SOME AREA THEOREMS AND A SPECIAL COEFFICIENT THEOREM

BY
James A. JENKINS!

1. The first significant method used in the theory of univalent functions
was the area principle. Its use led to the initial results on sharp bounds in
the simple standard results for univalent functions. In the more modern
developments of the theory the chief tools have been Loéwner’s parametric
method, the method of the extremal metric, the method of contour integra-
tion, and the variational method. These methods have been employed to
deal with a wide range of results, and frequently a given result has been ob-
tained separately by the use of several or even all of them. Among them the
method of the extremal metric and the method of contour integration share
with the area principle the feature that an essential step in the procedure is
the assertion that the integral of a positive function is nonnegative. The
method of contour integration was first used by Grunsky [3]. He also used
it to obtain some quite general relationships for the coefficients of univalent
functions [4]. A closely related method has been used by Nehari [10]. The
method of contour integration has also been used by Golusin, Schiffer and
Spencer [13], and others.

In this paper we will observe that many of the results obtained by
the method of contour integration, including Grunsky’s coefficient inequalities,
can be obtained by a direct application of the area principle. Indeed in all
these cases the area principle provides a sharper inequality.

On the other hand many of these applications of the area principle are
consequences of a general result which we obtain by the method of the ex-
tremal metric. Moreover there are general circumstances in which the latter
applies while the former does not.

2. We will begin by recalling some notations and known results.

Let D be a domain of finite connectivity in the z-sphere containing the
point at infinity, and let (D) be the class of functions f(2) univalent in D,
regular apart from a simple pole at the point at infinity where the Laurent
expansion is given by

f) =2+ c+e/z+ - + /" + -

Let 2/(D) denote the subclass of (D) of functions for which ¢, = 0. If
D is the domain | z | > 1, we denote these classes simply by = and /. With-
out loss of generality we can always assume D to be bounded by analytic
curves.
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The Faber polynomials for a function in 2’(D) are defined as follows. To
set up a consistent notation we write fi(z) for f(z) and write its above Laurent
expansion as

(1) fiz) =z4+au/z+ - + an/" + -

Then the mt Faber polynomial F,, is a polynomial of degree m such that we
have the Laurent expansion

fn(2) = Fu(fi(2)) = 2" + am/z + - + @w/" + -+

These polynomials are uniquely determined. Let
_ 100 F(2) — f(w)
U(z,w) = log T

denote the function of (2, w) defined in D X D which takes the value zero at
infinity, and let it have in the neighborhood of the point at infinity the de-
velopment

Uz, w) = Downet Gon 2 "W ™.

It was proved by Schiffer [12] that
O = —M Ay .
The following result is due to Grunsky [4, p. 39].
I. Given a polynomial
Qu(z) = Tm2" + Tma 2"+ o0 + 20,

there ts a unique function §*(2), regular in D apart from a pole at the point at
infinity where it has Laurent development with principal part (including constant
term) given by Qum(z), such that 9(e~**f(2)) is constant on each boundary
component of D.

Making in this result the particular choice Q.(z) = 2™ we obtain the par-
ticular function X\ (z) with Laurent development

XO() = "+ alDfe + o+ A/

In terms of these we define functions with the Laurent developments in-
dicated:

Ym(2) = 3(XP(2) + XT2(2) = 2" +bm/z+ -+ +Fbpa/e" + -+,
Zm(z) = %(Xf('?)(z) - X’fnﬂ'/z)(z)) = cml/z + M + Cmn/z” + AR
Now we can state Grunsky’s principal result.

II. Let fi(2) be regular in the domain D apart from a simple pole at the point
at infinity where it has the Laurent expansion (1). For fi(z) to be univalent
in D it is necessary and sufficient that

l Zz,n=l n(amn - bmn)xm Tn I = Zz,nnl NCmn Tm Tn ,
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where N is an arbitrary integer and &, , m = 1, --- , N, are arbitrary complex
numbers. In the particular case that D is the domain | 2| > 1 these conditions
reduce to

l ZZ,n:l NOmn Tm T ‘ é ZZEI nl Tn |2.

Not long after Grunsky’s work, Golusin [1] extended the Area Theorem to
p-valent functions defined in |z| > 1. For our purposes we can interpret
this as a result on univalent functions.

