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1. The first significant method used in the theory of univalent functions
was the area principle. Its use led to the initial results on sharp bounds in
the simple standard results for univalent functions. In the more modern
developments of the theory the chief tools have been LSwner’s parametric
method, the method of the extremal metric, the method of contour integra-
tion, and the variational method. These methods have been employed to
deal with a wide range of results, and frequently a given result has been ob-
tained separately by the use of several or even all of them. Among them the
method of the extremal metric and the method of contour integration share
with the area principle the feature that an essential step in the procedure is
the assertion that the integral of a positive function is nonnegative. The
method of contour integration was first used by Grunsky [3]. He also used
it to obtain some quite general relationships for the coefficients of univalent
functions [4]. A closely related method has been used by Nehari [10]. The
method of contour integration has also been used by Golusin, Schiffer and
Spencer [13], and others.

In this paper we will observe that many of the results obtained by
the method of contour integration, including Grunsky’s coefficient inequalities,
can be obtained by a direct application of the area principle. Indeed in all
these cases the area principle provides a sharper inequality.
On the other hand many of these applications of the area principle are

consequences of a general result which we obtain by the method of the ex-
tremal metric. Moreover there are general circumstances in which the latter
applies while the former does not... We will begin by recalling some notations and known results.

Let D be a domain of finite connectivity in the z-sphere containing the
point at infinity, and let 2:(D) be the class of functions f(z) univalent in D,
regular apart from a simple pole at the point at infinity where the Laurent
expansion is given by

f(z) z + co +c/z + + c,,/z + ....
Let 2:’(D) denote the subclass of 2(D) of functions for which Co 0. If
D is the domain z > 1, we denote these classes simply by 2: and 2:’. With-
out loss of generality we can always assume D to be bounded by analytic
curves.
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The Faber polynomials for a function in 2;’(D) are defined as follows. To
set up a consistent notation we write fl (z) for f(z) and write its above Laurent
expansion as

(1) f z z -k a/z q- q- a/z q- ....
Then the m Faber polynomial F is a polynomial of degree m such that we
have the Laurent expansion

fro(Z) Fm(fl(z) z -- ami/Z - - amn/z " "’’.

These polynomials are uniquely determined. Let

U(z, w) log f(z) f()

denote the function of (z, w) defined in D X D which takes the value zero at
infinity, and let it have in the neighborhood of the point at infinity the de-
velopment

U(z, w) ,,--1 dm, z-’w-’.
It was proved by Schiffer [12] that

amn m d,n

The following result is due to Grunsky [4, p. 39].

I. Given a polynomial

O,(z) z, z q- x,_ z’- q- q- xo,

there is a unique function (")(z), regular in D apart from a pole at the point at
infinity where it has Laurent development with principal part (including constant
term) given by Q, z such that e-"f(") z is constant on each boundary
component of D.
Making in this result the particular choice Q,,(z) z we obtain the par-

ticular function X(") (z) with Laurent development

X(") (z) z + (")" (")
a,/z q- q- a,,,/z q- ....

In terms of these we define functions with the Laurent developments in-
dicated"

Y,,(z) 1/2(X) (z) -q- X’12) (z) z -q-b,/z -q- + b,,/z -q- ...,
Z(z) 1/2(x)(z) x)(z) c/z + + c/z + ....
Now we can state Grunsky’s principal result.

II. Let f(z be regular in the domain D apart from a simple pole at the point
at infinity where it has the Laurent expansion (1). For f,(z) to be univalent
in D it is necessary and sucient that

E,.-n(a bmn)XmXn - ZNm,n=lncmnmxn
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where N is an arbitrary integer and xm m 1, N, are arbitrary complex
numbers. In the particular case that D is the domain z > 1 these conditions
reduce to

N [2.,,=lnam,xx, <- ,__in[x,
Not long after Grunsky’s work, Golusin [1] extended the Area Theorem to

p-valent functions defined in ]zl > 1. For our purposes we can interpret
this as a result on univalent functions.

III. Let f e , let Q be a polynomial of degree m, and let Q(f(z) have the
Laurent development about the point at infinity

Q(f(z) :=_ C z-.
Then

(2) c. 0.

