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There are nine of them, to within equivalence. The list will be found in
Theorem 4.27 below. The rest of the paper is a proof of that theorem.

This is not exactly the list of integral groups which people really need.
However, the techniques used here can probably be extended to handle more
interesting problems.
A person interested in space groups needs a list of all finite groups of integral

matrices, not iust the maximal ones. It might be possible to satisfy him by
listing all subgroups of the nine groups below, and then checking for equiva-
lences (which would be the hard part). But the number of groups to be
handled should be in the hundreds. This seems to be a lob for computers.
A person interested in quadratic forms needs a list of all possible groups of

automorphs of positive definite forms. This is a more reasonable request.
The methods of this paper could easily be modified to obtain such a list. It
would only be necessary to reconsider the eight cases thrown out by Lemma
3.10, and to avoid condition (1.4b) by using successive minima.
Could our techniques be extended to degrees larger than 4? Possibly they

can. The inequalities to be satisfied by Hermite-reduced forms have been
worked out in detail for degrees 5 and 6 (see [1] and [2]). From these it
should be possible to obtain axiomatic descriptions of the sets S(, L) similar
to those in Theorem 1.14. Then these subsets might be classified. Of course,
no simple description by means of graphs (as used here) would suffice. But
this is merely a notational convenience. Our subsets could have been de-
scribed directly in terms of basis elements, as in (2.16). The computational
problems would increase greatly with the degree, but the method might be
worth considering.
The purpose of Sections 1, 2 and 3 is to obtain a short list of groups which

contains every maximal group at least once. Instead of trying to list groups
directly, we classify those sets S of non-zero integral points which have mini-
mum "distance" from the origin with respect to some positive definite quad-
ratic form. In Section 1, we show that the sets S are adequate for a descrip-
tion of our groups (Lemma 1.2) and find an axiomatic description for almost
all of them (Theorem 1.14). Almost all the sets satisfying these axioms can
be described by means of certain graphs (Theorem 2.21). Section 2 explains
how this is done. Finally, we list the relevant graphs in Section 3 (see Figure
3.4) and remove some which obviously do not lead to maximal groups (Lemma
3.10).
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The result of the first three sections is a list of eight graphs and
two "exceptional" .sets S. In Section 4, we examine in turn each of these ten
cases, showing that nine of them lead to inequivalent maximal groups, while
the tenth doesn’t.
Throughout the paper V is a fixed real vector space of dimension 4 and L

is a fixed lattice (of integral points) in V. All the groups mentioned in Sec-
tions 1, 2, and 3 are finite groups of linear transformations of V carrying L
into itself (integral transformations). In Section 4 it is necessary to relax
this definition somewhat to include finite groups of linear transformations of
arbitrary real vector spaces. It should be clear from the context what vector
spaces are operated on by what groups.

I wish to thank Professor H. Zassenhaus both for suggesting this problem
and for many enlightening remarks in the course of the work.

1. The use of quadratic forms
The orbit of any element of L under the action of one of our groups G must

be finite. By taking, e.g., the union of the orbits of some basis elements of
L, we see that G must leave invariant at least one finite subset S of L which
spans V. On the other hand, if S is any such subset, then the group G(S, L)
of all linear transformations of V which map both S and L onto themselves
is finite. (The permutation representation of G(S, L) on S is faithful since
S spans V.) We conclude immediately that

(1.1) the group G is maximal if and only if G G(S, L) for all finite subsets
S of L which span V and are invariant under G.

Our problem is to pick out from the infinite family of subsets of L satisfying
the conditions of (1.1) some distinguished representatives which we can
classify. To do so, we recall that G must leave invariant a positive definite
(real) quadratic form on V. There is a certain positive minimum r(O, L)
among the (squared) "lengths" (1), where e L, 0. And only a finite
set S(O, L) of elements e L attain this minimum. The set S(, L) is cer-
tainly invariant under G. Our first important observation is that can be
chosen so that S(, L) spans V.

LEMMA 1.2. For any group G, there is at least one positive definite quadratic
orm on V which is invariant under G and for which S(, L) spans V.

Proof. If the lemma is false for some group G, choose a positive definite
quadratic form on V such that the subspace V1 spanned by S(, L) has the
largest possible dimension. Then V is the direct sum V1 V of V and
the subspace V 0 perpendicular to V1 under . Of course, V is also
invariant under G.
We denote by r the projection of V onto V, for i 1, 2. Each of the

quadratic forms t, > 0, defined by
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t(v) (rl(v)) - tC(r2(v)) for v e V,

is positive definite and invariant under G. We shall show that, for a suitable
> O, S(t, L) spans a subspace properly containing V1.
Let r r(, L). Then, for any > 0, the hyperellipsoid Ht" t(v) <_ r,

must contain S(, L). If 0 is any other point of Ht [a L, then e V1,
so that r >_ t(1) > (-(1) ). Conversely, if L {0} and ((1) < r,
then V1, and e Ht if and only if -<_ [r ((1))]/(2(/)).

If V. n L # 0, then any/e V n L- {0} satisfies $(z(/)) 0 < r. On
the other hand, if V n L 0, then rl is an isomorphism of L into V1. So
z(L) is not a discrete subgroup of V1. Therefore some element e L must
satisfy 0 < $(z(1)) < r. In either case we conclude from the paragraph
above that

(1.3) for suciently small > O, Ht contains some points of L which are not
in V.

Let > 0 satisfy (1.3), and let T >_ be the maximum of the real numbers
[r $(z (1))]/$(z(1) ), where runs over the finite set Ht n L V1. Since
,(v) increases monotonically with (for fixed v e V), the set Hr n L {0}
consists precisely of S(, L) and of those eHt n L V for which
[r $(-(1))]/$(r2(1)) T. Furthermore, each of the latter elements
satisfies Cr(/) r. It follows that r($r, L) r, and that S(r, L)
Hr n L {0} spans a space properly containing V1. This, of course, contra-
dicts the maximality of V, and proves the lemma.
We now restrict our attention to those finite subsets S of L satisfying

(1.4a) S S($, L), for some positive definite quadratic form on V,
(1.4b) S spans V.