II1. Let feZ, let Qn be a polynomial of degree m, and let Q.(f(2)) have the
Laurent development about the point at infinity

Qn(f(2)) = 2 0=mCu2 ™
Then

(2) nem | Co " £

Wolibner [15] proved that if conditions (2) obtain for all Q,, (m arbitrary)
for a function f regular in |2| > 1 apart from a simple pole at the point at
infinity, then f is univalent in |2| > 1.

It does not seem to have been mentioned in print that, in the case of the
domain | 2| > 1, Grunsky’s inequalities are a direct consequence of Golusin’s.
Indeed if f1 e 2’ and Q. is a polynomial of degree m, then

Qu(fi(2)) = 2amd + D202

for suitable complex x, . Hence

Qn(fi(2)) = Zz;l T fu(2),

m
A = Zumlx#auv, v=12 .

Here Golusin’s inequality has the form

Zv=1V av ZV::]_V x, .

so that

On the other hand

l Z:Zml VOyy Ty Ty I2 = l Z?nl vy Z;n=1 Ly Oy |2
(Z:Ll VI Ty |2) (Z:n==1 Vl Z:Ll Ty Quv l2)
(Zy=1 v| @ | )(Zv=1 V| Gy |2) = (Z:LI Y| @ |2)2)

the last step using Golusin’s inequality. Thus

I Z:ﬁml VO Tu Xy | = Z:Ll 4 | Ty [2’

which is Grunsky’s inequality. In the same way we could have derived a
generalized inequality given by Golusin [2] who, however, did not obtain the
result in this way. For arguments of this type see §4 and §5 below. On the
other hand, as a sufficient criterion for univalence, Grunsky’s result is sharper
than that of Wolibner, indeed includes it as a special case.

A
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Closely related to the preceding results are certain inequalities bearing on
the values of univalent functions at a number of points. The first of these
is due to Golusin [2].

IV. LetfeZ,letz, -+, 2, be pointsin |z| > 1, and let v1, -+, va be
arbitrary complex numbers; then

z 2 -
MZ 7“7vl0gf;(i)"—“‘fz(—z Z Yu¥» log (1 _znlvl .
w=1 v py=1
The second is due to Nehari [10].
V. Let f be regular and univalent in |z | < 1, let 21, * -+ , 2, be points in
2] < 1,and let oy, « -+ , o be complex: numbers satisfying D oy oy = 0; then

< -2 aalog (1 — 2.3).

pyy=1 py=1

fla) — f(2,)
Z au o, log Er—

It does not seem to have been recorded that Nehari’s inequality is a simple
consequence of Golusin’s. In this connection see §5. It was observed by
Shah [14] that the result IV is an easy consequence of Golusin’s inequality
III, and in this way he obtained a simple proof of Wolibner’s sufficient con-
dition. Nehari [10] utilized a similar concept in a connection related to
Grunsky’s sufficient condition.

3. Golusin’s inequality III can be interpreted as an area theorem for uni-
valent functions in a metric not the ordinary plane metric. This form does
not include the application to p-valent functions, but on the other hand can
be taken in certain respects in a more general context. Indeed we have

TurorEM 1. Let f € Z, let g be an integral function, and let g(f(2)) have the
Laurent expansion about the point at infinity

9(f(2)) = 2w Cuz™
Then

(3) Dot |CuP <0

We consider in the w-plane the metric | g’(w)| | dw | and the image curve T’
of the circle | 2| = r, r > 1, under the mapping w = f(z). The curve T
bounds a domain D whose area in this metric is finite and nonnegative; thus

[[106) Pz o0

where dA, denotes the element of Euclidean area in the w-plane. By a
familiar variant of Green’s formula this becomes

5 . 7@ o) 2 0.
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By transferring this integral to the z-plane it becomes

5[ 0@ doren =z o,
that is,

T)mewt | Co [r™" < 0.

A standard argument yields the inequality (3). Essentially the same result
with a slightly different formulation and proof appears in a paper of Lebedev
and Milin [9, Lemma 1].

This result extends at once to mappings into a closed Riemann surface.

TueEOREM 2. Let R be a closed Riemann surface, and let f be a univalent
mapping of |z | > 1 into R such that the point at infinity corresponds to the
point P on K. Let the function g be single-valued and regular on R apart from
an isolated singularity at the point P. Let the function gf have the Laurent
expansion about the point at infinity

9(f(2)) = >meu Crz™
Dt | Ca P S 0.