Wolibner [15] proved that if conditions (2) obtain for 11 Q (m rbitmry)
for function f regular in ]z] > 1 prt from simple pole t the point t
infinity, then f is univalent in [z[ > 1.

It does not seem to hve been mentioned in print that, in the ese of the
domain [z > 1, Grunsky’s inequalities re direct consequence of Golusin’s.
Indeed if f e Z’ nd Q is polynomial of degree m, then

z" + a. z

for suitable complex x,.

so that

Hence

Q,,(f(z) =x,f(z),

a, i x, a,,

Here Golusin’s inequality has the form

On the other hand

the last step using Golusin’s inequality. Thus

which is Grunsky’s inequality. In the same way we could have derived a
generalized inequality given by Golusin [2] who, however, did not obtain the
result in this way. For arguments of this type see 4 and 5 below. On the
other hand, as a sufficient criterion for univalence, Grunsky’s result is sharper
than that of Wolibner, indeed includes it as a special case.
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Closely related to the preceding results are certain inequalities bearing on
the values of univalent functions at a number of points. The first of these
is due to Golusin [2].

IV. Let feZ, let Zl z, be points in z > 1, and let 1, , be
arbitrary complex numbers; then. o f(z) f(z)

#,-----1 Zt- Z
-<_ ,,log(1

The second is due to Nehari [10].

V. Let f be regular and univalent in[z] < 1, let zl z be points in
z < 1, and let al a, be complex numbers satisfying =1 a 0; then

aa log f(z") f(z)
,-I Zt- Zv

It does not seem to have been recorded that Nehari’s inequality is a simple
consequence of Golusin’s. In this connection see 5. It was observed by
Shah [14] that the result IV is an easy consequence of Golusin’s inequality
III, and in this way he obtained a simple proof of Wolibner’s sufficient con-
dition. Nehari [10] utilized a similar concept in a connection related to
Grunsky’s sufficient condition.

3. Golusin’s inequality III can be interpreted as an area theorem for uni-
valent functions in a metric not the ordinary plane metric. This form does
not include the application to p-valent functions, but on the other hand can
be taken in certain respects in a more general context. Indeed we have

THEOREM 1. Let f , let g be an integral function, and let g(f(z) have the
Laurent expansion about the point at infinity

(f(z) 7=_ c z-.
Then

(3) =-n lC [ o.
We consider in the w-plane the metric [g’(w)l dwl and the image curve

of the circle zl r, r > 1, under the mapping w f(z). The curve
bounds a domain D whose area in this metric is finite and nonnegative; thus

f f. dAw >= 0

where dAw denotes the element of Euclidean area in the w-plane.
familiar variant of Green’s formula this becomes

By a

2- g(w) do(w) >->->= O.
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By transferring this integral to the z-plane it becomes

that is,

dg(f(z) >_ O,

A standard argument yields the inequality (3). Essentially the same result
with a slightly different formulation and proof appears in a paper of Lebedev
and Milin [9, Lemma 1].

This result extends at once to mappings into a closed Riemann surface.

THEOnEf 2. Let be a closed Riemann surface, and let f be a univalent
mapping of lz > 1 into such that the point at infinity corresponds to the
point P on 9. Let the function g be single-valued and regular on 9 apart from
an isolated singularity at the point P. Let the function gf have the Laurent
expansion about the point at infinity

c. z-".
Then

c.I __< o.
The proof is unchanged except that each inequality referring to entities on
must be understood as being expressed in terms of local uniformizing pa-

rameters.

4. We have seen how in the case of the domain z[ > 1 Golusin’s in-
equality is superior to Grunsky’s. However Grunsky’s inequality extends to
multiply-connected domains. We will now derive for such domains an in-
equality which plays the same role as that of Golusin.

Let D be a domain in the z-sphere containing the point at infinity bounded
by analytic curves, and let f(z) be a function in 2’(D) regular also on the
boundary 1 of D where r is sensed so that each component has the counter-
clockwise sense in the z-plane. Let P be a polynomial of degree m. Then
as in the proof of Theorem 1 we have

(4)
2i fr P(f(z)) dP(f(z) >- O.

