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1. In this paper we study the behavior under group representations of
certain spaces of functions that arise in harmonic analysis. We indicate in
this section the essential nature of the results we obtain.

Let G1 and G2 be locally compact abelian groups, h: G1-- G2 a faithful
representation, that is, a one-one continuous mapping that is an algebra
homomorphism. For example, take G1 to be the real line, G the torus, and
h an injection of G as a dense one-parameter subgroup of G or G1 arbitrary,
G the Bohr compactification of G, and h the canonical imbedding of G1 ia G.

Let $1 be a compact subset of G and $2 its image in G under h.
If A (S) is the space of functions in S that are restrictions of Fourier trans-

forms in G, it is easy to demonstrate the inclusion

(1.1) {f o h f e A(S.)} c A(SI).

That equality holds in (1.1) is the main point of Theorem 1 below.
Let 0k be the dual group of G, - the adjoint of h G -- G.If B’(S) is the space of bounded continuous functions on having spectrum

contained in S, it is easy to establish the inclusion

(1.2) {4) :e B’(S)} c B’(S2).

That equality holds in (1.2) is the main point of Theorem 2 below.
From the fact that equality holds in (1.1) and (1.2) it is possible to con-

clude that either both $1 and S are sets of spectral synthesis, or neither is a
set of spectral synthesis. A slightly more general result is Theorem 4 below.
A consequence of equality in (1.2) is the following, which we prove as

Theorem 5. A bounded function on a discrete abelian group G, that is dis-
continuous in some locally compact topology on G, cannot have in its spectrum
only characters continuous in that topology.

2. In this section we define the spaces of functions with which we shall
be concerned.

Let G be a locally compact abelian group, its dual, C() the Banach
space of bounded continuous complex-valued functions on , M() the
Banach algebra of finite measures on ( under convolution. We denote by
A(G) the Banach algebra of functions on G that are Fourier transforms of
measures in M(). A (G) is isometrically isomorphic to M(() under the
Fourier transform mapping -- .
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These spaces all occur in [H]. There, the spaces we denote by A (S), A’ (S) and B’ (S)

are denoted by V(S), E(S) and E’(S) respectively.
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Each compact subset S of G has intrinsically associated to it certain quo-
tient algebras A(S) and B(S) of A(G), and certain linear subspaces A’(S)
and B’(S) of C(), which are defined below. The purpose of this paper is to
establish, in a sense to be made precise, that these spaces do not depend on
the group G in which S is imbedded.

1. A (S) is defined to be the quotient algebra

A (G)/{f e A (G) "/= 0 on S}.
A (S) can be identified with the algebra of restrictions to S of functions in
A (G). Since S is compact, the same algebra is obtained whether we use all
of M(() or only the subalgebra LI(() of absolutely continuous measures (see
Theorem 4.1 (i) of [H]).

2. B(S) is defined to be the quotient of A (G) modulo the closure of the
ideal

{f e A (G) f 0 in some neighborhood of S}.

3. A’(S) is defined to be the closed linear subspace of C() consisting
of those satisfying

for all in M() with 0 on S. A’(S) consists of those functions in
C() that can be "synthesized" from the characters of corresponding to
points of S (see [H, p. 186]). A’(S), in the supremum norm, is naturally
isomorphic and isometric to the dual space A (S)* under the pairing (.,.)
defined by

(f, 4) j 4:, d, f . A(S), 4) e A’(S),

where is chosen to be any measure in M(O) with # f on S (see Theorem
4.1 (i) of [H]).

4. B’(S) is defined to be the closed linear subspace of C() consisting of
those satisfying

4d
-0

for all in 21//(0) with 0 on some neighborhood of S. B’(S) consists
of those functions in C(0) having spectrum in S (see [H, p. 186]). B’(S),
in the supremum norm, is naturally isomorphic and isometric to the dual
space B(S)* under the pairing (.,.) defined by

(F, ) fa d, F . B(S), ch e B’(S),

where is chosen to be any measure in M(G) belonging to coset F (see Theo-
rem 4.2 of [H]).
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Obviously A’(S) is a subset of B’(S).
if there is equality, A’(S) B’(S).