By the preceding discussion, we know that every maximal group must be of
the form G(S, L) for some S satisfying (1.4). We shall classify these sets S,
and, hence, the maximal groups G.
To find the combinatorial properties of the above sets which enable us to

classify them, we turn to a paper by Minkowski [3]. A basis l, 14 of L
is reduced (with respect to $) if the vector ($(/), $(14) is minimal in the
lexicographical ordering of all such vectors attached to all possible bases of L.
In our case an alternative definition is given by

LEMMA 1.5. /f S($, L) satisfies (1.4), then a basis Ii l of L is reduced
if and only if each l lies in S(, L).

Proof. If l, l e S(, L), then

((/1), ()(/4)) (r(, L), r(,, L))

is obviously minimal. So l, l is reduced.
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Conversely, let 11,
somej 1, 4.

14 be a reduced basis of L. Let (l) > r(, L) for
Since S(, L) spans L, some element

ml 11 + -- m4 l
of S(, L) must satisfy m. > 0. By inequality (m) of [3], this implies that

r(, L) (1) >_ (1) > r(, L),

a contradiction. So/1, l S(, L).

COROLLARY 1.6. If S satisfies (1.4), it must contain at least one basis of L.

The following lemma is our main application of Minkowski’s theory"

LEMMA 1.7. Let satisfy (1.4) with r(, L) 1. Let II 14 be a re-
duced basis for L. If any element ml Ii + + m414 of S(, L) satisfies
ml > 1, for some i 1,..., 4, then, with respect to a suitable choice of
l, l, the form is given by

(1.8) (X l-k- Xl) X + X + X W X (X- X2- X3)X4.

Proof. Assume the element e S(, L) is chosen to minimize , m
among all those for which some ]m.[ is > 1. By changing the signs of the
l and permuting them, we may assume that

(1.9) 0 <_ m <_ m2 <_ m3 <_ m and m4 >_ 2.

Let a be the real numbers such that a a., for i, j 1, 4, and
(XI l -k- + X l) ...aXX By Lemma 1.5, a
0/44 1.
Definek 1,...,4byml mk_ 0 < mk We consider sepa-

rately the possible values of k.
k= 4. In this casel= mla. Sol =(l) m0/a4= m,contradicting

(.9).
In all the other cases notice that

1 (1) (/- m(l+ + + l)) + m [(/ + + l) 1]

-+- 2m, =+ [(me- m)(0/,+ -t- nt- 0/,)1.

As noted in [3], each term in brackets [...] is non-negative. Since
m(lk+ -Jr- -k- l) O, all these terms must be zero, and

m(l+ + + l) S(, L).
Hence

(1.10a)

(1.lOb)

(1.10e)

4(1 -+- + 14) = 1,

(mi m)(0/i,k+ -k- -1- 0/,) =0 for j t +1, 4,

m l + (m+ m)lk+ nt- nt- (m m)l S(4,, L).

Since/ < 4, m-t- (m+- m) + nt- (m- mk) < m + nt-m.
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By the minimality of the latter sum, we conclude that mk 1 and
m- mk _< 1, forj k q- 1,...,4. Hencem4 2.
We return to the separate cases of k.
/ 3. By (1.10b) with j 4, 0/4 0, a contradiction.
k 2. By (1.10b) with j 4, 0/a q- 0/ 0. The inequality (0/) of [3]

implies I0/a41 -< 1/2. But 0/ 1. This is a contradiction.
k 1. By (1.10b) with j 4, 0/2 q- 0/ q- 0/4 0. Using inequality

(0/) of [3], we conclude that

(1.1 1) 0/24 0/aa 1/2

Since 1 _< ma _< 2, there are only two possible values for ma
ma 2. Interchange la and l. The equalities corresponding to (1.11)

are 0/2a 0/4a 1/2. But this and (1.11) imply

(z, + z + z) 3 + 2(, + + ) 0,

a contradiction.
ma 1. Then, by (1.9), m m= ma 1, m 2. Bypermuting

l, l=, /a, we conclude from (1.11) that a a= aa -. Equation
(1.10a) is now

or

(1.12) m= + a3 + =a 0.

Since 1 + 1= + 1 # 0, we must have

1 r(, L) (1 + l= + 14) 3 + 2(a, + m + a=) 1 + 212.

Hence

Similarly

This, and (1.12), imply that
0/la, 0/2a O.

PROPOSITION 1.13. If the form q of (1.4) is not equivalent to a multiple of
the form (1.8), then any four independent elements of S (q, L) form a basis for L.

Proof. Let 11 14 be a reduced basis of L, and let Ul, u be four
independent elements of S(, L). Arrange the l’s and u’s so that, for each
i 1, 4, the elements 11, 1_1, u, u are independent.

If /1, li-1 Ui, U4 is a basis for L, it is reduced by Lemma 1.5.
Furthermore u_l "4- m_l li-1 "-}- m u q-- "’, where m_l _< 1, by
the preceding lemma. If m_l 0, then 11, 1-2, u-I, u, u are

Therefore is given by (1.8).
At last we reach the desired combinatorial property of the sets in (1.4)"

0/12 O/13 0/23 0.
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dependent, contradiction. Hence m_ -+-1, and l,..., l_=, u_,
m form bsis of L. By induction, u, u re bsis of L.

We sum up the results of this section in

Theorem 1.14. Any maximal group is of the form G(S, L), where S satisfies
() S S(, L), where the form is given by (1.8) with respect to some

basis of L,
or (b)

)os,(1.15) 1 an four independent elements of S form a basis for L,
and S spans V.

2. Graphical subsets
We wish to classify the subsets S of L stisfying (1.15). We shll do this

by constructing one such subset B nd proving that every S is equivalent
either to subset of B or to one "exceptional" set.

In order to define B, we start from lttice K of rnk 5 with fixed bsis
k0, k,/, k, k. For L we choose the sublttice of rnk 4 consisting of 11
m0/0+ +m/, (withmeZ) for whichm0+ -km 0. ThenB
will be the subset of L consisting of the 20 elements/ /., where i, j 0,
...,4, ij.
It is clear that --B B, 0 e B nd B spns V. In fct, B generates L.

