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1. Introduction
For a finite field F of prime order and a given positive integer n let (Pn (F)

be the set of all functions in n variables xl, x2, xn where both the func-
tion and the variables assume values in F. Let F[XI, X2, X] be the
ring of polynomials with coefficients in F in the n indeterminates
X, X2, X. If g e ( (F), the finite range of the variables allows the
construction by interpolation techniques of an element G F[X,..., X]
such that g is obtained from G by the obvious substitution mapping. How-
ever, the element G is not uniquely determined unless we impose some further
requirement, e.g. that its degree in each variable separately be less than the
number of elements in F (see [3]).
We shall be interested in the subring & (F) of ( (F) consisting of those

functions g which are symmetric in the variables x, x2, x. For such a
function g the polynomial G can be taken as a symmetric polynomial. For
example, the above requirement on the degrees will produce a symmetric
polynomial. Now any symmetric polynomial can be obtained from the
elementary symmetric polynomials by means of a finite number of additions,
subtractions, and multiplications. Thus, by making the obvious homo-
morphism from F[X, X,] onto (Pn (F), we see that $ (F) is the subring
of (P (F) generated by the elementary symmetric functions

U (x, x) <<...<x ( 1, 2, n).

We shall show that actually $ (F) is generated by a subset of the functions
U, U2,..., U.
In the final section we study the asymptotic distribution of the Uk as the

number of variables tends to infinity.

2. Elementary symmetric function relations

We will require the following lemma, the statement and proof of which is a
slight variation of one proved by Fine [1, Lemma 5].

LEMMA. For any set CI, C2, C_ of members of a finite field F of
prime order p, there is a unique set of integers a a2, a_ with 0 <= ai < p,
such that in F[X]

(1) IIf-Q* (1 q-- ix) ’ 1 q- C x q- C2 x q- q- C,_ X’- q- ....
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If (1) is to hold, then the coefficients C are equal to U(xl, ..., x),
where N al + as W + a_l, and al of the variables x. are equal to 1,
a2 are equal to 2, a_ are equal to p 1. Using Newton’s identities,
which hold in F, we have

i

-C )+ (-1 _S + (-1 (p- 1)C_

Elinating S from the right side of the second equation, Sx and S from
the right side of the third equation, etc., yields the set of equations

=C[-2C=Q,

i- Q_,

where the Q are certain functions of C, C,... C_. If the a were
members of F instead of integers, (2) would be p 1 linear equations in F
in p 1 unknowns. The determinant of the coefficients of the unknowns is
the Vandermonde c ], c j, which is never equal to zero. Thus for any
choice of C, C_ there is a unique set of elements in F such that the
equations (2) hold. Since any element in F may be written uniquely as
n. 1 where 1 e F and n is an integer satisfying 0 n < p, we also obtain
unique integers a (0 a < p)satisfying (2), and the lemma is proved.
On the right side of (1) let the coefficients of powers of X higher than

p 1 be C, C+, C(_). For each choice of C, C_, these
other coefficients are determined, since the a are unique. Thus for i p
each C is a function of C, C_"

(3) C R(C, C, C_), i p,p + 1,..., (p 1).
Actually, if we again view the a in (2) as members of F, we can solve for a
as functions of C, C, C_ then if the C for i p are expressed in
terms of the a by expanding the left side of (1) and equating like powers of
X, substitution for a would lead directly to the desired expressions (3).
For the convenient statement of the theorems, we introduce the following

notation" ff p is a positive prime, let L denote the set of integers of the form
tp, where s is a positive integer or zero, and is any integer from 1 to p 1
inclusive.
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THEOREM 1. For a finite field of prime order p, each elementary symmetric
function Uk can be expressed as afunction in the U, k e L, and <= t, the expres-
sion holding independently of the number of variables xz x2 x, of Uk

As an immediate consequence we have the

COROLLAnY. In a finite field of prime order p, every symmetric function in n
variables can be expressed as a function in the U, k e L, and k <- n.

We will prove the theorem by showing how the function may be constructed
for Uk when k e L,. If we set a equal to the number of the variables
xz, x2, x. equal to i for i 1, 2, p 1, then from the expression

II% + x Z 1 + % uz
we obtain

(X) Hf---: (l + ix)ai-- l + Ekn.l Uk Xk.
Writing the integers ai in the p-ary number system,

(r)_
ai oz -Jr- ap -t- -t-" o p, 0 -<_ a(j) < p,

we have
((X) I.If: (1 + ix) "(). II<=- (1 :{- ix’) "‘(‘’. II-: (1 + ix’) "’(’,.. ..
If we set

(4) II’:) (1 -[-iX’i) "(i) 1 --[-C X" CJ)X’ -then if p’ _-< / < p’+ for some nonnegative integer s,

(5) u <0) <) (.>
u’to wz ’,,

where the sum extends over all (s - 1)-tuples 0, ,"’, f with
0 -t- p + - p’, / (we define C0(’) equal to 1).

