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Let G be a finite group. Given a ring R, by RG we denote the group ring of
G with coefficients in R. By an RG-module M we understand a left RG-
module M that has a finite basis over R. Thus the RG-modules afford the
representations of G by matrices with entries in R. If R’ is a ring extension of
R We write R’ (R) M to denote R’ (R)R M, and if G is a subgroup of H we let
M RH (R)Ra M. Given a prime p let Z be the ring of p integral rationals
and Q*, with valuation ring Z*, the p-adic completion of the rationals, Q.

In this note we study the representations of a finite group G over Z. If p
is prime to the order of G, it is known that every representation of G over Z is
a unique direct sum of indecomposable representations, and that the inde-
composables are the Q-irreducible representations of G (see [2]). In the
present paper we wish to consider the case when p divides the order of G.

In the first section we show that, if G is cyclic of order p and is a root of
unity of order prime to p, then the representations of G over Z[] can be deter-
mined by extending the method used by Reiner to study the rational integral
representations of this group (see [2]). With this result it is possible to con-
struct the representations over Z of ny commutative group with p-Sylow
subgroup of order p.

In Section 2 we consider the problem of the uniqueness of the decomposition
into indecomposbles. We sy that the Krull-Schmidt Theorem holds for
RG-modules if in ny decomposition of n RG-module into direct sum of in-
decomposable submodules the indecomposble summnds re uniquely deter-
mined up to RG-ismorphism. It is known that the Krull-Schmidt Theorem
holds for Z* G-modules for every finite group G (see [2]). In [4] Reiner raised
the question of whether the theorem holds for Z G-modules. This was
answered by Bermn and Gudivok [1] who gve n example of cyclic group
for which the theorem fils. In Theorem 2 of the present pper we prove
that for G belin, if p divides the order of G, then the Krull-Schmidt Theorem
holds for Z G-modules if nd only if the indecomposble representations of
G over Z are indecomposable over Z*, and that this is equivalent to a condi-
tion on the exponent of G. It is shown that this condition is also sufficient
for the Krull-Schmidt Theorem to hold when G is a nilpotent group of odd
order. This section is essentially independent of the first one, but some rep-
resentations introduced in Section 1 are used in the proof of Theorem 2.
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1. In this section we use the following notation. denotes a root of unity
of prime order p, and a root of unity of order q, prime to p. Let S Zp[],
and R S[0]. If s is the order of p in the integers modulo q, the Euler func-
tion, and h (q)/s, then there are h primes tl, th in R, such that
R/}i R. for i j, (1 h 0 1, and R(O 1)- Rp. nS denotes
the direct sum of n copies of S.

Let G be a cyclic group of order p, and g a generator of G. S can be con-
sidered as an SG-module by letting gc c for all c e S. R becomes an SG-
module if we define ga Oa for all aeR. Now let ,eR, /1( 1),
R, R(0 1). We can construct an SG-module by taking the S-module
Sy @ R, direct sum of a free S-module and R, and defining

gy y -- ", ga Oa, a R.

We denote this module (,, R). We shall now prove that every indecom-
posable SG-module is of one of the types described above.

THEOREM ]. Every SG-module M is isomorphic to a direct sum

(’1, R) @ @ (/, R) @ no S (R) niR,

where "1 /+, 1 _< i < r, , I(0 1), R R(0 1). The integers no, n
are uniquely determined by the isomorphism class of M, and , , are de-
termined up to units of R.

Proof. We shall duplicate a proof done by Reiner of a similar result for
ZG-modules (see [2, p. 506]).

Let 1 + g ...-t- g-, and let () be the ideal generated by z

in SG. Then SG/() R. Given an SG-module M, let

M- lmeM;zm 0}.

Then M can be made into an R-module by defining Om gm for all m Mo
M is finitely generated and torsion-free as an R-module.

Since (g 1)M M, by the invariant factor theorem for modules over
principal ideal domains, there exist b bn M, "Y1 "Yn R, such that, /+, 1 _< i < n, and

M Rb @ @ Rb, (g 1)M R,b @... @ R,b.