However, it is not immediately obvious that ny four independent elements
of B form bsis for L. In order to prove this, nd to id in the classification
of subsets of B, we introduce 2-to-1 mp of B onto the complete graph F
on five points P0, P4 This is defined by k /. -- P P. Note
that defines one-to-one correspondence between M1 subsets S of B stisfy-
ing --S S and all subgraphs of I’.
The following proposition expresses the basic property of the set B"

PROPOSITION 2.1. Let b b, be elements of B. The following statements
are equivalent"

a b b are independent.
(b) r {(h), (b,)} is a maximal subtree of r.
e b b form a basis for L.

Proof. Suppose (a) holds. Then b 4-b., for i j. So r consists of
four distinct line segments. Either r is a maximal subtree of I’ or it con-
tains a closed loop P P, P. P,, P P, where i, i., in are
distinct, and n >- 3. In the latter ease, we may assume that

(b) Pt P, (b) P, P,, ..., (b,) PPt.
From the definition of , we see that, for some choice of signs,

4-b=k--k, 4-b= k-k, ..., 4-b= /%-/.
For the same choice of signs, (4-b) -- (+/-b) -t- -- (+/-b) O. This
contradicts the independence of b, b,. So (a) implies (b).
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Assume that (b) holds. By choosing P to be one "end" of the graph
and using induction, we may assume that the indices are so arranged that

(bl) Pi,P, "", (b) P,P,
where i < 1, i < 4. Replace b by -b, if necessary, to reach

b /- /1, ..., b /--

This is clearly a basis of L. So (b) implies (c).
Obviously (c) implies (a).

COROLLARY 2.2. A subset S of B satisfies (1.15) if and only if S -I(F),
where F is a subgraph of F5 containing at least one maximal subtree of Fs. In
particular, B satisfies (1.15).

Because of the close connection between subsets of B and subgraphs of
we use the adjective graphical to denote those subsets S of L satisfying (1.15)
which are equivalent to subsets of B.

For the rest of this section, S will be a fixed subset of L satisfying (1.15),
and s, s4 will be a basis for L lying in S.
The property that any four independent elements of S form a basis of L

restricts the possible forms of elements of S. For example

(2.3) if s ml s + + m s S (withmeZ) then m, <- 1, for all i.

Indeed, if Ira1 > 1, then s, s., s3, s would be four independent elements
of S but would not form a basis of L, since the determinant of the transforma-
tion s, s4 --* s, s., s3, s is ml # 4-1.
The following consequence of the same property is more difficult to state

but very powerful. Divide the basis s,..., s into two disjoint subsets
{s,1 ,... s,,} and {sl ,"" sm}, where 2 <_ n 4, and m 4 n. Let
ll,..., 1,, be any linear combinations of s.l,

PROPOSITION 2.4. If S contains

s s s,. + l s,_ s_
then it cannot contain s, s,, s + l.

Proof. Assume that s e S. Consider the
transformation sending the basis s,..., s, s,,
s,...,s,,s.,...,sm. It has the form

1 --1

1--1
1 1

s.,. Then we have

matrix A of the linear.., s into

L
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where L is some integral matrix, I is the m X m identity matrix and the blank
spaces are filled with zeroes. The determinant of this matrix is clearly 2.
So sl, sn, st1, stm are four independent elements of S which do
not form a basis for L. This contradicts (1.15).
To apply Proposition 2.4, it is convenient to introduce the following equiva-

lence relation on sl, s4

s st if i j or there are distinct indices i hl h
shl sh2 sh_ sh all lie in S.

hn j such that

Clearly s st implies that S contains no elements of the form s -- st -- l,
where is a linear combination of those s for which ] hi, h.
To make our equivalence relation as strong as possible we use

LEMMA 2.5. After replacing s by --s for various i, we may assume that S
contains no elements of the form st s.

Proof. Assume that our basis s, s4 is already chosen from among
the 2 bases of the form +/-s, +/-s4 to maximize the number N of elements
in S of the form

Suppose that st -t- s e S. By Proposition 2.4, st s. Define a new
basis s, s4 by

s s if ss, s -s if ss.

Ifs-- skeS, thens’sk. Sosi- s +/-(s- s)eS. FurthermoreS
contains st s, while st sh S. So S has at least N + 1 elements of
the form s s. This contradicts the maximality of N and proves the
lemma.
From now on we assume that the replacement in Lemma 2.5 has already

been carried out. In view of (2.3), this means that

(2.6) any element in S of the form m s - mt st, where i j and m m O,
must be either s st or st s

We can embed L into K by T s --/ ]0, for i 1,
T:s- st--k-/teB. Hence

,4. Then

(2.7) if S consists only of elements of the forms +/-s and +/-st +/- s then it is
graphical.

Now we consider the relationship between an element

(2.8) s m s -- mt st -- mk s +/-.s +/- st +/- s (i, j, ] distinct)

of S and the equivalence relution -.
quence of Proposition 2.4"

The basic fact is this immediate conse-

(2.9) If S contains elements s s ,..., sa_ s. (n >_ 2) such that
h i, h j and h k, for 1, n, then m
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In particular

(2.10) i/s s , s, then m -m.
When s s s, things are more complicated. Let s s,.,

s_ s e S satisfy h i, h /c and h, h are all distinct.
j h, for some r 2, n 1, then the chain s s, s_
stisfies (2.9). So m -m. Similarly m -m. In this case we say
that s splits s and s.

If, on the other hand, j #h for r-2,...,n-1, then, by (2.9),
m -m. Sincem -m,m -m,m -misimpossible, one
of s, s., s must always split the other two. Hence

(2.11) if s s s then precisely two of m m m are equal.

This is enough to prove

LEMMA 2.12. Suppose that S consists of -c-s, where s is given by (2.8), ome
elements of theform s s and, of course, +s -+-s Then S is graphical.

Proof. We consider the "worst" case first. Suppose that s s s,
and thatssplitssands. Then +/-s +/-(s s + s). By (2.9), S
cannot contain --(s s), but it can contain =i:(s s) and --(s. s).

