
MULTIPLICITY OF SOLUTIONS IN FRAME MAPPINGS

BY

D. G. BOURIN

The Kkuni Theorem, he Dyson heorem nd heir extensions s well
s vrious forms of he Knser conjecture hve generally been considered
from he viewpoin of sufficien conditions for existence of one solution.
The presen noe considers he problem of he multiplicity of such solutions.
Throughou his pper/ is invariably n odd prime,/c4uple is understood

o mean orhogonl/c-uple nd 11 omology [4] is over he coefficien field
J, he integers rood/c. The spce of ordered/c-uples in S- is denoted by
W nd is Siefel mnifold, viz.

(1.1) W V. SO(n)/SO(n- tc) O(n)/O(n- k).

However W counts two different orderings of a lc-tuple as two distinct k-tuples.
If P is the permutation group on k letters then the distinct unordered k-tuples
constitute the orbit space WIPe. Write w for an arbitrary point of S-and O (w1, w*) for an ordered k-tuple. Similarly write x for an ar-
bitrary point of R and (x x*) for a point of the k-fold topological
product R X’-" X R R**. The mapping F’W --> R is defined by
F() z (f(wl), ..., f(wk)). Write P, again, for the permutation
group giving the reorderings of x, x. The mapping F is P equivariant,
that is to say gF Fg, for ll g e P. We sy F is free equivariant on a set
X0 if the group acts freely both on X0 and on F(X0).
Our methods require the computation of certain indices and a knowledge

of the cohomology rings of certain orbit spaces. Little is known about these
when P is the group. We therefore restrict our attention to the cyclic
subgroup C of order/ (isomorphic to J) throughout this paper. Results of
Borel (or Bott) are then available for practical computation. Specifically
for some g e C,

Wg" "W Wk) W2, Wk,
g (x x X X X,.

Let a { x x*} be the diagonal of R** and write

D F-a
(1.2)

A W- D F-(R- ,).

Then A und D are invuriunt sets under C. Moreover F is free equivariant on
A with respect to C but not on D. (If we used P it would be more natural
to introduce/t the subspace of R** for which two coordinates (or more) of
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are equal instead of A. Thus here F would be free equivariant on
F-I(Rk ti) and not on F-1 (ti). In brief Pk is linked to problems of a com-
mon image for two or more points of a k-tuple. This is another reason for
introducing C.) We shall refer to the elements of W/C as cyclic classes. If
the space K is invariant under C we write K’ for the orbit space K/C. Ac-
cordingly F induces F’ on W’ W/C to Y’ R/C.
The index properties central for our investigation are summarized below

for the simplicial case [4]. Suppose C acts freely on a space X. If I(0)
is the 0-dimensional unit cocycle on X’ X/C then the Smith homomorphism
s(m), [4, p. 329], takes H (X’) into Hn+m(Z’) and yields

(1.3)
I(2j) s(2j)I(O) (I(2))

I(2j + 1) s(2j + 1)I(0) I(1)I(2)

where powers are in the sense of cup products. The index v(X) [4, 135.4] is
the largest integer m for which s(m)I(0) 0. The critical property is that
under free equivariant maps the index cannot decrease. We denote the
universal space for "sufficiently high n" for a group L by E(L) and the
classifying space E(L)/L by BL [1]. Write

B H"(BL).

The inclusion homomorphism L --* M is denoted by p(L, M); thus
,

(1.4) B* p (L, M) B*.
We require generalization of the index v to the case of an A which is open in
W and is invariant under C. Such a generalization is essentially covered by
[10]. Alternatively the cofinal primitive open coverings can be shown to
exist by arguments in say [9]. The desideratum is a cohomology theory for
manifolds, admitting exactness and Poincare duality for the pairs X’, U’, U
open. Cech, Alexander omology groups with closed supports will satisfy
these conditions. In fact this is a specialization of results in [8]. (I am
indebted to Raymond for some comments on his results.) Indeed in the
special case of the locally Euclidean manifold and the coefficient field J
we have [8, Eq. 6.2]

Hn(x’, U’) H,(X,) H,(U,) d,

-+ Hr-(X’ U’) ----> H_,(X’) -+ H_,(X’, X’ U’)

with exact rows and commutativity in the squares. Here N dim X’ [7].
Since scalar or cap products pair Hv_n(X U) and "Hv-m(x U) or-

thogonally to J (where "H refers to cohomology with compact supports),

(1.6) dim (X’ U’) M Hu+(X’ U’) 0 for i > 0.
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To bring out the underlying ideas we take up the generalized Kakutani
problem separately. Here, k n 2m + 1 is an odd prime. The coho-
mology rng H (SO(n)/C) is essentially covered by Lemmas 10.1, 10.3 and
7.4 of [2]. More precisely we start with the principal bundle

(2.1) Q [SO(n) X E(C)]c, SO(n), Be, p

where the bracket notation indicates cosets with respect to C. A Vietoris-
Begle theorem rgument yields

(2.2) H*(SO(n)/C) H*([SO(n) X E]c).