S is called a set of spectral synthesis

3. We next investigate the behavior under group representations of the
spaces defined in the preceding section.
Suppose that G1 and G2 are locally compact abelian groups and h G1 - G. a

representation, that is, a continuous mapping that is an algebraic homomor-
phism. Let $1 be a compact subset of G1 and S2 h(S), h induces in a
natural manner the mappings

(3.1)
A(S) A(S2), B(S1) B(S2),

a’ ’ B’A’(SI). A’(S2), B’(S). (S.)

These mappings are defined as follows. We denote by : --. 1 the
representation adjoint to h G1 --* G2. a and are obtained by taking quo-
tients in the mapping

A (G2) --* A

which is the Fourier transform of the mapping

i(0.) -- M(01)defined by taking each measure on (2 into its image on ( under . It is
possible to define a directly by

(3.2) o(f) f h, f e A(S).

a’ and ’ are defined as restrictions of the mapping

(3.3) C() -- C()induced by . (That (3.3) takes A’ ($1) into A’ (S:) and B’($1) into B’(S:)
is shown on p. 216 of [H].)

It is simple to check that the mappings of (3.1) are linear and do not in-
crease norm. Also that a’ is dual to a and ’ is dual to , that is

(a(f), ) (f, a’()), f eA(S), eA’(S),

<B(F), 0> <F, ’(0)>, F e B(S2), C e B’(S1).

Finally, a is one-one, because of (3.2) and the fact that h maps $1 onto $2.
No further assertion concerning the mappings (3.1) can be made without

some restriction on the kernel of h. So let us assume that h is faithful. Then
the image (2) is dense in 1, and as a consequence the mapping a’, being a
restriction of (3.3), is isometric. So we have a one-one mapping a whose
dual a’ is isometric. It is a consequence of Banach space theory (see [DS,
Section VI. 6]) that both a and a’ must then be onto and isometric.
We have established the following"
THEOREM 1. Let h G -- G. be a faithful representation. If S is a compact
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subset of G1 and S. h(S1), the mappings

A(S) A(S2), A’(S) A’(S.)

are isometric Banach space isomorphisms.

That a is onto, which is the essential point of the above, can be restated
as follows. For each measure t in M() one can find a measure t2 in M()
satisfying . h on $1. Our proof involves the use of the Hahn-Banach
theorem, and seems to yield no information concerning the problem of finding
such a , given t*.

4. We next take up the analogue of Theorem 1 for/ and ’. That result
would be

TEOREM 2. Let h G1 -- G. be a faithful representation. If S is a com-
pact subset of G and S h(S), the mappings

B(S) B(S2), B’(SI) B’(S)

are isometric Banach space isomorphisms.

This result appears to be deeper than Theorem 1. We have not been able
to find as direct a proof as we have given for that theorem. ’ is isometric,
as was a’, since (.) is dense in (. It is not obvious, however, that is
one-one, as was the case with a. That a was one-one followed from the fact
that a is the mapping on functions dual to the map h $1 -- S., and h.takes
S onto $2. On the contrary, is not in general a map of functions; so one
cannot conclude a priori that it is one-one.
Theorem 2 will be a consequence of results that we establish below.

5. If we drop the assumption that h is faithful, but still assume that it is
one-one on S1, the mapping

a" A(S=) ---. A(S1)

is one-one and takes A (S.) onto a separating subalgebra of A ($I).
need not be onto.

Still, a

Example. Take G T, G T where T denotes the additive group of
reals modulo 2. Let F be a twice differentiable real-valued function defined
on T which is not linear. We put

S {(x, y) e T: y F(x)},

S T, and h T -- T the projection map h(x, y) x. It is known (see
[K], esp. Th. I, a result due to Leibenson) that given F there exists a sequence
an} such that :=- an < but -a exp {inF(x)} does not have an
absolutely convergent Fourier series. Let k be the element of A ($1) deter-
mined by (x, y) ’- a exp (iny) for (x, y) e S. An element e A(S)
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A(T) is an absolutely convergent Fourier series

(x) - b, exp (inx),

Were it the case that a() we should have

a, exp{inF(x)} b exp (inx)

which contradicts the assumed property of {a,}.
e A (S) is not in the image of A (S.) under a.
It is even easier to see that the mapping

B(S) -- B(St)
need not be onto.