Let s be the fourth basis element. By (2.9), S cannot contain both
+/- (s s) and =t= (s s). Assume, by symmetry, that -- (s s) e S.
Then S must be contained in the set

,So {-,-s,,-+-s., a:s, +/-s,, a:(s,- s + s,,),-+-(s,- s.), a:(s- s),

+/-(s,-s), +/-(s-

Embed L in K by T s -- k k0, st --* ks -/Co, s-k -/Co, sk - k. kk.
Clearly T(S0) B, so So, and therefore S, is graphical.
In any other case, one of s, st, s, say s, must be the other two. Atter

a possible transformation of the form st- st, if st s st --* -st, if st s
(which does not change (2.6)), we may assume that precisely two of m,
ms, m are equal. A repetition of the argument above shows that S is
graphical.
Not many elements of the form (2.8) can lie in S:

LEMMA 2.13. At most four elements of the form (2.8) can appear in S. If
precisely four appear, then, after reindexing the s they have the form
(2.14) -4-(m s + m s. + m s), +/-(m s + m s. + m s), where m 1
for all i.

Proof. If two pairs +/-s of those elements appear, we may assume, after re-
indexing, that they are --(m s + m. s + ma s), and 4-(n s + n s + n s),
where]ml [n] 1, foralli, j, and/c 3or4. We may even assume
that n m.
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If n2 --m2, then S contains elements of the form 81 -- 82 -{- and
sl s + ..., contradicting Proposition 2.4. Hence n

If/c 3, then similarly n3 m3, contradicting the fact that

n 81 + n2 82 + n s # m s + m2 82 + m s.

So k 4. Therefore (2.14) holds, with m n.
If a fifth element of the form (2.8) ppers in S, the bove rguments

show that, sfter reindexing, m s + m s + m s e S. Then
s, m 81 + m2 82 + m3 83 ml 81 + m2 82 + m s, m 8 + m s + m s are
four independent elements of S which do not form bsis for L. This con-
tradicts (1.15) nd proves the lemm.
The most complicated of our lemms is

LEMMA 2.15. Suppose that S consists of the elements (2.14), some elements
of he form s s and s, s. Then either S is graphal or else,
after reindexing, S is

(.1)

Proof. Assume, to begin with, that m -m. There are two possi-
bilities"
m m. In this case, after reindexing, the elements (2.14) become

By (2.9), neither (s s) nor (S s) can lie in S. So S is contained in

Embed L in K by T’sk k, sk k0, sk k0,
sk4-- k0. ThenT(S) T(S) B. So S is graphical.
m -m. After reindexing, the elements (2.14) become

By (2.9), neither (s s) nor (s s) can lie in S. Furthermore, if
(s s) e S, then s s s, s s, s + s s e S contradicts Propo-

sition 2.4. Hence S is contained in

Embed L in K by T’sk k0, sk
s4k- k. ThenT(S) T(S) B. So S is graphical.
Now assume that m m. If s s, change bases by

s-s if sSx; ss if ss.
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This reduces S to the case above. So we may suppose sl s2. By (2.10),
sl s2 s3--- s. Furthermore, by (2.11), m3 m4 -m. So the
elements (2.14) are

--(s + s- s), +/- (s + s- s).

Using the first of these elements and (2.9), we see that S cannot contain
both sl s4 and s2 s,. Using the second, S cannot contain both sl s3
and s s3. Furthermore, it cannot contain s s.
By symmetry, we may assume that s s4 S. Some s s. lies in S,

sinces-s. Ands s2,sl s4S. Sos1 s3eS. As noted above,
this forces s s3S. Some s st lies in S. It must be s2 s. If
s3 s S, then +/- (s s3), +/- (s s,) are the only elements in S of the
form s s.. This contradicts s s.. Hence s3 s, e S, and S is given
by (2.16).
Rather than consider a large number of cases, we handle the elements of

the form -+-s +/- s +/- s3 +/- s in S by different arguments.

LEMMA 2.17. Suppose that, for any basis sl s of L lying in S, some
element of the form =i=s 4- s -q- s3 q- s appears in S. Then, with respect to a
suitable basis, S is

(2.18) -+-s, +/-s, -+-s, +/-s4, -+- (s + s2 + s + s)}.

Proof. We may change the signs of the elements of some basis s, s4
to reach

-+-(s + s + s + s,) S.

By (2.4), S can contain no elements of the form s s. + ..., where
i j. As in Lemma 2.13, this implies that no other elements of the form
+/-s +/- s +/- s3 +/- s appear in S.

If some element of the form (2.8) appears in S, we may assume that it is
s+s+ s3. Letsl,s,s3,s4bethenewbsis
s + s + s3, s, s2. By hypothesis,

(m -[- m -t- m)s + (ml "- m2 + m)s + (ml + m2)83 "[- m s4 e S,

for some m with Ira, 1, for i 1, 4. Since [m -[- m - 1, by
(2.3), and m m is even, we see that ml -m.. So S contains elements
of the form +/-s +/- s: +/- s. These must be +/-(s -[- s - s). Similarly
+/- (s -k s3 -k s) S. But s, s -k s + s3, s -b s2 -b s, s -b s -b s do not
form a basis for L, contradicting (1.15). Therefore

(2.19) no elements of the form (2.8) appear in S.

If some element of the form +/-s, +/- st (i j) appears in S, we may assume
If If If IIthat it is sl -t- s. Let s, s, s3, s be the new basis sl -b s, s2, s3, s. By

hypothesis,
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m181 - m282 - m383

for somemwith ]m] 1, fori 1,...,4. Clearlyml -m2. SoS
contains ml Sl W m3 s3 W m4 s of the form (2.8), contradicting (2.19).
We conclude that S is given by (2.18).

COROLLAaV 2.20. S is graphical.

Proof. Embed L in K by T Sl --s4 -- k4 k. Then T sends sl -t- s2 + s + s into k k0. So T(S)

_
B.

By (2.7), Lemmas 2.12, 2.13 and 2.15, and Corollary 2.20, we conclude
with

THEOREM 2.21. Let S satisfy (1.15). Then either S is graphical, or else it
is given by (2.16), with respect to a suitable basis.