,, , are uniquely determined up to units of R by the modules
M, (g- 1)M. From(g-- 1)M (0- 1)Mitfollowstht,l(O- 1).
Assume R, R(0 1) and +1 , 0 1.
M is an S-pure submodule of M; hence there exists an S-submodule X of M

such that M X @ M. Now consider

L (g- 1)M/(O- 1)M R’y1/R(O- 1) @ (R) R/R(O- 1).
Since (g 1)M (g 1)X -- (0 1)M, the natural homomorphism
(g 1)M -- L maps (g 1)X onto L. Hence the composition of the map

x -- (g 1)x -- (0 1)M, xX,
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with the above isomorphism defines a homomorphism from X onto
RI/R(t- 1) @ @ Rr/R(O- 1). Let, 1-t- + 4, X R /R O 1), 1 _< i <_r.

Letxl, ...,xtbeanS-basisforX. Define (- 1)/,,i_<i_< r,
and let/l ’" u,U _< h. Fori <_ uwewritel(x) if

.(x) R’ /R(O 1).

Suppose that for some j _< u we have

o(x), <_ i < j,. l(X).

Then there exists some x such that i. (x); otherwise

I(X) R’I ffR(O- 1) R’/R(O- 1).

So if we let c (5 ti._l) -1 e S, where is a unit of R, then

f (xl + cxk), 1 _< i <_ j.

Thus we can get an S-basis x, x2, xt of X, such that

(x) a + R(O- 1),
where a is prime to .

Since R- S,1 -t- R(0 1), there exists c S, prime to/1, such that
a’ c’ eR(O 1). If c is not a unit then for some il- c c’eti-,
unit of R,c’ S; therefore c c’(e’- -+- p/e,-1) has one prime factor

less than c, and al c / R(0 1). We can then assume that c is a unit of
--1S. Let ,--R(0- 1); then ifx c xwe haVel(.X) . Now

for every i, 1 < i

_
t, 1(x) c for some d S; hence (x d x) 0.

Therefore, letting x x d x, 1 i

_
t, we obtain an S-basis x, xt

of X, such that

(x) , (x) (xt) o.
Let f2 i ti. We shall now prove that for every/t., i

_
j

_
, there

exists some x, 2

_
k _< t, such that . f (x). Assume this is false; then

(b(Sx’ @ @ Sx’t) R’ /R(O 1).
Now let

(=1 c x R,/R O 1), c S, 1

_
i

_
t.

Then 1(-- cx) (cx) 0, so t ICl ;hence cl, 1

_
i

_
r, and

from this (c x) 0, 1

_
i

_
t; consequently

(:=cx) (=:cx)eR’ffR(O 1) R’/R(O 1),
which is a contradiction.
As before, we can now construct a new basis x x of X, such that

(x’) , (x’) (x’) ,t,(xT) o.
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It is easily verified that with the method used to construct this basis we get

o.
Repeating this process we obtain a basis zl, zt of X, such that

(z) (z) ff, 1 <_ i _< r,

(z) =0, r <i<_t.

Hence there exist m e M, 1 _< i _< t, such that

(g- 1)z ,b q-(0- 1)m,

(g- 1)z (0- 1)m,

If we lety z- m,l <_i_< t, then

(g 1)yi ’ b
(g 1)y O,

and

l<_i<_r,

r<i<t.

M Sy ( @ Syt ( Rbl EB ( Rb,.
Therefore

M - (.y, R) (, R) (t- r)S (n r)R.

Consider now

M= (, R) (, R) no S nR,

+i, 1 i < r,

1(-- i), R R(O- 1).

It is easily verified that the invariant factors of the pair of modules
M, (g 1)M are

, + O 1.

Since under any isomorphism of SG-modules, M M’, M, is mapped onto
M: and (g 1)M onto (g 1)M’, the numbers , and n r n
are determined by the isomorphism class of M. Therefore, given the S-rank
of M, n0 is also determined.

Now let G be a commutative group, G G X G:, where G has exponent q
prime to p and G has ordered p, and let be a root of unity whose order divides
q. Then Z,[] can be made into an irreducible Z, G-module with the elements
of G1 acting by multiplication by the powers of . Denote

gx "()x, for xeZ,[],geG.