Since there is no k torsion k # 2, [1],

E HP(B.k Hq(SO(n)
(2.3)

Bj (R) Hq(SO(n)).

Let T be the torus of maximal rank in SO(n) [1]. Let G be the subgroup
of elements of order ]c in T. The following facts are known [2].

H’SO(n) A u3 uT u4,_1)

Be* h(a) (R)Jk(b) dima 1, dimb 2
(2.4) ,

By A(al, a,n) (R) Jk(bl "’, b,)

B*r J(t, t,) dim t, 2,

where Jk( and A( refer to the polynomial and to the exterior algebra
respectively. Here {u4,_} constitute universally transgressive generators
(forming a basis for the module of primitive elements) of H* SO (n), Jk) [1].
Moreover

() p (T, SO(2m + 1))B*o(,+) J(po, p4, "", p4,
(.5)

(b) p*(T, SO(2m) J(o-o, O’m--, X/-’)
where p4,, the Pontriagin class of dimension 4i reduced mod k, is explicitly

(2.6) p4,- r, t. t.
i.e. the elementary symmetric function in t’] 1 _< j _< m}, (%//- is usuMly
written W and is the product t t, [3]). Thus

* J(II:’ (1 -+- t))(2.7) p (T, SO(2m -+- 1)) *Bso(m+l)

The passage from B* to Bo* is a monomorphism which replaces t by b
and that from B*o to B*c takes bl to ib. Hence writing P 14 for the term of

B4degree 4i in the polynomial P, and v4, e so() for the image by transgression
of U4i--1

*o (C, SO(n))v4, II=--’ (1 + (ib)) 14,
(2.8)

zX,(1, m)b’ 14,
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where i is the ith symmetric function in the arguments 1, m (that is
to say Ai consists of the sums of products of i different squares chosen from
12 m )o
LEMMA 1. 40 1

/ 0 i < mmod2mW 1.
The proof is elementury.
Write A for A. Then by Lemma 1,

(2.9) : (1 + (ib)) 1 + Ab.
Since SO(n) is ]c torsion free, for 2 [1], it is easy to see that SO(n) and
B stisfy the conditions for [1, Proposition 2.21] so that the transgression
relation takes the form

(2.10) dp:(1 u_) p(p*(C, SO(n))v 1)

where p is defined in [4, p. 431]. The right hand side vanishes according to
(2.8) unless i m, in which case

*( Ab(2.11) C, SO(n))v
so

(2.12) d(p(1 @ u,_)) p(Ab @ 1).

Since d+ 0 for j > 0 it follows that E E+ and hence s in [2, Proposi-
tion 10.3] is 2m. Inshort

(2.13) E A(a) J(b)/(b) A(ua, .-., u_)

where 9(b) is the ideal generated by b. By Theorems 7.4 and 7.5 of [2],
E can be identified with H*(SO(n)/C). Accordingly ab- corresponds to
the highest nonzero element, I(4m 1) I(2n 3).
To indicate the space, I(m, Y) is written for I(m) of (1.3). Moreover as

remarked earlier (since A is metric) Theorem 5.3, page 382 of [4], can be
extended to assert that the inclusion map implies I(i, X) I(i, A).
THEOREM 2. Iff maps Sn-1 into R, n an odd prime, then the ordered n-tuples

wnw, with f w f w constitute a set D considered imbedded
in SO(n). Identification into cyclic n-tuple classes yields the orbit space D’
with

H_(D’) 0, n-- 1 gj 2n- 3, dim SO(n) N.

It is known [4], [10] that (S+1) 2N + 1. Moreover (R ) (S-).
A simple calculation in the spirit of this paper is of interest. The cohomology ring

of the lens space S+/J is

H(SN+/J) A(a) @ J(b)/I(b+)

with dim a 1, dim b 2 and I(b+) the ideal generated by b+. Then I(1) and I(2)
can be identified with a and b and plainly the highest nonvanishing product is ab. This
has dimension 2N W 1.
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By the italicized critical property of the index

n- 2 (Rn- 4) >_ (A).

