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The purpose of the following comments is to describe a more general set-
ting in which the techniques and theorems discovered by J. S. Mac Nerney
in [2] remain valid.

Let (H, Q) be a complete inner product space with norm N corresponding
to the inner product Q, and let B(H) denote the set of all linear and con-
tinuous functions from H to H. If each of U and V is a member of B(H),
then we say U << V provided that, if x is in H, then Q( Ux, x) <_ Q(Vx, x).

Let P be an algebra over the real numbers of Hermitian (a member U of
B(H) is Hermitian provided U* is U, where U* is the adjoint of U) members
of B(H) such that I, the identity function on H, is in P; and P is closed in the
topology of point-wise convergence on H. Note that, if each of U and V is
in P, then (letting the "product" UV denote the function U[V])

UV (UV)*= V’U*= VU

and P is commutative. Thus (see, for example, p. 265 of [4]), if each of U
and V is in P with 0 << U and 0 << V, then 0 << UV, and the following
lemma is true.

LEMMA l. If each of U, V, A, and B is in P, 0 << U, 0 << V,
-U << A << U, and -V << B << V, then

-UV << AB << UV.

In light of this lemma, if each of U and V is in P with 0 << U << V, then
0 << U << V2, and from this it follows that, if x is in H, then

N(Vz) _< N(Vz).

Let S be a linearly ordered set with order relation 0. If each of x and y
is in S, then an O-subdivision of {x, y} is a sequence {t} such that to is x,
tn is y and the following hold’

(i) if {x, y} is in 0, then {t-l, t} is in O for p 1, ..., n;
(ii) if{y,x} is in 0, then{t,t-l} is in Oforp 1,...,n.

A refinement of the 0-subdivision , of the member {x, y} of S S, is an
0-subdivision of {x, y} of which is a subsequence.

If A is a sequence with values in a ring, then II A is A1, and for each
positive integer n, II+1 A is (II A)AnI. Suppose f is a function from
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S S to a ring. If {x, y} is in S X S and {4} is an 0-subdivision of {x, y},
then II, f denotes II f(t,, 4), while tf denotes f(4-1, tv).
Furthermore, f is said to be O-additive provided that, if each of x, y} and y, z}
is in 0, then

f(x, y) + f(y, z) f(x, z) and f(z, y) + f(y, x) f(z, x),

while f is said to be O-multiplicative provided that, if each of {x, y} and {y, z}
is in 0, then

f(x, y)f(y, z) f(x, z) and f(z, y)f(y, x) f(z, x).

Let 0a+ denote the set of all 0-additive functions a, from S S to P,
such that 0 << a, and let (+ denote the set of all 0-multiplicative functions
g, from S S to P, such that 0 << g I.

If a is in 0a+, g is in 0i)+, {a, b} is in S S, is an 0-subdivision of
{a, b}, and s is a refinement of t, then the following hold:

(i)
(ii)
I (I + a) << II. (I + a) < Exp {a(a, b)};
0 << Z:, [, ] << Z: [ ].

Since P is a complete lattice (see Theorem 4.23.4 and its proof on p. 163 of
[1]), there exists a unique member al-I (I + a) of P and a unique member
b [t I] of P such that

(i)

and

if u is an 0-subdivision of {a, b} then

II (I + a) << aH (I + a) << Exp {a(a, b)},

0 aE [ I] Eu [ I],

(ii) if c is a positive number and x is in H then there is an 0-subdivision
u of {a, b} with the property that, if v is a refinement of u, then

N(I-I (I - a)x II, (I + a)x) < c

N(a [- I]x [- I]x) < c.

The following theorem has been proved by J. S. Mac Nerney in [3, p. 328].

THEOR 1. There is a reversible function +, from O(+ onto 09+, such
that the following statements are equivalent:

(i) is in 09+, a is in O(+, and is 3+(a);
(ii) a is in O(+ and (a, b) ,I(I + a) for each {a, b} in S X S;
(iii) is in 09+ and a(a, b) ’-’_ [ I] for each {a, b} in S X S.
Let R be a ring with multiplicative identity element denoted by 1, which

has the following two properties"

(i) there is a function from R to P such that
(a) x - y << x - y for each x and y in R
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(b) xy[ <<lxll y for each x and y in R,
(c) 0 << Ix for each x in R, and Ix is 0 only in case x is 0, and
(d) Ill 1-11 I;

(ii) The ring R is complete in the sense that if {M, _<} is a directed set,
f is a function from M to R, g is a function from M to P such that, if each of p
and q is in M with p _< q, then 0 << g(q) << g(p) and

If(P) -f(q)I << g(P) g(q);

then there is a member Z of R with the property that, if p is in M, then

If(P) Z << g(p) L,

where L is the member of P that is the point-wise limit of the net g. In this
sense we also say f converges in R and has limit Z in R.

Let 9a denote the set of all (0-additive functions V, from S S to R,
for which there is a member a of 9a+ such that, if a, b} is in S S, then
IV(a, b) l<< a(a, b), and let (99+ denote the set of all 9-multiplicative
functions W, from S S to R, for which there is a member of (9+ such
that, if {a, b} is in S S, then W(a, b) 11 (a, b) I.