Now we can express P(f(z)) in terms of the Faber polynomials associated
with f as

P(f(z) ,1 x, f,(z)

where this function has about the point at infinity the Laurent expansion

where
a, x,a,, 1, 2,
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Further we can express it in terms of Grunsky’s functions Y(z) as

P(f(z) Z#ml Xlz Y(z) - Co + r(z)

where Co is constant, r(z) is regular in/), vanishes at the point at infinity, and
has about that point the Laurent expansion

with

(5)

Now we have

1 1

+-
1 fr (’Z"(z)) dr(z)

+ 1 (z) dr(z).

In this we observe that

and
frI?,(z) dr(z) fr Z,(z) dr(z) 0

Thus the second and third integrals on the right-hand side of equation (5) are
zero. Moreover

1 I (z)dY,(z) I Z(z)dY,(z)

thus the first integral on the right-hand side of equation (5) is equal to

It is clear that r’ (z) is in L(D) (in the complex sense), and in fact

(6) 2il f ff [r’(z [2 dA

Let Gj(z), j 1, 2, be a complete orthonormal system of functions in
the subspace A of LS(D) consisting of regular functions where we use the inner
product for G, H
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Then

where

ff. O(z)r’(z) dA,.

We now have the following result.

THEOREM 3. Let D be a domain in the z-sphere containing the point at
infinity, f a function in Z’ (D), and P a polynomial of degree m. Let

P(f(z) ,l x,f(z).
Then

(7)

For f and D satisfying the additional assumptions made initially, this
result follows from inequality (4) and equations (5) and (6) on observing
that

1 r’(z) 12 dAz [ 12.
The condition that D have analytic boundary curves can always be attained
by auxiliary conformal mapping. If f is not then regular on F, the result is
extended to it by standard approximation considerations; see in this con-
nection [4], [11].

It is of interest to consider a certain special choice for the complete ortho-
normal system. We recall

l ff 2(z)Z.(z) dA 1 fr 2,(z) dZ(z)
2ri

1 I Y(z) dZ(z) yves,
2ri

and that (vc,,), g, v 1, M, is a positive definite Hermitian matrix [4],
which we denote by . Thus the functions Z(z) are linearly independent
elements of A, and we may take an orthonormal set formed from Z(z),
ZM(Z) as our first M elements G.(z), GM(Z). In other words, we know
that there exists a nonsingular matrix (tk) such that

where I is an M M unit matrix. Then we set

e,(z) E_ t,,z’(z), k 1, ...,M,

the functions Gk(z), k > M, being chosen to complete this orthonormal set.
Now for this choice, if 1 =< /c -< M,
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fl _1 O(z)r’(z) dA 1 ] (z) dr(z)
r 2ri =

f(z) dr(z) (a b)x.

Thus we obtain from Theorem 3

CoaoLaV 1. For arbitrary complex x, 1, m,

Now it is clear that the inequality (7) is sharper than Grunsky’s inequality
since he used also a second inequality in deriving his result. However it is of
some interest that the inequality (8) also yields by simple formal manipulation
Grunsky’s inequality and in fact a generalized version of the latter. Indeed
let (r) be the matrix r inverse to . Then if Y denotes the vector
(g, u), we have

where the last symbol denotes

Finally we have

M

We summarize these considerations in the following result.

CoaonY 2. For arbitrary complex x,, 1, ..., m, y,,
1, M,

)1/2 M

In case M m, x, y,, 1, m, this is just Grunsky’s inequality.
In the special case where D is the domain z > 1 inequality (9) was obtained
by Golusin [2]. We remark that the inequality (8) provides both a necessary
and sucient condition for univalence. Of course as a sucient condition it
is not as sharp as Grunsky’s.

IZ As we remarked at the end of 2, Shah observed that the result IV
could be derived from Golusin’s area result III. However it does not seem
to have been recognized that both the results IV and V are even more directly
Consequences of suitable area theorems.
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Letfe2,andletzj,j 1, ...,n, bepointsinlz[ > 1. Letwj =f(z),
j 1, n. Let r be greater than one and such that all the points z. lie
in z > r. The complement Er of the image of z > r under f has positive
area in the metric

where %., j 1, n, are arbitrary complex constants. Thus

,,3.(w --))--1 dA,,, >- O,

nd we cn transform this into

2- ,.= %. log(w-w.)d =lg(w--w) 0
where F is the image of z r underf (taken in the counterclockwise sense),
and where the branches of the logarithms may be chosen at will, each being
single-valued in E,. This may again be written as

I z(10) . log (f() f()) d log(l() f()) e O.