Hence, the element

Example. Let h be the projection of R onto R and let St be a hemisphere
in R projecting one-one on a disk S in R. There is a commutative diagram

B(S.) .. B(St)

7t’2 t1
A(&)

where t and r are the natural quotient mappings. S. is a set of spectral
synthesis; so is one-one. St is not a set of spectral synthesis; so vt is not
one-one; but a is one-one. Therefore, no non-trivial element of the kernel of
rl can be in the range of .

If in addition to h being one-one on S we assume that the kernel of h is
discrete, both a and must be onto. This is our main result.

THEOREM 3. Let h’Gt -- G. be a representation. Suppose that St is a
compact subset of Gt such that h is one-one on a neighborhood of St.
Let S. h( St). Then the mappings

A(St) A(S.), B(S )

A’(St) A’(S.), B’(St) B’(S)

are Banach space isomorphisms.

The above theorem is of interest even in classical analysis. Consider
an example. Gt R1, the real line, G T1, and circle reals
modulo 2, h’Gt -- G the natural projection, and St I-r, +r], with
0 _< r . It is easy to see that B’(St) consists of the entire complex
analytic functions of exponential type

_
r which are bounded on the reaI

axis. The mapping
B’ B’(St) --* B’(S.)

associates to a function its sequence of values at integer points.
gives the known result that this map is an isomorphism.

Theorem 3
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Theorem 3 has as a corollary:

TEOREM 4. Let h G1 -- G. be a representation. Suppose that SI is a
compact subset of G such that h is one-one on a neighborhood of S.
Let S. h( S). Then either S and S. are both sets of spectral synthesis or
both not sets of spectral synthesis.

Proof. Since a’ and ’ are one-one and onto, A’(SI) B’(S1) if and only
if A’(S.) B’(S.).
For faithful representations, that S. a set of spectral synthesis implies S a

set of spectral synthesis has been obtained independently by I. Glicksberg.
For representations that are homomorphisms (that is, have h(G) closed in
G and h(U) relatively open in h(G) for each open U in G), Theorem 4 is
due to Reiter (see JR] or Theorem 6.1 of [H]).

6. The proof of Theorem 3 is rather long. It consists of a piecemeal at-
tack on the problems.

If h G1 - G is a representation, we shall write T(h) to mean that the
statement of Theorem 3 is valid for h.
h is called a homomorphism if h(G) is closed in G and the image of an open

set in G is relatively open in h(G), a monomorphism if it is a one-one homo-
morphism, and an epimorphism if it is an onto homomorphism.
The order of the steps in the proof is

PROPOSITION 1. If h is a monomorphism then T(h).

PROPOSITION 2. If h is an epimorphism then T(h).

PROPOSITION 3.
tion then T h

PROPOSITION 4.
then T(h).
PROPOSITION 5.

If h is the imbedding of a group into its Bohr compactifica-

If h is a faithful representation of R into a compact group

Let G1 R (R) K where K is a compact group and suppose
h GI -- G. is a faithful representation into a compact group. Then, if S
Q (R) K where Q is a cube in R’, the set hS is a set of spectral synthesis.

PROPOSITION 6. Let h G -- G. be faithful. Then, if S is a compact subset
of G1, there exists a compact neighborhood U of S such that hU is a set of spectral
synthesis in G.

PROPOSITION 7. Proposition 6 implies Theorem 2.
Theorem 3 follows easily from Theorems 1 and 2 via Proposition 2. For,

denoting the kernel of h by D, h G1 -- G can be factored as

G. J G/D.
with k faithful, j an epimorphism.

Proposition 1 is due to Reiter (see JR]). Proposition 2 is also known (see
Theorem 5.9 of [H]).
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7. Propositions 3 and 4 have similar proofs.