Suppose a is in (9a+, t is in 9+, V is in (Oa and V a, W is in 9r
and W 11 I, {a, b} is in S X S, is an 9-subdivision of {a, b}
and s is a refinement of t. Using the techniques developed by Mac Nerney
in [2], one can show that the following hold:

(i) II. (1 + v) II ( + v) l<< II. ( + -) II ( + -);

(ii) t [W 1] _’ [W 1]1<< [ I] [ I].

In view of the completeness of R, let alI (1 -- V) and a [W- 1] de-
note, respectively, the unique members X and Y of R, such that

(i) Ix II (1 + v) l<< oII ( + .) II ([ + -), a.d

(ii) Y- t[W- 1]1 t[-I]- aE[-I].
In the above setting, with the above definition and descriptions of the

classes 9(+, (9a, (9+, and (9, the entire theory developed by Mac Nerney
in [2] can be duplicated. For example, if (O( is the set of all functions A
from S to R such that dA(dA(a, b) A(b) A(a) for all {a, b} in S S)
is in 9a, and the integrals mentioned are the limits in R, of appropriate sums,
through successive refinements of %subdivisions of members of S S,
then the following theorem can be proved.
THEOnEM 2. There is a reversible function , from Va onto , such that

the following statements are equivalent:
(i) W is in 9, V is in a, and W is 3( V)
(ii) V is in a, and W(a, b) (1 + V) for each a, b ins S;
(iii) W is in V, and V(a, b) [W 1]foreach{a,b ins X S;
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(iv) V is in va, W is from S S to R such that, if {a, b} is ins X S,
then W(a, is in V and

W(a, b) 1 - (L) J W(a, )V;

(v) V is in V(, W is from S X S to R such that, if {a, b} is in S X S,
then W( b) is in Vqt and

W(a,b) 1 + (R) ! VW( ,b);

(vi) W is in V9, V is in Va, and there is a member {a, } of 5+ such that

W(a, b) 1 Y(a, b)]<< t(a, b) I a(a, b)

for each {a, b} in S X S.

This leads to the following theorem on the solutions of integral equations.

THEOREM 3. Suppose a is a member of S, V, W} belongs to 5, and U is a

function from S to R. The following two statements are equivalent:

(i) U is a member of V, and for each b in S

U(b) U(a) + (L) UV;

(ii) for each b in S, U(b) U(a)W(a, b).
Furthermore, the following two statements are also equivalent:

(iii) U is a member of Vqt, and for each b in S

faU(b) U(a) + (R) VU;

(iv) for each b in S, U(b) W(b, a)U(a).

THEOREM 4. Suppose V if in V( and W is (V). Let G be a sequence
such that if {x, y} is in S X S, then Go(x, y) is 1, while, if n is a positive in-
teger, then G(x, y) is (L)f Gn-l(x, V. Then, for each a, b} in S X S,
W(a, b) is the limit, in R, of the sequence G(a, b) for n O, 1, ....
THEOREM 5. If R is torsion free, g is a member of V( that has commuting

values, and W is (dg), then the following statements are equivalent:

(i) W(a, b)W(b, a) l for all {a, b} in S X S;
(ii) aZ [dg]21 0 for all {a, b} in S X S--in the sense that, if x is in

H and c is a positive number, then there is an O-subdivision of {a, b} such that,
if s is a refinement of t, then N( [dg] x) < c;

(iii) W is Exp (dg).

An example of the above setting is as follows. Let R0 denote a commuta-
tive subring of B(H) such that I is a member of R0 if T is a member of R0,
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then T* also belongs to R0 and R0 is closed in the strong operator topology
for B(H). Let P0 be the closed (in the strong operator topology) real alge-
bra generated by the Hermitian members of R0. For a member T of R0,
define T to be [TT*]1/ (the unique member A of P0 such that 0 << A and
A is TT*). Using the fact that, if each of A and B is in P0 and 0 << A << B,
then 0 << A1/ << B1/2, we have the following theorem.

THEOREM 6. If each of A and B belongs to Ro and 0 B, then the following
statements are equivalent"

(ii) 0<< Idl <<B;
(iii) N(Ax) N(I A Ix) (< N(Bx) for each x in H.

Using the above facts, we have the next theorem.

THEOREM 7. The ring Ro, with the function I" (from Ro to Po), satisfies
all the hypotheses imposed on the ring R and the function I" (from R to P).

The above constitutes a commutative example of the preceding theory.
A non-commutative example is furnished by the following.

If n is a positive integer, let R denote the set of all n X n matrices with
entries in R0, and, for A in R, define [A to be the smallest member C of
P0 such that, if p is a positive integer in [1, n], then ’ Aql << C.
The following setting illustrates one advantage of the above treatment.

Suppose S is the real line and F is a non-decreasing function from S to the
set of projections on H to H. Let P denote the smallest algebra that is
closed in the topology of point-wise convergence on H and also contains the
range of F. Since F is non-decreasing, the projections in the range of F
commute, and hence P is commutative. In this case, dF is a member of
O(+ even though F is not of bounded variation with respect to the usual
norm on B(H) (thereby, not included by the theory in [2]).
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