G}\left(Q^{*} \otimes M, Q^{*} \otimes M\right)$ is commutative so we conclude that $Q^{*} \otimes M$ must be irreducible.

References

1. S. D. Berman and P. M. Gudivok, Integral representations of finite groups, Dokl. Akad. Nauk SSSR, vol. 145 (1962), pp. 1199-1201.
2. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, New York, Interscience, 1963.
3. A. Heller and I. Reiner, Representations of cyclic groups in rings of integers I, Ann. of Math. (2), vol. 76 (1962), pp. 73-92.
4. I. Reiner, The Krull-Schmidt Theorem for integral group representations, Bull. Amer. Math. Soc., vol. 67 (1961), pp. 365-367.
5. P. Roquette, Realisierung von Darstellungen endlicher nilpotenter Gruppen, Arch. Math., vol. 9 (1958), pp. 241-250.
6. H. Weyl, Algebraic theory of numbers, Princeton, Princeton University Press, 1940.

Cornell University
Ithaca, New York

[^0]: Received December 21, 1963.
 ${ }^{1}$ This research was partially supported by the U. S. Army Research Office.
 ${ }^{2}$ The author is grateful to Professor Berman for communicating this example to him.