Now for each j, each branch of

log f(z) f(z)
Z Zl

s a single-valued function in ]z] > 1 when defined suitably at z, and we
may take this symbol to denote the branch vanishing at the point at infinity.
Then we have an expansion as a function of two variables, valid for z > 1,
]r>

log f(z) f() d, z--*.
Z- m,l=l

Further we can write

log(/(z) f(z)) log f(z) f(z) + log(z z),
Z Z1

and this function has a Laurent expansion valid on z r derived as follows.
We set

log (z z) const. + log (1 z/z) const.

_
k-(z/z).

Thus we have on ]z[ r

og (f(z) f(z)
(11)

:(_d,zT*)z + onst. E_ -(z/z).
Inserting the development (11) in inequality (10) for j 1, ..., n and
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dividing by r we obtain

Letting r tend to one and performing an explicit reduction of the left-hand
side of (12) for r 1 we have the following result.

THEOREM
expansion

Let feZ, let z3. j 1, n, be points in zl > 1, let the

log f(z) f() d,, z-’-Z " m, l=l

be valid for zl > 1, [[ > 1, and let "3. j 1, n, be arbitrary complex
constants. Then

Now let i’1, n be further points of ]z] > 1 which may coincide with
certain of the z3. or not, and let )‘1, )‘n be arbitrary complex constants.
Consider

k=l 3"=1 ’k- Z3.

where the term is understood to have the appropriate limiting value in case
i’ z3.. If we rewrite this expression as follows, it is seen at once to satisfy
the inequality

(13)
-<_ (E=l m- lEZ= x, z;

If on the right-hand side of inequality (13) we reduce the first term explicitly
and apply Theorem 4 to the second term, we have proved the following result.

COROLLARY 3. Let fe , and let %., j 1, n, )‘, 1 1, N,
be arbitrary complex constants, zy j 1, n, k 1, N, points
in z > 1. Then

(14)
h ,3. log

f(i’) f(z’)
k=l 3.=1 k Zj

_-< 3. log(1 z3. zk ),3. X log( 1 71-1

This result was obtained by Golusin [2] using L6wner’s method and contains
the result IV as a special case.
Next let the function f(z) be regular and univalent for [zl < 1, and let

z3.,j= 1,...,n, bepointsin Iz[ < 1. Letw3.=f(z),j= 1,...,n. Then
we can apply the same argument as before using now the metric
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where at, j 1, ..., n, are complex constants subject to the condition
=1 a 0, so that the area of a neighborhood of the point at infinity is
finite. Proceeding as before we obtain the inequality for 0 < r < 1 and r
sufficiently close to 1

(15) 1 zl=r =1 a- log(/(z) f(z)) d
= a log(/(z) f(z)) =< O.

We take the expansion, valid for [z] < 1, [[ < 1,

log f(z) f(r) A, z=’.
Z m,l0

Then we have

og(f(z) (z)) +o f(z) f(z) + iog(z z)

(16)

for suitable choices of the determinations. Thus the function (16) has on
the circle z] r the Laurent expansion

:=(j= =Am z.)z + const.- k=l k-(.=l as z)z-.
Inserting this in inequality (15), letting r tend to one and reducing we obtain

THEOREM 5. Let f(z) be regular and univalent in z[ < 1, let z,
j 1, n, be points in z < 1, let the expansion

log f(z)-f() Az
Z re, l=0

be valid for z <1, < 1, and let , j 1, n, be complex constants
such that a O. Then

With essentially the same proof as for Corollary 3 we obtain

COROLaY 4. Let f(z) be regular and univalent in z < 1, and let
j 1, n, , 1, N, be complex constants satisfying a/= O,= O, z+, j 1, ..., n, , 1, ..., N, points i [zl < 1.
Then

N

(1)
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While this appears to be the first explicit record of this result, it should be ob-
served that inequality (17) is an immediate consequence of inequality (1.4).
Indeed we need merely apply that result to the function

(f(z-1) f(O) )/f’(0) )-1
withXk fk,]c 1,..-,N, %. a-,j 1,..., n, and reduce, using
the conditions ’..=1 a. 0, V=l 0. In the same way the result V
follows from the result IV.