3. A list of graphs
We wish to list, to within equivalence, those graphical subsets of L which

can lead to maximal groups (two subsets S, S’ being equivalent if there is an
automorphism of L carrying S onto S’). As we shall see, this by no means
requires a list of all graphs on five points, or even those containing maximal
trees.
A subgraph P (on any number of points) of I’5 will be called reduced if

each vertex P F lies on at least two distinct segments P P, P Pk

_
F,

IEMMA 3.1. Any graphical subset of L is equivalent to a subset S of the form.
(3.2) S fl-l(r) u {-4-81 ,..., "-Sn}, n

_
O,

where F is a reduced subgraph of F5 on 5 n points, and sl s form a basis
for L modulo the sublattice Lr generated by #-1(F).

Proof. Let S’ /-I(F,), where 1’ is a connected subgraph of F. If
F’ is reduced, we are done. Otherwise some vertex of F, say P4, must be on
only one segment, say P3P4. Let F" F’- {/"P4}, a graph on
P0 P3 Then S’ -I(F,,) u =t= (/3 k)} Clearly 1" is connected.
So ka /c4 is a basis for L modulo Lr".
An obvious induction completes the proof.
There are, to within isomorphism, just 16 reduced subgraphs of F"
LEMMA 3.3. Any reduced subgraph of F is isomorphic to one of the graphs

displayed in Figure 3.4.

Note. The circles appearing on certain lines in Figure 3.4 will be explained
in Lemma 3.10 below.

Proof. Let 1 be a reduced subgraph of F. We first prove that

(3.5) Any segment of
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A M

B F J N

C G K O

O H L P

FIGURE 3,4

Suppose, e.g., P0 P e F lies on no closed loop. Construct a chain

of segments in r such that i_1 i+, for all j. Let n be the first index
such that n >_ 1, and iv i., for some j < n. Since P0 P, appears in no
closed loop, j must be >_ 1. So n > j -t- 2 >_ 3, and P0, P,, P,., P3 are
all distinct.

Similarly P_, P_,, P0, PI are all distinct. Since i_r i8, r >_ 0, s >_ 1,
would force P0 PI to lie on a loop, the six points P_,., P3 are all
distinct. But 1 is a graph on _< 5 points. This proves (3.5).
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By (3.5), F is a union of triangles (3.4B), quadrilaterals (3.4L) and penta-
gons (3.4P). We consider all cases.

If 1 has no segments, it is (3.4A).

Suppose F is a union of triangles:

If F contains one triangle, it is (3.4B).
If F contains two triangles, it is (3.4C) or (3.4D).
If F contains three or more triangles, then two of them must intersect in a

line (count vertices!). So F has a subgraph isomorphic to (3.4D).
Suppose F has three or more triangles, and does not contain a tetrahedron

(3.4H). Then it consists of (3.4D), together with two or more segments
connecting this subgraph with a fifth point P0.

If two segments contain P0, then F is (3.4E) or (3.4F) or (3.40).
If three segments contain P0, then F is (3.4G) or (3.4I) (which is ex-

cluded, since .it contains a tetrahedron).
If four segments contain P0, then F contains a tetrahedron.
Suppose F contains a tetrahedron (3.4H). Any further segments must

connect these vertices with the fifth vertex P0.
If no segments contain P0, F is (3.4H).
If two segments contain P0, F is (3.4I).
If three segments contain P0, I’ is (3.4J).
If four segments contain P0, I’ is (3.4K).

Suppose F is not a union of triangles"

If F is not a union of triangles and quadrilaterals, it must be a pentagon
(3.4P).
Otherwise, F must contain a quadrilateral (3.4L) but no further segments

on these four vertices. Let the fifth vertex be P0.
If no segments contain P0, F is (3.4L).
If two segments contain P0,1 is (3.4M) or (3.4N).
If three segments contain P0, F is (3.40).
If four segments contain P0, F is (3.4G) (which is excluded as a union of

triangles).

We have considered all cases.
Half the graphs in Figure 3.4 are removed from consideration by the follow-

ing rgument"
We say that a subgraph F’ of graph F is a closed loop of length n >_ 3 if

it has the form

r’ {P P PP P_, P, P P},

where P,, P. are distinct vertices. If PP:. e F, and n >_ 3, let

N(P P#, F) denote the number of closed loops of length n in r which con-
rain P P..
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LEMMA 3.6. Let F be a subgraph of F, and S -(r). If s e S and
n >__ 3, then N,((s), F) equals the number of subsets S of S satisfying

a S has n 1 elements,

(3.7) (b) ,ss s,

c if S is a proper subset of S then .s s. s.

Proof. Let (s) P P, and s
Suppose S S satisfies (3.7). By (3.7b), some element of S must have

the form k k. Suppose, by induction, that S contains elements
k k, k , k k_, where r 3, and i, i, i_ are
all distinct. If i i, then the sum of these elements is s. So, by (3.7c),
they are all the elements of S. If i i, for some j with 2 j r 1,
then the sum of the elements+ k, k. k,_ is zero. The sum
of the rest of the elements of S must be s, contradictg (3.7c). If i,
are distinct, the sum of the above elements is , k. So S must contain
an element of the form k.+ k., and the induction is complete.
We conclude that S has the form

where i, i are distct. Obviously (S) u {(s)} is a closed loop of
lenh n containg (s).
Suppose F { P, PP ,..., P, P} is a closed loop of length

n F contagP P. Then S {k
satisfies (3.7) and (S) {(s)} F’. Any other subset S of -(F’)
satisfyg (3.7) must be of the form
where v, s are all 1. Then (3.7b) becomes

i ki n i 2 ki + (2-

Since i, Q are all distinct, this implies 2 e, 1, and S S’.
We have constructed a one to one correspondence between subsets

satisfying (3.7) and loops of length n containing (s). So the lemma is true.

COROLLARY 3.8. U g e G(S, L), then, for any n 3,

N((s), r) N((gs),

Proof. Obviously the number of subsets S satisfying (3.7) is hvariant
under G(S, L).

If S is any finite subset spanning V and S’ is a proper subset of S satisfying

(3.9) S’ spans V and G( S, L) sends S’ into itself,

then G(S, L) G(S’, L). Since we are only interested in maximal finite
groups, we need only consider the reduced subsets S of L, i.e., those for which
no proper subset S’ of S satisfies (3.9).
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LEMMA 3.10. If S has the form (3.2), where r is D, E, F, G, I, J, iV[ or 0
of Figure (3.4), then S is not reduced.