Proof of Proposition 3. Let G* be the Bohr compactification of G and
h G - G* the canonical imbedding. Let us assume provisionally that G is
compactly generated. It then follows that given S compact in G, there
exists a closed discrete subgroup D of G such that G/D is compact and the
vector difference S S meets D only in the identity. Let D* be the closure
of hD in G*. We have a sequence of maps

G- e D* f g G*G (R) G (R) D*/D’
where e is the injection of G into the direct product, D’ is the subgroup of
G X D* consisting of elements of the form (x, hx) with x e D, f is the projec-

D*tion map, and g is defined by g(x y) hx y for x e G, y e so that g is
defined on G (R) D*/D’. Let us observe that D’ is a closed discrete subgroup
of G (R) D*, for if U is a neighborhood of the identity in G meeting D only in
the identity then U (R) D* is a neighborhood of the identity in G (R) D* meeting
D’ only in the identity. Thus f is an epimorphism. It is clear that f is one-
to-one on a neighborhood of eS because of the way D was chosen.

If M is a compact subset of G with M + D G, then

(M (R) D*) + D’ G (R) D*,
so G (R) D*/D’ is compact. Therefore g is a homomorphism (any represen-
tation of a compact group is a homomorphism). Finally, g is one-one. For
let D" be the annihilator in of D. G* is the Bohr compactification of G,
so maps G*^ onto . Thus -tD is the annihilator of D* in G*^. So if
x e G and hx D*, x is annihilated by every character in D’, and thus must be
in D. This shows that hG and D* meet only in points of hD; equivalently,
g is one-one.

It is obvious that h gfe. We have T(e) and T(g) by Proposition 1.
T(f) is valid by Proposition 2 since f is one-one on a neighborhood of e(S).
This completes the proof of Proposition 3 in the case that G is compactly
generated.

If G is not compactly generated, let H be the smallest subgroup of G con-
taining a given compact neighborhood of the set S in question. H is com-
pactly generated. It is open in G and hence closed. We have the commuta-
give diagram.

G h G*

H f H*.

The vertical arrows are monomorphisms and we have just proved T(t).
Thus T(h) follows from Proposition 1.
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Proof of Proposition 4. The crucial point of the argument of Proposition
3 is this" we have h G -- K a faithful representation of a compactly gener-
ated group G into a compact group K; thus maps/ onto a dense subgroup
of (, but we had to know that D" c / for suitable discrete subgroups D"
of .Unfortunately it is not clear every time we have a representation
/ -- of a discrete group onto a dense subset that contains a closed

discrete subgroup D+/- of such that /D is compact. In case G Rn, how-
ever, there is no problem. Let the compact set S be given and choose a
number s so that S is contained in the interior of the coordinate cube of side 2s.
Since h/ is dense in Rn, we can find 1, n / such that 1 is
within -/3s of the point (2v/3s, 0, 0, ..., 0), 2 is within r/3s of the point
(0, 2-/3s, O, 0,..., 0), etc. The points 1, n generate a closed discrete
subgroup D" which is the annihilator in of a subgroup D of G having all
the required properties. We have

G e D* f gG(R) G (R) D*/D’. K

where D* is the closure of hD in K. Again e and g are monomorphisms (hG
and D* meet only in hD) and f is one-to-one on a neighborhood of S.

8. Since we don’t see how to prove the analogue of Proposition 4 directly
in case G is not of the form Rn, we have to take an awkward detour. Reiter
[R] has established

LEMMA 1. Let h GI -- G. be an epimorphism and T a closed subset of G2.
Then T and h-T are sets of spectral synthesis or not simultaneously.

Proof of Proposition 5. We have h R (R) K ---> G. is a faithful represen-
tation where G is compact. Thus there is a natural faithful representation
g R -- G2/hK. (hK is a closed subgroup of G2 since K is compact.) Let
Q be a compact cube in R. Q is a set of spectral synthesis, and therefore, by
Proposition 4, gQ is a set of spectral synthesis in G/hK. Let - G -- G/hKbe the projection. We have h(Q (R) K) r-l(gQ). Lemma 1 applies to

so that h(Q (R) K) is a set of spectral synthesis in G2.