6. We now wish to investigate the relationship between the area method
and the method of the extremal metric, particularly in the form of the General
Coefficient Theorem. As is well known the latter contains as special cases
most of the standard results in the theory of univalent functions. Moreover
it would provide a complete explicit solution to a much wider range of problems
were it not for the fact that its application requires certain normalizations on
initial coefficients of the functions considered. While the area method admits
on the whole much less extensive application, no such restriction appears in
the conditions for its use. We will now show that by somewhat strengthening
other requirements appearing in the enunciation of the General Coefficient
Theorem it is possible to drop the coefficient normalization restrictions found
there. The result obtained does not include many of the most interesting
consequences of the General Coefficient Theorem but does make possible the
explicit treatment of a wide variety of new problems. It may be remarked
that the method used here has already been applied in one special case [8].
There it provides new insights into the nature of span theorems and a con-
siderable increase in their range of applicability.
We begin in the usual framework of a finite oriented Riemann surface

9, a positive quadratic differential Q(z) dz on 9, and a family A of admissible
domains A., j 1, K, on 9 with respect to Q(z) dz. Then we enunciate
the following definition.

DEFINITION 1. Let {f} be a family of functions fj, j 1, K, with the
following properties"

(i) fj maps As conformally into ,
(ii) if a pole or zero of odd order A of Q(z) dz lies in Ai, L(A) A,
(iii) L(Ai) nfz(Az) 0, j 1, j,l= 1,...,K.

Then the family {f} is said to admit a special admissible homotopy F into the
identity if there exists a function F(P, t) defined for P e U =1 Ai 0 =< =< 1,
with values in , continuous in both variables together satisfying the following
conditions"

(a) F(P, O) L(P), R eAi, j 1, K,
(b) F(P, 1) P, P e(J-= A’,
(c) F(P, t) P, P a pole or zero of odd order of Q(z) dz in [J:= As,

0=<t_<_l,
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(d) F(P, t) Q, Q a pole or zero of odd order of Q(z) dz in 9, P Q,
0=<t<=l.

The notion of deformation degree remains the same as before [6, p. 50].
IIowever the function families considered are governed by the following
definition.

DEFN’ON 2. Let IAI bean admissiblefamily ofdomains Aj ,j 1, K,
on the finite oriented Riemann surface with respect to the positive quadratic
differential Q(z) dz2. Then by a special admissible family Ill of functions
f, j ]_, K, associated with AI we mean a family with the following prop-
erties:

()
(ii)

(iii)
(iv)

fj maps A conformally into , j 1, K,
if a pole or zero of odd order A of Q(z) dz lies in A fj(A) A,
f(A.)nf,(Az) 0, j l, j, 1, -..,K,
the family If} admits a special admissible homotopy F into the identity.

We are now ready to state our principal result.

THEOREM 6 (Special Coefficient Theorem). Let be a finite oriented
Riemann surface. Let Q(z) dz be a positive quadratic differential on such
that each branch of f Q(z) )1/2 dz is single-valued in a suciently small neigh-
borhood of each pole of Q(z) dz (with that pole deleted) of order greater than two.
Let/A} be an admissible family of domains Aj j 1, K, on 9 relative to
Q(z) dz, and If} a special admissible family of functions f, j 1, K,
associated with I/}. Let Q(z) dz have double poles P, ..., P and poles
P+ P of order greater than two. Let Pj j <= r, lie in the domain A
and in terms of a local parameter z representing P as the point at infinity let
f have the expansion

(18) fz(z) a()z - a) -- negative powers of z,

and Q the expansion

(19) Q(z) a()z-2 + higher powers of z-.
For j > r, let denote a specifically chosen branch of f (Q(z) / dz in a neighbor-
hood ofP Let y(P L) denote the antecedent on of the trace on the Riemann
image of a neighborhood of P under of a square in the -plane of side 2L,
center at the origin, and with sides parallel to the real and imaginary axes, where
L is to be suciently large that /(P, L) bounds a simply-connected neighborhood
U(P L) of P. The curve (P L) is to be sensed so that U(Pj L) lies to
its right. Let P j > r, lie in the domain and let o denote the single-valued
function obtained in a neighborhood of P by substituting fz(z) for z in the func-
tion . Let denote the intersection of := k with the union of density domains
in the trajectory structure of Q(z) dz, and let