If tc tp for some integer p, then the (s 1)-tuple 0, 0, 0,
gives rise in (5) to the term C), and we may rewrite (5) in this case as

(6)

where the sum extends over all (s -F 1)-tuples 0, /,"’, , with
o -- pz + -F p’, tp and . < t.

Since (4) is the same type of equation as (1), we may apply the result (3)
obtained in the discussion following the lemma and write

(7) C) R.(C) C) C(),_, i p, p - 1,... (p 1)

Equations (5), (6), and (7) may be used to construct the desired functions.
For any integer/ satisfying tp < < (t - 1)p’, we start with (5) and use
(6) to eliminate in succession the variables t(), C()t-z, C). Then U is
expressed as a function of U,., U(t-z),., U,., and C),j<=s-1.
Using (7), we cn eliminate the vriables for i _>_ p. Then we cnuse
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(6) again to eliminate in succession the variables C_- "(-)- ,..., C-).
We then have U expressed as a function of U., U,
U(_),-, U,- and the variables C’), j -<_ s 2. Continuing this
process to its conclusion leads to the desired expression for U. This com-
pletes the proof of Theorem 1.
We show the uniqueness of the constructed functional expression for U in

our second theorem.

THEOREM 2. There is one and only one function for U in terms of the
Ux ) e L which holds for any number n of the variables x.

In particular this theorem shows that it is not possible to reduce the number
of basic elementary symmetric functions Ux, e L, by expressing one of
them in terms of the others.
We will prove the theorem as soon as we show that any possible set of

values for a finite number of the Ux, e L, is actually assumed for some
x, x, x ff n is large enough. Accordingly, let r be given, and suppose
it is desired to fix arbitrarily all the Ux, < p" and e L. We must show
how to choose the a(), j < r so that the polynomial

(x) +

has the coefficient of each Xx, X e L, the corresponding desired value of Ux.
By the lemma we may first choose the a() so that the coefficients of
X, X=, -, X- of H: (1 are the desired values for
U, U=, U_,, respectively.

(1)Similarly it will be possible to choose a so that the coefficients of
X, X, X(-) in (1 + iX)"() are any values we wish. In par-
ticularwe may choose them so that
has the coefficients of X, X:, X(-) equal to the desired values for
U, U, U(_), respectively. The coefficients of X, X, X-in this expressioa are identical to the corresponding coefficients of
f (1 + iX)"(). Continuing the process we see that by fixing each set
of a() for j 0, 1, 2, (r 1) in sequence, we may obtain the desired
coefficients for Xx, < pr and e L, and the theorem is proved. Note
that there is a one-to-one mapping between the sets of a(), j < r, and the
sets of Ux, k p and e L, since the number of possible sets is the same
for each.

3. Examples: The cases p 2 and p 3

For the field of two elements., L2 is the set of integers of the form 2, s _>_ 0.
The product ]I= (1 X’)"(’) becomes simply (1 -X2)"1() which
equals 1 al()X2’ since al() is either 0 or 1. Thus there are no C) with
i >= p 2, and equation (7) is unnecessary. For/ ]Co -/c 2 -f- ]c, 2’,
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ki 0 or 1, equations (5) and (6) become

"0 and V;,
so that U II u for all j with kj 0.
For the field of three elements, the relationships for U are more compli-

cated, and we are unable to obtain a general formula for U. Equation (4)
becomes

(1 -[- X’) "’() (1 nu 2Xa) "(’)

1 + C)X + C)X + C)X + C)X,
and the functions in (7) must be determined for C) and C). They are

C) C)C) (C) + 2C)),
Ci) C[)Ci)(C[)- 1)(Cl)- 1).