Thusl(i,A) =O,n-1 _i. OntheotherhandI(i, SO(n)) 0, i<_2n-3.
Hence by exactness in (1.5) with X’ SO(n)/C, there is an antecedent of
I(i, SO(n)) in H (X’, A’) for n 1

_
i

_
2n 3. Transferring this data to

the lower row in (1.5) shows for instance that there is a nontrivial homology
class in H_(X’ Ap) for i n 1. Moreover by commutativity in the
squares of (1.5) a representative cycle for this homology class does not bound
in X’.
COROLLARY 3. Under the hypotheses above

dimD _> 1/2(n 1)(n- 2).

Since the orbits consist of k points, by (1.6)

N- dim
SO(n)

dim SO(n) n(n- 1).
C 2

Hence by virtue of Theorem 2 and (1.6)

N-n+ 1/2(n-1)(n-2)

dimSO(n- 1).

In particular the sharper form of the original Kakutani theorem is that for
n 3 there is a nonbounding cycle on D/J. Cf. Corollary 5.

COROLLARY 4. For some Xo e R, there is a subset Do of D consisting of
n-tuples for which Xo f(w1) f(w) where dim Do >_ 1/2n(n 3).

Consider the map F ID D -- R. Since D is closed in SO(n) and there-
fore compact F[ D is a closed mapping. By [7, p. 91] for some x0

dimF-l(x0) _> dimD dimR 1/2n(n 3).
COnOLLARY 5. Let K be a convex body in Rn. The dimension of the set of

circumscribing cubes is at least 1/2 n 1) n 2). There is a set of dimension
>_ 1/2n(n 3) of such cubes of the same edge length.

Every point w on Sn- determines a direction. Define f(w) as the distance
between the two support planes orthogonal to this direction. Then Corollaries
3 and 4 apply. We give a little more detail. Thus to every corresponds a
circumscribing orthogonal parallelopipedon L() of side lengths

(f(w’), ,f(w)).

Since f(w) f(-w), L() is unaffected by replacing w by -w or by action
of the permutation group Pr. If L is the set of such parallelopipedons there

A paper of Cairns [6] is concerned with the multiplicity question for the Kakutani
Theorem and asserts the first conclusion of our Corollary 3 for all n. The argument pro-
posed is an application of [7, p. 91] but seems inadequate as it stands.
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is a 1-1 correspondence
O(n)

(J2) X Pn"
Assign to L the topology of the right hand space. We have

L , q-O(n) SO(n) r SO(n)/C

where q, i and are the obvious projections and since the antecedents of
points under these projections are finite point sets,

dim D’ dim D dina (i-lD) dim (qi-iD L).

It seems quite likely that for K a 3-dimensional cube there is no continuum of
circumscribing cubes of constant edge length though by the first part of
Corollary 5 there is one of continuously varying nonconstant edge length.
This would indicate that the lower dimensional bounds for the two situations
described in Corollary 5 are really different and in fact are best possible at
least for n 3. Similar comments hold for Corollaries 3 and 4.
The more general case where k 2e -f- 1 n 2m A- 1, k a prime, pro-

ceeds similarly. The orbit space W’ Vn,k/C can also be represented topo-
logically by the left coset space

(3.1) W’ SO(n)/(SO(n- k) X C).

This representation is suggested formally by

SO(n)/SO(n- k)/ SO(n- k) X C
SO(n- k)

We give the iustification.
The group SO(n) Is} acts on W by

sz s(w, w) sw, sw) and gsff sgz.

The action on W’ {[]c} is again denoted somewhat ambiguously by s and
is given by

s[] [s].
Let the initial n-tuple be

e (1, 0,... ), ..., en (0, "’", 1)

and let the initial k-tuple be @o (e, ek). Then

implies and is implied by
s0[0] [0]

So /Ir(n-k)) 0 <__ i __< k- 1

where M is the ith power of the obvious cyclic permutation matrix [5, Eq. 4.01]
and r is the matrix representative of some r SO(n k). Thus

so C X SO(n- k) and SSo[Wo] c [sw0]c.
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Denote SO(n k) X C by S. To the point [w] [sw0]c of the orbit space
W’ make correspond the coset [s]s composed of tJs0s SSo. The correspondence
is evidently 1-1 and justifies (3.1).
The parallel to (2.1), (2.2) and (2.3) is the principal bundle,

Q [SO(n) X E,s]s, Bs, SO(n)

whence, using the Vietoris-Begle theorem,

H* (SO(n)/S) H*([SO(n) X Es]s).