O(L) U ’=+ U(P, L), j 1, K.
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Then

i--l i(L)
(Q(fi(z))) 1/2d 112 12ji(z) (Q(z)) dAz

+ (-)g(-)- d +o().
j=rA-1 Pj,L P j,L

Here log a() log a’) i d(F, P.), j <= r, where d denotes the deformation
degree. The roots (Q(fi(z))) 1/2, (Q(z)) 1/2 correspond under passage from f(z)
to z along the path curve for the deformation F. Finally dA, denotes the element
of area for the local parameter z.

For poles of order two, P, j -< r, we define the curves 3’(Pj, L) and neigh-
borhoods U(P, L) as in [6, p. 60], 3"(P, L) being sensed so that U(P, L)
lies to its right. We define

A(L) A-- U.=(P-,L), i 1, ...,K,

and denote f(A(L)) by A’i(L), i 1, K. We will estimate the area of
[.jKi= A (L) in the Q-metric Q(z) 11/21 dz from above in terms of the area of
U K= A(L), also in the Q-metric. As usual this is done by determining the
change in area arising from the displacement of each boundary curve 3"(P-, L),
j 1, n, under its mapping by the appropriate function in If}. In the
case of a pole P., r -t- 1 =< j n, of order greater than two, the desired
quantity is given by

_1 f ( ).
2i

At the corresponding point in the proof of the General Coefficient Theorem
we immediately made further estimates, but now we leave the expression in
his form. The corresponding quantity for a pole P., j <= r, of order two is
given by

2r(I a() log a(’)) -4-- o(1)

as in the proof in [6, 4.4]. Thus we have the evaluation

(21) = i= (L)
dA -t- 2(R<I log a

1 (b dco d’) -- o(1)

where dA denotes the element of area in the Q-metric.
We now obtain an estimate in the opposite direction by use of a modified

form of the method of the extremal metric. In this connection we study
separately each type of basic domain associated with the trajectory structure
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of Q(z)dz:; see [7, Theorem 1]. Let ’ denote the image of under the
respective functions in If} i.e., U =f(/ ). At present the best we can
do is to assert as in [6, p. 57] that

(22) ffo, dA >_ ffo dA.

Next let be ring domain in the trajectory structure. Its intersection
with U = A consists of one or several doubly-connected domains possibly
slit Mong trajectory rcs. We slit the totMity of these along n rc of n
orthogonM trajectory. Then ny brnch of f(O(z))l/dz will mp this
configuration onto rectangle, which by choice of suitable branch we my
tke to be ( + i)

0 < < X, 0 < < h,

this being slit along certain horizontal segments which may extend its full
length. We now define as follows a mapping on this slit rectangle R. From a
point of R we pass back to a point P on 9 by the inverse of the chosen branch
of f (Q (z)) 1/. dz, perform the mapping fi corresponding to the appropriate
domain Ai such that P e Ai, and map again by the branch of f (Q(z))/2 dz
obtained by continuation of the chosen branch from P to fi(P) along the
path F(P, t), 1 >= >- O. We denote the mapping so obtained by 0 ().
We know that for any trajectory r lying in n U=A and its image r’

under the appropriate mapping f we have

fr (Q(z))II2dz f’ (Q(z))l/2 dz

where the branches are chosen according to the prescription just given.
Thus we have

f ’(r) d X,
(n)

where z(n) is the intersection of R with the line 9f 7, for all but a finite
number of values of in 0 < n < h. Integrating with respect to n over
(0, h) we have

(23) f dAr= Xh= ff gAr.
Similarly for a circle domain if we denote the image of n U ; ZX(L)

slit along an orthogonal traieetory under an appropriate branch of
.(Q(z)) dz by (L) and define the mapping 4(’) by the same prescription
as above, we have

() ()

Now let P. be a pole of order m greater than two. Our hypotheses ctuMly
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require that m. be even, so at least four. With P. are associated m. 2
end domains which we denote by q, q 1, mj 2 and which are taken
to be numbered in cyclic order about P., so that under the single-valued
branch f of f Q (z)) 1/2 dz chosen in the enunciation of the theorem 1 is mapped
into an upper half-plane. Let P. lie in the domain Ai. We denote q f’!/i(L)
by q(L), q 1, ..., m. 2. Its image under the given branch " will
be denoted by Eq(L) and consists of a rectangle, possibly provided with a
finite number of horizontal slits