La is the set of integers of the form 3’ or 2.3’, so that 4 and 5 are the two
smallest integers not in La. Following the procedure outlined in Theorem 1,
we obtain for U and U

u, u u + 2u u + 2u u + 2u u’
U U3UW2UU+ UU.. Asymptotic distribution for U

The elementary symmetric function U (x, x) has p different sets
of values for its variables if the field F has order p. Of these let q be the
number for which U a. Then, following Fine [1], we set P, (, a) q/p,
the fraction of times U a. Fine investigated the behavior of P. (k, a) as
the number of variables n goes to infinity. He proved that lim P (k, a)
always exists, and designated this limit by P (a). Furthermore, he showed
that the P (a) can be evaluated in the following manner"

Choose r so that p > k, and count the number of times, q, that the coefficient
of X in

(s) H,5 (1 + x)",) H5 ( + x)"(’) H5 (1 + x’-’)
is equal to a for all possible choices of a

() satisfying 0 a
() < p. Then

P (a) q/N where N p(-) is the number of possible choices for the a().
Actually as the a() run through their values, the coefficients of the X for
< p not only display the limiting distribution U a, but also any desired

limiting multiple distribution, as for example U a, U b. Using this
fact and remembering that there is a one-to-one mapping between the a() and
all the sets of values for Ux, e L and < p, we obtain an alternate method
for calculating P (a), which we state in a generalized form:

THEOREM 3. In the field F of prime order p, let V, a symmetric function in
variables x x2 x where n may be any number, be expressed as a function
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R in the Ux, h e L. Then the asymptotic distribution P (a) (defined for V in
similar fashion as for Uk) equals q/N where q is the number of times R a
as the variables Ux in R range over their possible sets of values, and N is the total
number of such sets.

Fine calculated Pk (a) explicitly for the case p 2, and obtained P (a) for
p 3 as a set of recurrence formulas. For both p 2 and p 3, the asymp-
totic distribution P (a) exhibited the properties"

lb.
2.
3.
4.
5.

P (O) >= 1/p,
P(O)- lip onlyif
Pk(a)- 1/p if k eLy,
Pv (a) P (a)
P(O) >= P(a), a rs O, with equality only for
Lim Sup, P (0) 1.

1 is implied by 4, but we list it separately for convenience in discussion.
Fine proved 2 true for all p (also implied by Theorem 3), and proposed as
problems the proof or disproof of the other properties for general p.
For p 5, calculation yields the following results" P6(0) , which

disproves lb; P6(2) 26/125 > - P(0), and this furnishes a counter-
example to 4; finally Ps0(0) 78745/6255 > - Pc(0), and thus 3 also fails.
On the other hand, the corollary to the next theorem will show that 5 is

valid for all p, and this leaves only la unresolved.

THEOREM 4. Let the order of F be the prime p. Express the integer tc in
the p-ary number system, k ko -- kl p -- ks p -- -- k8 p8 where 0 <= k < p,
and let h be the number of nonzero coeicients k Then

1- <- 1 P(O) <- 1 p._)]
where square brackets denote the greatest integer function.
The left-hand part of the inequality is Theorem 11 in [1]. To derive the

right-hand part, we will estimate the number of times the coefficient of
X is 0 in the expression (8) as the integers a() run through all possible
sets of values with 0 -<_ a() < p. We may assume r > s. Expanding each
product II’--- (1 + ixv)" as in (4), the coefficient of X will be given by
the sum (5). Suppose that the coefficient k in the p-ary expansion of k is

0, where q >= 1. Then if a) and a-) are all zero for i 1, 2, p 1,
the sum (5) must also be zero. For we have that C-) C) 0 for i re 0,
and every term in the sum (5) will be zero except those that are of the form

(q-),,(a) ,,()
0 "’-0 0 ""u. However, there actually are no terms of this

type, since from 0 -4- px + -4- p k k0 + k p -$- -4- k p8 and
k 0, it is required that



138 OLIVER ABERTH

But sincei < (p- 1) we must have

0+p+’" +p--._-< (p- 1)(p--- 1) <p.
Thus all terms in (5) are zero, and the coefficient of X is zero when
a(-)

a
() 0, for k 0. In the case k0 0, it is easy to see that if

a) 0 for all i, the coefficient of X is also zero.
Let 0 be the number of terms k 0 for q an odd integer. Then. the coeffi-

cient of X is zero whenever a) a
(-) 0, where q is one of these odd

integers. If N is the total number of sets a), then the number of ways in
which this can happen is

N- Nk. ,_ 1].
Thus P (0) 1 (1 1/p(-)). Similarly if is the number of terms
k 0 for q a even integer, we obtain

P(O) 1- (1- 1/p(-l)) ,
with u trivial modification in the argument in the case k0 0. Since the
larger of the two numbers 0, is at least [(h 1)/2], the right-hand side of
the inequality stated in the theorem is obtained.

CononY. Lira Sup P (0) 1.

Letting run through the integers of the form p 1, we see by the pre-
ceding theorem that P (0) can be made as close to 1 as desired by aking m
large enough.
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