Proof of Proposition 6. Here we have h G -- G. a faithful representation
where G and G: are arbitrary locally compact abelian groups. We are given
a compactset S in G. By structure theory, the closed subgroup of G gener-
ated by S is of the form R (R) K (R) D where K is compact and D is discrete.
Thus there are a finite number of compact cubes Qt, Qm c R and points
xl, xm D such that

S Int [Ji(x + Q (R) K).

Let U be this union. U is a compact neighborhood of S, and we wish to
show that hU is a set of spectral synthesis in G.. It suffices to show that
h(Q (R) K) is a set of spectral synthesis whenever Q is a compact cube in R",
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for spectral synthesis is preserved by translation and disjoint union of com-
pact sets. We have a sequence of maps

R" @ K-* G h .G.-- G
where G’ is the Bohr compactification of G2. According to Proposition 5,
the image of Q (R) K is a set of spectral synthesis ia G*. Therefore, by Propo-
sition 3, the image of Q (R) K in G2 is a set of spectral synthesis.

9. We have used Propositions 3, 4, and 5 to get to Proposition 6. There
may be a simple direct proof of Proposition 6 which would eliminate these
steps. At any rate, we can pass from Proposition 6 to Theorem 2 directly.

Proof of Proposition 7. Since the mapping

/3’ B’(S) --+ B’(S)

is an isometry, to establish Theorem 2 it is suificient to show that ’ is onto.
Let U be a compact neighborhood of S such that U. h(Uz) is a set of
spectral synthesis. Then A’(U) B’(U.), which contains B’(S). Since
U is a neighborhood of S, A’(U) contains B’(S) (see Theorem 1.3 of
[HI). Let be some function in B’(S). We must find a function k in
B’(S) with ’(h) q. Since B’(S) A’(U), it is a consequence of
Theorem 1 that there is a function h in A’(U) with o . Since

spectrum h h- (spectrum ) h-(S) S.

(See Lemma 5.6 of [HI.) Thus B’(S) and /’(k) is simply a re-
statement of h h.

10. It is tempting to try to arrange matters so that Theorem 4 can be
proved directly. Indeed the heart of the matter is to prove that if h G --, G2
is a faithful representation and S is a compact set of spectral synthesis in

Now we always have a tom-then hS is a set of spectral synthesis in G.
mutative diagram

G* h* G

hG G

where denotes Bohr compactification. Let S* be the image of S in G*1.
We know by Proposition 4 that S* is a set of spectral synthesis. Unfor-
tunately, the representation h* need not be one-to-one. The kernel is a
subgroup K of G* no coset of which contains two elements of S*. It follows
easily from Lemma I and Proposition I that h’S* is a set of spectral synthesis
if and only if S* K is. The following seems plausible.
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CONJECTURE. The direct sum of a compact set of spectral synthesis and a
closed subgroup is a set of spectral synthesis.

What we do know is that if S is a compact set of spectral synthesis in G,
K is a closed subgroup of G, and the group generated by S meets K only in
the identity, then S K is a set of spectral synthesis. This follows from
Theorem 4 by considering the map H (R) K - G where H is the group gener-
ated by S.

11. We establish here the result concerning the spectrum of discontinuous
functions mentioned at the end of the first section.

THEOREM 5. Let G be a locally compact abelian group, G the same group in
the discrete topology. Let be a bounded function on G. If the only characters
in the spectrum of are continuous on G, then must itself be continuous on G.

Proof. Let be the dual of G, * its Bohr compactification, with the
canonical imbedding

( h (..

Dual to this is the natural mapping

G G.
Suppose now that in C(G) has spectrum T satisfying the hypothesis of the
theorem, that is, T c h(). Let S h-l(T). T is a compact subset of
(* n h(), so by Theorem 1.2 of [G], S is compact in . Thus we are in the
situation of Theorem 2, and the mapping

’ B’(S) B’(T)

will be onto. Since e B’(T), there is a function in B’(S) with ’() ,
that is, o . In other words, is continuous in the topology of G.
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