(25) --L < . < L, hq < v < L

or

(26) --L < < L, --L < v < Xq,

according as j is odd or even, where Xq may be positive or negative. The
mapping from to 0 associated with P. in the enunciation of the theorem
extends to a single-valued function defined throughout Eq(L) which we de-
note by () once again. Then for all but a finite number of values of v in
the range (25) or (26) we have

f d 6(B(v)))

where a() is the intersection of Eq(L) with the line Z v and A(v), B(v)
are the points of this line on L, --L respectively. Integrating with
respect to v over the appropriate interval (25) or (26) we have

(27) f dAr= f   dzr= ff. dA-f- f (6o- 6) d
q(L) q(L)

where the line integrals on the right-hand side may be taken over the three
sides of Eq(L) arising from arcs on ,(P., L).

Finally let (R) be a strip domain which has boundary elements arising from
poles Pq and P which may be distinct or coincident and of any (even) order
greater than or equal to two. These poles must lie in the same domain,
say zXi, of the family {A}, and can meet no domain in {zX} other than A.
We denote (R) n zX(L) by (R) (L). A suitable determination of f (Q (z))/ dz
maps onto a strip S given by

O<<X
(X positive) where the boundary element of (R) arising from Pq corresponds to
the boundary point of S at infinity in whose neighborhood f becomes posi-
tively infinite. Evidently the present choice of determination may differ
from those used to define the neighborhoods U(Pi, L), j q, 1. Thus under
this mapping, to (L) corresponds a domain S(L) consisting of a rectangle
(f + in)

--L+b <<L-4-a, 0 <n <X
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provided perhaps with a finite number of horizontal slits where a, b are real
numbers possibly either positive or negative. Let (7) denote the horizontal
segment lying in S(L) on the line /" 7, defined for all but a finite number
of values of Tin0 < 7 < X. LetA(7),B(7) be the end points of(7) on
the lines L + a, --L + b respectively. Let us denote by 0 (’)
the mapping induced by fi on S, apart from any slits occurring in S(L), in
the following manner. From a point " we pass back to a point P on 9 by
the inverse of the present branch of f (Q(z))l/2 dz, perform the mapping fi
and map again by the branch of f (Q (z)) 1/2 dz obtained by continuation of the
previous branch from P to fi(P) along the path F(P, t), 1 _>- >_- 0. The
current determination/’2 of f (Q(z))I/2 dz is related to the determination ’1
used to define the neighborhood U(Pj, L), j q, l, by a relation ’,. c 4- fl
where c is a constant. Let t. 4-1 according as we have 4-1. If P.,
j q, l, is a pole of order two, the mapping is represented asymptotically by
the expansion

(,,0 + j(Ol(J)) 1/2 log a(j) + o(1)

(we note in this case tiq 1, --1) where (a(J)) /2 is the root with positive
real part and log a) has the determination given in the statement of Theorem 6.
Now

f 61’() d 6t((A (7)) (B(7))),
(7)

and integrating with respect to 7 over the interval (0, X) we have

where for j q,

if P. has order 2, and

+ O + P + o(1)
(L)

PJ (Or(j)) 1/2 log a(i)

if P. has order greater than two with the integral taken over the arc of ,(P., L)
in (R). It is clear that in this last term we may take and 0 to have the de-
terminations canonically associated with the pole P..
Now let

A(L) A(L) , A’ q’.(L) A(L)

Then from the inequalities (21) and (22) we find

dA dA + 2([ a log a)
i=l i(L) i=l i(L) j=l

(29)

=r+ (ei,c)
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We subtract from (29) twice the sum of equations (23), (24), (27), and (28)
and recall that

f ff ,,’<> dA
()

wih he integrals in he sum on he right-hand side being ken over he por-
tion of basie domMns mking up A(L). In his wy we obMn

(30)

"(:, :, )+ (d-g)- (-)do +o()
j=r+t (P:,) (P,L)

with the integrMs in the sum on the left-hnd side being tken over MI por-
tions of bsic domains mking up = &(L).
The second term on the right-hand side of (30) reduces by elementary

operations to

1 (-)d(-)-e d
j=r+l (Pj,L) (Pj,L)

Making this substitution in (30) nd tking ccount of the meaning of
0’() we see that this reduces to the form

X f (Q(fi(z)))I/21 (Z) (Q(z))1/2 ]2 dAdi
i=1

(31)

Leing ghe curve (Pi, L), j 1, r, shrink o ghe poin Pi, we obgain

ghe enunciation of heorem 6.