FProof. Let S /-I(F,) for some

___
F. It is clear from Lemma 3.1

that Nn((s), 1’) 0, for all n >_ 3, if t(s)e F, while Nn((s), r’)
N((s), 1), if (s) e r. Furthermore, in the latter case N(t(s), 1) 0,
for some n >_ 3. We conclude from Corollary 3.8 that subset So t-l(r0)
is invariant under G(S, L) provided F0 is the subgraph of all P P. ia 1 satis-
fying equations of the form N,(P Pj., F) a,,, for some n >_ 3 and some
a. If S So S’ spans V, or, what is the same thing, if F’ F 10
contains a maximal subtree, then (3.9) is satisfied and S is not reduced.

In each case below the subgraph F0 consists of those segments P P e I
for which N, Nn(Pi Pi, F) has the indicated value. In Figure 3.4, 10
is the subgraph consisting of all segments with circles on them. By inspection
it satisfies the conditions above. So S is not reduced.

D: N3=2
E: N3 3
F: Na 2
G: Na 1
I: N 3
J: Na 3
M: N3 1 and N4 1
O: N 2

the arguments above:We conclude from Lemma 3.10, and

THEOREM 3.11. If S is a graphical subset of L, and G(S, L) is maximal,
then S has the form (3.2), where F is one of the graphs A, B, C, H, K, L, N or P
in Figure 3.4.

t. The maximal groups
After Theorems 1.14, 2.21 and 3.11, there are 1 - 1 + 8 10 cases to be

considered. In each case we must decide whether the group in question is
maximal, and whether it is equivalent to any of the other groups.
We say that a group H is uniform if there is, up to constant multiples, pre-

cisely one positive definite quadratic form invariant under H for which
S(, L) spans V. We call an associated form of H and the set S(, L),
which is uniquely determined by H, the associated subset. It turns out that
all our maximal groups are uniform. So both of our questions above are
simplified by the following observations"

Observation 4.1. If a group H is uniform, with associated subset S, then
G(S, L) is maximal (and uniform with the same subset).

For any group K containing G(S, L) must leave invariant some form
Since G(S, L) contains H, the form must be associated to H. Therefore
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leaves S S(, L) invariant, i.e., K cc__ G(S, L). The uniformity of G(S, L)
is obvious.

Observation 4.2. Let G1, G. be maximal and uniform groups, with associated
sets $1, $2 resp. Then G1, G2 are equivalent if and only if $1, $2 are equiva-
lent.

For any equivalence between G1 and G2 must be an equivalence between
their associated forms 1, 2 and hence, between $1 and $2. Since, by (1.1),
G G(S, L), the converse is also obvious.
We begin with the exceptional form in Theorem 1.14"

Case I. S S(, L), where is given by (1.8).
The ring I of integral quaterions (see [4]) has a lattice basis

51 1, 52 i, 53 =j, 54- -1/2(1 zriWj-l-k).

The norm of a general element of I is given by

N(X 51 - + X4 54) X - X + X + X (XI + X2 - X3)X.

So we my identify L with I by l -+ b, i i, 4, sending into N.
The unit group U of I consists of the 24 elements of norm i,

+/-i, +/-i, +/-j, +/-}, 1/2(+/--+-i+/-j+/-).

Since the norm of ny elemen of I is n integer, U S(N, I).
Let H be the group of ll mps r - u. r of I into I, where u e U. Cler]y

H is transitive on U. So ny form invrint under H must hve constant
vlue c (u), for ll u e U. This esily implies that c.N. So H is
uniform. From 0bservtion 4.1, we conclude that

(4.3) the group Qn G(U, I) is maxima and uniform, with associated
subset U.

Incidently, Qn has 1152 32.27 elements. To see this, note that it is
transitive on U, since H is. The subgroup leaving 1 fixed must permute the
elements +i, j, =i=k, which are perpendicular to 1, among themselves. It
does this in 6.4.2 3.24 ways. Since the images of 1, i, j, k determine a
transformation of I, this gives 24.3.24 32. 27 elements.

Suppose that S is given by (3.2). Let L’ be the sublattice of L having
sl, sn as basis. Then L is the direct sum Lr -]- L’. As in the proof of
Lemma 3.10, the subsets -I(F) and /=i=sl, +/-s} are invariant under
G(S, L). So the sublattices Lr, L’ which they generate are also invariant.
We conclude that

(4.4) G(S, L) G(-I(F), Lr) (R) G({+/-sl,..., +/-s}, L’).
Consider the second factor in (4.4). Evidently

G({-+-sl, -+-s}, L’) Cun
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is the "generalized permutation group" of order n! .2, consisting of all linear
transformations of the form s - e, s,(o, i 1, n, where r is some
permutation of 1, n, and el, e are arbitrarily chosen 4-1’s. The
only form left invariant by Cu is the identity form (X1 sl + + X s)
X -t- + X2 (or a multiple thereof). Clearly [4-sl,..., 4-s}
S(, L’). So, from Observation 4.1,

(4.5) for any integer n > 1, the group Cu is uniform and maximal, with as-
sociated subset 4-Sl, 4-s}

Case II. S comes from the graph A of Figure 3.4 via (3.2).
In this case F is empty. So, by (4.4) and (4.5), G(S, L) Cu4 is uniform

and maximal. Its associated subset contains 8 points. By (4.3), the as-
sociated subset of Qn contains 24 points. So, by Observation 4.2, Cu4 and
Qn are inequivalent. Hence

(4.6) the group Cu is uniform, maximal, and inequivalent to Qn.
sociated subset is the S of this case.

Its .as-

In applying (4.4), the following lemma is useful"

LEMMA 4.7. Let H1, H2 be uniform groups on lattices L1, L2 respectively.
Suppose that each H contains the transformation -1 on L. Then H1 (R) H2
is uniform on the lattice L1 ( L2 If $1, S. are the associated subsets of H1, H2
resp., then ($1 O) u (0 $2) S is the associated subset of H1 (R) H.