Furthermore from [2, Theorem 7.4]

E H(Bs) (R) Hq(SO(n) E (R) E
E H(SO(n)/S)

We denote the maximal torus for SO(n l) by T’ and use/si} in place of
for the arguments. Thus with r 1/2(n k)

B’r, J(s, s).

applied to Bjkxr, enablesThe Kunneth Theorem us to represent
p (Jk T’, G) by

b -- ib i
(3.3)

b-- s_e e < i

_
1/2(n -/- 1).

The compositions for p*(S, SO(n)) yield

g4 p (S, SO(n))v4i
(3.4)

* T’ p* p*p (S, Jk X (Jk X T’,G) (Gm, T)p*(T, S0(n)

TSince p (S, J X is a monomorphism we may omit it.
The Kunneth Theorem decomposition of B* indicates g4 is obtained as

sum of terms of the form a/, where a relates to Bo(,_k) and to Bj* and
dim a + dim 3 4i. A convenient representation is given by

g4 p (S, SO(n))v4 zi(s,..., s) I-I: (1 +
By Lemma 1 this is

(3.5a)
g4i (E o’i 1 + Abk-l)

r - Ab-1 i

_
r.

Since r -t-e m

Ab-I(3.5b) g O’r

Here A is a nonvanishing constant, and v4 is again the image by transgres-
sion of ui_.
The parallel to (2.10) is then
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d4p24(1 (R) u-1) p2t((p*(S, SO(n)v) (R) 1
(3.6)

p 4i(g4i 1).

That is to say p(g4 (R) 1) is a boundary for i g m. The ideal of these bound-
ing terms is denoted by . Since {pi g r} is a collection of algebraically
independent terms, (3.53) guarantees {g4i i r} is also. Since (n It) is
even (2.5b) applies so

E+ @ h(m+, ", u-)

where (a) is the ideal inJ() generated by
integer such that r < qe. Then

g4qe ff(q--1)e Abk-1.

Hence
Abk-1

O’je 0"(j--1)e rood 9.

Note also that (q + 1)e > r + e m. Since um-1 is the term of maximum
degree in the exterior product arising from B*o(,o in E, no boundary terms
enter for r > qe (cf. 3.6). Moreover d8 0 for 4r -t- 1

_
s < 4qe. Accord-

ingly in view of (3.2)

H*(SO(n)/S) E

In short

THEOREM 6.

(R)
(a) (R) Jk(b)

(R) A(uqe+3, ..., u-).
(b-)

(V,k) dim (ab-) 4qe 1 [5, Eq. 4.07].

H_(D/J) 0 (k- 1)/_j_ 2(k-- 1) 1,

where is the integer part

dimn/J dimD >_ 1/2k(2n- k- 1) (k- 1)/.

The proof is similar to that of Theorem 2. Remark first that (A)

_
(k 1 1. Hence the element I(j, X’) of H (X’) maps into 0 in H(A)
for j restricted as above. Then appeal to exactness in (1.5) when
X’ V,,,/C yields the first assertion of the theorem. Next note

N dim (V,,/C) dim (V.k)

dim SO(n) dim SO(n k) 1/2/c(2n k 1).

Let q be the smallest

g4qe -+-A qbq(k-1).
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COROLLARY 7. For some point x in R the dimension of the cyclic classes map-
ping into "2 is at least

N- l k(2n-]- 1_ l
2 ]

Again since mappings of compact spaces are necessarily closed and since
F ID maps the compact subset D into/, then for some element of h

dim F-i() > dim D dim A k(2n ]

2 l).
The conclusions in this paper admit extension to general values of k. Thus

the decompositions in (2.5) and in (3.9) depend on results valid for co-
homology overJ when p is a prime dividing ] [2, Sections 10 and 11] thoughfo
p 2 some complications enter due to torsion. What is needed for the
methods in this paper is an extension of the index. For instance if K, C is a
couple in the sense of [4, p. 332] where C is cyclic of nonprime order with com-
position series {C and composition factors / an individual index can
be associated with each KICk, C.
Added in proof. The text conjecture following the proof of Corollary 5

has been validated in joint work with C. W. Mendel in the form that up to
obvious symmetries there is at most a single circumscribing cube K with
assigned edge length for each cube k.
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