Remark. If (z)dz has only poles of order greaer han wo, and ghe

family {} consists of a single simply-connected domain & which eongains

no eros of (z) dz of odd order, or if is ghe z-sphere, (z) dz has a single
pole and no eros of odd order, and {} eonsisgs of a single domain & eigher

simply- or multiply-connected, he resul of Theorem 6 reduces o a form of
he area principle. Indeed he lefg-hand side of inequality (20) becomes

(P,)

where the second term is taken over the boundary y of , sensed to have
A, to its right nd is understood in limiting sense if necessary. Thus our
result tkes the form
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(32) 2- ( ) d( ’) _<_ o d" + o(1).
j=l (Pj,L)

The left-hand side evidently expands out to

1__ 1 1+

Moreover

( d + d).

d

--1 (Pj,L)

Performing the proper cancellations in inequality (32) and letting L tend to
infinity we obtain

1 fr > 0"
2i

BIBLIOGRAPHY

1. G. M. GOLUSIN, On p-valent functions, Mat. Sbornik (N.S.), vol. 8 (1940), pp. 277-
284 (in Russian with German summary).

2. ----, On the theory of univalent functions, Mat. Sbornik (N.S.), vol. 29 (1951),
pp. 197-208 (in Russian).

3. H. GRUNSKY, Neue Abschdtzungen zur konformen Abbildung ein- und mehrfach
zusammenhangender Bereiche, Schriften des Mathematischen Seminars und
des Instituts ffir angewandte Mathematik der UniversitSt Berlin, vol. 1
(1932), pp. 95-140.

4.------, Koeizientenbedingungen fiir schlicht abbildende meromorphe Funktionen,
Math. Zeitschrift, vol. 45 (1939), pp. 29-61.

5. JAMES A. JENKINS, A general coejcient theorem, Trans. Amer. Math. Soc., vol. 77
(1954), pp. 262-280.

6. M___, Univalent functions and conformal mapping, Berlin-GSttingen-Heidelberg,
Springer-Verlag, 1958.

7. ----, On the global structure of the trajectories of a positive quadratic differential,
Illinois J. Math., vol. 4 (1960) pp. 405-412.

8. ----, On some span theorems, Illinois J. Math., vol. 7 (1963), pp. 104-117.
9. N. A. LEBEDEV AND I. M. MILIN, On the coefficients of certain classes of analytic func-

tions, Mat. Sbornik (N.S.), vol. 28 (1951), pp. 359-400 (in Russian).
10. Z. EHARI, Some inequalities in the theory of functions, Trans. Amer. Math. Soc.,

vol. 75 (1953), pp. 256-286.
11. M. SCHIFFER, An application of orthonormal functions in the theory of conformal

mapping, Amer. J. Math., vol. 70 (1948), pp. 147-156.
12. ----, Faber polynomials in the theory of univalent functions, Bull. Amer. Math.

Soc., vol. 54 (1948), pp. 503-517.
13. M. SCHIFFEI AND D. C. SPENCER, Functionals of finite Riemann surfaces, Princeton,

Princeton University Press, 1954.



AREA THEOREMS AND A SPECIAL COEFFICIENT THEOREM

14. TAo-SHING SHAH, The principle of area in the theory ofunivalent functions, Acta Math.
Sinica, vol. 3 (1953), pp. 208-211 (in Chinese with English summary).

15. W. WOLIBNER, Sur certaines conditions ncessaires et sujsantes pour qu’une fonction
analytique soit univalente, Colloq. Math., vol. 2 (1949-51), pp. 249-253.

WASHINGTON UNIVERSITY
ST. LouIs, MISSOURI

THE INSTITUTE FOR ADVANCED STUDY
PRINCETON, NEW JERSEY