Then, given an indecomposable Z,[]G-module N, define a Z G-module N, to
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be the additive group N with the elements of G acting by

glgn (gl)g.n, for glGl,gG,nN.

It is easily verified that N is an indecomposable Zp G-module and that, if N’
is another indecomposable Zp[]G2-module, then N N’ if and only if
NN’.
Given any indecomposable Z G-module M let MI be the Z Gl-module ob-

tained by restricting the operators to G. Since p is prime to the order of
G1, M, is the direct sum of irreducible submodules. Multiplication by the
elements of G permutes isomorphic components ofM Since M is indecom-
posable, it follows that all the components of MI are isomorphic. The ir-
reducible Z G-modules are of the form Z[], thereforeM Zp[] (R) M’ for
some Z-module M’, where g(x (R) m) gx (R) m for x e Z[], m e M’. Now
considering the action of G. on M, N Zp[] (R) M’ can be made into an inde-
composable Z[]G-module, and M can be obtained from N in themanner
described above.. THEOREM 2. Let G be a commutative group. If p divides the order of G,
then the Krull-Schmidt Theorem holds for Z G-modules if and only if G has ex-
ponent qpn where either q 1 or p is a primitive root modulo q. The theorem also
holds if G is a nilpotent group of odd order satisfying this condition.

Proof. To show that the theorem holds when the given condition is satisfied
we shall prove that for every irreducible QG-module M, Q* (R) M is an ir-
reducible Q’G-module. It follows that every irreducible Q’G-module can be
obtained from a QG-module by tensoring with Q*, and this implies that every
Z’G-module comes from a Zp G-module (see [2]). From this, and the fact
that for Z G-modules Z*-isomorphism implies Z-isomorphism, it follows that
for every indecomposable Z G-module M, Z* (R) M is indecomposable. Then
the Krull-Schmidt Theorem for Z G-modules is a consequence of the theorem
for Z’G-modules.

Let G be a commutative group satisfying the condition. Every irreducible
QG-module M is of the form M Q[X]/(f), where f is a cyclotomic polynomial
of some order dividing qp’, and where the elements of G act by multiplication
by X and the powers of X. By the hypothesis on qp, f is irreducible over
Q*, hence Q* (R) M is an irreducible Q’G-module.

Suppose G has exponent qp where p is not a primitive root modulo q, then,
since G has a homomorphic image that is cyclic of order qp, it is sufficient to
show that the theorem fails when G is cyclic of order qp.

Using the notation of Theorem 1, 0 1 has a proper divisor t in R, so letting, (0- 1)/weget

(1, R) S @ R (,R) @ (%R).

Let o + 9 + + p_O- and
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Let be a matrix over Z which represents multiplication by in S, and
denote

We then obtain two different decompositions of a Z-representation of G into
indecomposables by mapping the generator of G into

Let G be any finite group and M* irreducible Q’G-module. Let
denote the order of G and let G M* be the direct sum of [GI copies of M*.
It can be shown from Artin’s Theorem on induced characters (see [2, p. 281]).that there exist cyclic subgroups {Hi} of G, and for each Hi a Q Hi-module
M: and integers n, n _> 0, such that

GIM* n(M) n,(M) .
Suppose that the exponent of G satisfies the given condition; then this con-

dition is also satisfied by all the subgroups Hi, so by the first part of our proof
every Q*H-module comes from a QHi-module. It follows that there exists a
QG-module N such that GIM* Q (R) N. Now let M be an irreducible
qG-module and suppose that Q* (R) M ’ M where {M} are irreducible
Q’G-modules. Applying the above considerations to these modules we get
QG-modules {N} such that GI M’ Q* (R) Ni ;hence GIM - N,
so the irreducible components of the modules {N} are all isomorphic to M.
From this it follows that the modules IMP’} are all isomorphic.

If we now assume G nilpotent and of odd order, by the results of Roquette
[5], HomQ.o (Q* (R) M, Q* (R) M) is commutative so we conclude that Q* (R) M
must be irreducible.
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