The proof is unchanged except that each inequality referring to entities on
R must be understood as being expressed in terms of local uniformizing pa-
rameters.

Then

4. We have seen how in the case of the domain |z| > 1 Golusin’s in-
equality is superior to Grunsky’s. However Grunsky’s inequality extends to
multiply-connected domains. We will now derive for such domains an in-
equality which plays the same role as that of Golusin.

Let D be a domain in the z-sphere containing the point at infinity bounded
by analytic curves, and let f(z) be a function in 2'(D) regular also on the
boundary I' of D where T is sensed so that each component has the counter-
clockwise sense in the z-plane. Let P be a polynomial of degree m. Then
as in the proof of Theorem 1 we have

@) 5 [ PO P = 0.

Now we can express P(f(z)) in terms of the Faber polynomials associated

with f as
P(f(2)) = 2 u aufu(2)

where this function has about the point at infinity the Laurent expansion
Zz‘-l Ly Z“ + Z:O-O [22% z—v

where
av:zz;lxnam" v=12 .
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Further we can express it in terms of Grunsky’s functions Y,(z) as
P(f(z)) = ZZ;-I 2, Yu(2) + o + r(2)

where ¢, is constant, (2) is regular in D, vanishes at the point at infinity, and
has about that point the Laurent expansion

Z::-l Cy z—-y

Gy = Zz;l x,,(a,“, - buv), v=1,2,---

with
Now we have

o [ PT@ apue) = & [ (70} a (S ara))
4+ 2—1—1 fr 7(z) d <i Ty Yu(z))

p=1

+ o [ (Eare)ae

(5)

+ 2% fr #(z2) dr(z).

In this we observe that

f Yu(2) dr(z) = f Z.(2) dr(z) = 0
r r
and

fr #(2) dYa(z) = fr #(2) dZ,(2) = fr ") 2.0 = 0.

Thus the second and third integrals on the right-hand side of equation (5) are
zero. Moreover

-2-175. [r Yu(2) d¥,(2) = % [r Zu(2) AY,(2) = veu;

thus the first integral on the right-hand side of equation (5) is equal to

m —
mel VCyy T Ty -

It is clear that r'(2) is in L(D) (in the complex sense), and in fact
1. 1 oy e
(6) %[Pr(z) dr(z) = ;[fnu(z)l dA, .

Let G;(2),5 = 1,2, -+, be a complete orthonormal system of functions in
the subspace A of L*(D) consisting of regular functions where we use the inner
product for G, H

}r | [ G(2)H(z) dA. .
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Then
r'(2) = 2.7 B8;Gi(2)

where

Bi = %ffb Gi(2)r'(2) dA. .

We now have the following result.

TueoreEM 3. Let D be a domain in the z-sphere containing the point at
infinity, f a function in =’ (D), and P a polynomial of degree m. Let

P(f(z)) = 2azufu(2).
Then

(7) Z;'o=l | Bj |2 é ZZI;V=1 VCuy -'En Zy .«

For f and D satisfying the additional assumptions made initially, this
result follows from inequality (4) and equations (5) and (6) on observing
that

L[ raa = F1sr

The condition that D have analytic boundary curves can always be attained
by auxiliary conformal mapping. If f is not then regular on T, the result is
extended to it by standard approximation considerations; see in this con-
nection [4], [11].

It is of interest to consider a certain special choice for the complete ortho-
normal system. We recall

wJ Jp 27t Jr
- _1 f -
=55/, Y,(z) dZ,(2) = vey,
and that (vew), u, v = 1, -+, M, is a positive definite Hermitian matrix [4],

which we denote by €. Thus the functions Z;(z) are linearly independent

elements of A, and we may take an orthonormal set formed from Zi(z), - - - ,

Z%(2) as our first M elements G1(2), -+, Gx(2). In other words, we know
that there exists a nonsingular matrix £ = () such that
TET =1
where I is an M X M unit matrix. Then we set
Gil(2) = D2ilatu Zu(z), k=1,---,M,

the functions G%(2), k > M, being chosen to complete this orthonormal set.
Now for this choice,if 1 =k = M,
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8; = 11? [ fb Gi(2)r (2) dA, = — % fr S 4, Z,(2) dr(2)