Proof. Since H1 (R) H2 contains a transformation which is -1 on L1 and
1 on L2, any form invariant under it must be a perpendicular direct sum
2 of forms on L invariant under H, i 1, 2. Clearly

S(4)1 4)., L1 L2)is given by

S(4,, L) 0, if min 41 < min 62,

0 if) q(b2, L2), /f min (h > min,
(4.8) S 1, L O u O S 2 L2 if min l min2.
So S(41 42, L1 L2) spans the vector space if and only if both S(41, L1)
and S(2, L2) span their respective spaces, and min 1 rain 2. Since
H1, H. are both uniform, only one ray of forms can satisfy this condition.
Therefore H1 (R) H2 is uniform. The rest of the lemma follows from (4.8).
When the reduced graph P is the 1-skeleton of a simplex, its group is maxi-

mal by the following argument"
For any integer n > 1, let K be a lattice of dimension n + 1 with a fixed

basis k0, kl, ks. The symmetric group Sn+l on 0, n operates on
K by r k --. k(), i 0, n. The vector space VK spanned by K is
the direct sum VK V1 -]- V2 of two absolutely irreducible subspaces under
Sn+I. The subspace V1 consists of all multiples of k0 + + k, while
consists of all r0 k0 + + r k= for which r0 + + r 0.



MAXIMAL FINITE GROUPS OF 4 X 4 INTEGRAL MATRICES 117

Let L’ K a V2. It is a lattice of rank n invariant under the group H of
transformations of V2 induced by S+. Since H is absolutely irreducible on
V2, there is only one invariant form (up to multiples). It must be the re-
striction to V. of the form ’(X0 k0 W X k) X X on
V which is invariant under S+. Since any element r0 ]c0 -t- W r ]c 0
of L’ must have at least two non-zero integral coefficients r,, i is clear that

(4.9) S(, L’) {, k i j; i, j O, ..., n}.
The uniformity of H and Observation 4.1 imply that the group

Sx G(S(, L’), L’) satisfies

(4.10) Sx, is uniform and maximal. Its associated subset is given by (4.9).

Incidently, it can be shown easily that Sx consists of all =i=h, where h e H.
So it has 2.n! elements, if n >_ 2, and 2 elements if n 1.

Case III. S comes from the graph B of Figure 3.4 via (3.2).
By (4.9), it is clear that G(-(r), Lr) Sx.. Hence, by (4.4) and (4.5),

G(S, L) Sx (R) Cu. This group is uniform with associated subset S
(by Lemma 4.7). So it is maximal (by Observation 4.1). Since S has 10
elements, while the associated subsets of Qn and Cu have 24 and 8 elements
respectively, we conclude from Observation 4.2 that

(4.11) The group Sx. (R) Cu is uniform, maximal, and inequivalent to Qn or
Cu Its associated subset is the S of this case.

Case IV. S comes from the graph H of Figure 3.4 via (3.2).
By an argument similar to that of Case III, G(S, L) Sxa (R) Cu is uni-

form and maximal, with associated subset S. Since S has 14 elements we
conclude that

(4.12) the group Sxa (R) Cu is uniform, maximal, and inequivalent to Qn, Cu
or Sx. (R) Cu. Its associated subset is the S of this case.

Case V. S comes from the graph K of Figure 3.4 via (3.2).
By (4.10), G(S, L) Sx is uniform and maximal, with S as its associated

subset. Since S has 20 points, it is inequivalent to the preceding groups.
Thus

(4.13) the group Sx is uniform, maximal and inequivalent to any of the groups
in Cases I-IV. Its associated subset is the S of this case.

Case VI. S comes from the graph C of Figure 3.4 via (3.2).
It is clear that L is the direct sum of two sublattices L, L of rank 2, each

of which is generated by -1 of one of the triangles of F. So S S S,
where S S a L is equivalent to the set in (4.9) with n 2. Hence
Sx (R) Sx is contained in G(S, L). By (4.10) and Lemma 4.7, the group
Sx (R) Sx. is uniform, with associated subset S. Therefore, by Observation

(2)4.1, the group G(S, L), which we denote by Sx is uniform and maximal.
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Since S has 12 elements, while the five preceding S’s have, in order, 24, 8, 10,
14 and 20 elements, Sx() is inequivalent to any of the above groups. Hence

(4.14) the group Sx() is uniform, maximal and inequivalent to any of the
groups in Cases I-V. Its associated subset is the S of this case.

Incidentally, it is clear that x is the wreath product of the symmetric
group S. with Sx. (See [5]). So its order is (3! 2). 2 35. 25 288.
We return to the lattice K with basis ]0, "", ], and the subspaces

V1, V of V invariant under S+1. Now let L" be the image of K under
the projection of V1 V onto Vs. This is the dual lattice to L (with re-
spect to ) and is also invariant under H. The image of/ under this pro-
jection is

k0li ]i-
n-I-1

So L" consists of all elements of the form

(4.15) l" ro ko - -- r, tc,
where r0, r are integers satisfying

n-l
ro - + r O and ro r (mod n + 1).

The set S(, L) is more difficult to compute than some of the other such
sets. Suppose l", given by (4.15), lies in S(, L’). Let r (n W 1)t W r,
whereteZ,i= 0,...,n, and0g r < nW 1. Since r 0, we have
r -(t0 + + t). Thus

1 r(l)
(n+ 1)r t+ + t n+l"

If some integer t, say t0, is derent from 0 or 1, then the two elements
corresponding to t0 1, t, t, r 1 will be non-zero. So the value of
at these elements must be (l"). This tells us that

(l (ko--+’"; ’)) V’ 2r 1 l,n =( )2t0+1 >(
n+l

or

n-l-1

But Ir/(n-t- 1)1 < 1, andit01 >- 2.
tradiction. So

Hence]t0 + r/(n + 1)i >- 1, acon-

Each t is either 0 or -+- 1.

Let T be the number of non-zero t, and T’ the number of t equal to + 1.
Then(l") T- (2T’ T)/(n - 1). For0_ T’

_
T, andfixed T,

the minima of this function clearly are taken on for T 0 and T’ T, i.e.
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All the non-zero t are equal.

Finally(l") T- T/(n + 1) T(n + 1- T)/(n- 1). Since
0 < T < n 1, the minima are given by T 1 and.T n. Therefore

(4.16) S(, L" consists of all

+/-
 od-

where i O, n.

In particular, for n 2, S(, L) has 2(n + 1) elements.
The map

for i 1, n sends L" onto L and s(@, L") onto

...,
So

(4.17) S(@, L") is graphal. Its graph is a regular (n + 1)-gon.

As in the case of (4.10), the group Py G(S(@, L"), L") satisfies

(4.18) Py is uniform and maximal. Its associated subset is S(, L").
Case VII. S comes from the graph L of Fi6ure 3.4 via (3.2).
By (4.17),itisclearthatG(B-(F),Lr) Pya SoG(S,L) Py @ Cu

This is uniform and maximal with associated subset S. Since S has 10 ele-
ments, this group can be equivalent only to Sx @ Cu among our previous
groups. But the two sets S cannot be equivalent since N(fl(s), F) 1 for
some elements s of the earlier t, while Na(B(s), F) 0 for all elements s of
the present set (consult Lemma 3.6). Hence

(4.19) the group Pya @ Cui is uniform, maximal, and inequivalent to any of
the groups in cases I-VI. Its associated subset is the S of this case.

Case VIII. S comes from the graph P g Figure 3.4 via (3.2).
Clearly G(S, L) Py. Since S has 10 elements, this group can be equiva-

lent only to Sx @ Cu or Pya @ Cu among our previous groups. But
N((s), F) 1 for all elements s of the present S, while N(B(s), F) 0
for all elements s of Che two earlier S’s. Hence

(4.20) the group Py is uniform, maximal and inequivalent to any of the groups
in cases I-VII. Its associated subset is the S of this case.

Case IX. S is given by (2.16).
This, of course, is the exceptional case in Theorem 2.21.
Let K be a rank three lattice with basis 0, k, k. Let the symmetric



group $3 act on K as in the study of Cu2. Then the direct product $3 (R) S
acts nturally on the tensor product (over Z) K (R) K. The sublttice L’
consisting of all r0 ]Co + rl kl + r. k. K with r0 W r W r 0 vrint
under S. The subspce V spanned by ff is bsolutely irreducible under S.
So the subspce W spanned by L’ @ L’ K @ K is bsolutely irreducible
under S S. In prticulr, the group H’ of utomorphisms of L L’
duced by S @ S is uniform.
The form ( X @ ) Z on g @ K is clearly vrint

under S @ S. So its restriction to L’ @ L’ is n ssocited form of H.
The sublttice L’ @ L’ consists of 11 ,rk @ k such that 11 r lie Z,
nd, for ech i, r 0, while, for ech j, r 0. Therefore, if some
coefficient r is not ero, then t least one other coefficient r is not sero, nd
t least one other coefficient r is not ero. Clearly this forces t least four

L L’r to be non-ero. Hence e @ ,1 0 imply (1) 4. Equality occurs
if nd only if

(4.21)
(k,--k) @ (k-- k), i#h,j# 1.

So the associated subset S’ of H’ consists of the 18 elements (4.21).
Map L onto ff by

so(0- ,) (0-

s (0- ) (,- )

s (0- ,) (0- )

s (0 ) (0 ).

Then the other elements of S are mapped as follows"

s- s (0- ) (-

s- , (- ) (0- )

s, (0 ) ( 0)

i.e., S is mapped onto S’. So G(S, L) is equivalent to the group Sx
G(S’, L’ @ L’). Since H’ is uniform, Sx is uniform and maxal, by
Observation 4.1. Since S’ has 18 elements, while the associated subsets of
our eight previous groups have, in order, 24, 8, 10, 14, 20, 12, 10 und 10 ele-
ments, Observation 4.2 implies that

(4.22) The group Sx is uniform, maximal, and inequivalent to any of the
groups in Cases I-VIII. Its associated subset is the S of this case.

Case X. S comes from the graph N of Figure 3.4 via (3.2).



MAXIMAL FINITE GROUPS OF 4 >( 4 INTEGRAL MATRICES 121

This is the only subset which does not lead to a maximal group.
S consists of the six elements

s, ., s, -(+.+), , -(+s+)

and their negatives, where s, ..., s are the basis for L. Rename these
elements, in order,

(4.23) u, u, u., u, u, u.
Then the only relations of the form X W X. W X W X 0,
where +/-X, :i=X are eight distinc elements of S are the six relations

(4.24) ul u2 ujl u.. 0, i j, i, j 1, 2, 3.

Consider G(S, L) as a permutation group on S. It must permute the six
expressions on the left of (4.24) among themselves. This implies directly
that any element of G(S, L) either permutes the elements (4.23) among them-
selves, or carries this entire set into its negative. So G(S, L) G (R) (+/-1)
where G is the subgroup sending (4.’23) into itself.

It is also clear from (4.24) that the subsets {ul, ul},/u, u2.}, {u3, u3.}
form a system of imprimitivity for G. So G permutes among themselves the
12 elements

(4.25)

Let S’ be the union of S and the 4ements (4.25).
know that G(S, L) G {1} G(S’, L).
Map L onto the ring I of integral quaternions by

Ull (1 + i + j + k)/2
u2(1 iWjWk)/2

Ual 1

The other elements of S are mapped

Ul ( i- + )/2
u ( + i- j + )/2

The elements (4.25) are mapped as follows:

U u2 i

Ul Ul (-1 + i + j + k)/2
Ul u (-1 i + j + )/2
Ull 22 j

u, u ( + i + j )/2
u u ( i + j )/2.

ij,i,j= 1,2,3.

Since S’ -S’, we
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Hence S’ maps onto U. So G(S’, L) is equivalent to G(U, I) Qn. Since
Qn is transitive on U, the group G(S’, L) is transitive on S’. But G(S, L)
isn’t. So G(S, L) c G(S’, L); i.e.

(4.26) in this case, G(S, L) is not maximal.

Having considered all ten cases, we conclude from (4.3), (4.6), (4.11),
(4.12), (4.13), (4.14), (4.19), (4.20), (4.22) and (4.26) the following result:

THEOREM 4.27. There are precisely nine inequivalent maximal finite groups
of 4 X 4 integral matrices. They are all uniform. In the notation of this
section they are, with their invariant forms"
Qn

Cm

Sx (R) Cu
Sx (R) Cu

Sx

X2(2)

Py3 (R) Cul

Py4
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