=1

M

- (— = [ v dr<z>) 323 o = bulea

Thus we obtain from Theorem 3

I

CoRroLLARY 1. For arbitrary complex x, , u = 1, -+, m,
(8) Zaﬂi-l | Z:Ll Zfi-l V(auv - bw)xu zvj .2 = Z::v=1 VCuy -'1—7“ Ty o

Now it is clear that the inequality (7) is sharper than Grunsky’s inequality
since he used also a second inequality in deriving his result. However it is of
some interest that the inequality (8) also yields by simple formal manipulation
Grunsky’s inequality and in fact a generalized version of the latter. Indeed
let (73) be the matrix r inverse to T. Then if Y denotes the vector
(y1, -+, yu), we have

Y' QY = Y'#7Y = ||=Y|*

where the last symbol denotes

Z;}LI l lecil Tik Yk ‘2-
Finally we have

| 2ot 205 v(aw — buw)zuys |

| 2o (s 2o v — buw)zu 2 byrays) |

(i | iy 1) (00| 20 2205 v — bw)auby |
(2ot veu Bu ) (2ot Yo Tu )

We summarize these considerations in the following result.

A

IIA

CoroLLARY 2. For arbitrary complex z,, p = 1, -+, m, yu, p =
1, -, M,

9) l Zz;l Z£l=1 (O — bw)Tu Yy I = ( szl VCuy Ty xy)1/2 ( mel VCuy G y”)I/Z.

Incase M = m, x, = yu, u = 1, -+, m, this is just Grunsky’s inequality.
In the special case where D is the domain | 2z | > 1 inequality (9) was obtained
by Golusin [2]. We remark that the inequality (8) provides both a necessary
and sufficient condition for univalence. Of course as a sufficient condition it
is not as sharp as Grunsky’s.

b. As we remarked at the end of §2, Shah observed that the result IV
could be derived from Golusin’s area result III. However it does not seem
to have been recognized that both the results IV and V are even more directly
consequences of suitable area theorems.
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LetfeE andlet z;,5 = 1, , M, be pointsin | 2| > 1. Let w; = f(z;),
j=1 -+ ,n Letrbe greater than one and such that all the points 2; lie
in|2z| > r. The complement E, of the image of | z| > r under f has positive

area in the metric
| 2 vitw — w) 7| | dw |

where v;,j5 = 1, -+, n, are arbitrary complex constants. Thus

fj;g Z vi(w — 'wz)

=
and we can transform this into

f Zmd(Z'yﬂog(fw —w,)) >0

Ty j=1

dA,,, =0,

r

where T', is the image of | z | = r under f (taken in the counterclockwise sense),
and where the branches of the logarithms may be chosen at will, each being
single-valued in E,. This may again be written as

10 L[ Syw0e -1 (Ewiete) - 1)) 20

|z|=r j=1

Now for each 7, each branch of
z2—z;

's a single-valued function in | 2| > 1 when defined suitably at z;, and we
may take this symbol to denote the branch vanishing at the point at infinity.
Then we have an expansion as a function of two variables, valid for |z | > 1,
¢l >1 )

NRIOET(( N —

P R
Further we can write

f(z) f(za)

log(f(2) — f(2;)) = log + log(z — 2;),

and this function has a Laurent expansion vahd on | z | = r derived as follows.
We set
log (2 — 2;) = const. + log (1 — z/z;) = const. — D 1 k7'(2/2;)".
Thus we haveon |z | = r
log (f(z) — f(2;))
= Do (X1 dni27)e™ + const. — D i k7 (2/2;) .
Inserting the development (11) in inequality (10) for j = 1, -+, » and

(11)
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dividing by = we obtain

(12) Zk=1 k—'ll ZJ‘=1 Yi% |2 * = Em=1m l EJ=IZZ=1 At 2’, 'VJ Iz 2m

Letting r tend to one and performmg an explicit reduction of the left-hand
side of (12) for r = 1 we have the following result.

TueoREM 4. Let feZ, letz;,j = 1, -+, n, be points in |z | > 1, let the
expansion
RO RS —
2 — §‘ m,l=1
bevalid for |z| > 1,|¢| > 1,and let v;,j = 1, - -+, n, be arbitrary complex
constants. Then

Domeam | i 2t dmar i P S — e vi e log (1 — &7'ET).
Now let {1, - -+, ¢~ be further points of | z| > 1 which may coincide with
certain of the z; or not, and let \;, -, Ay be arbitrary complex constants.
Consider

N n

S N logf(i'k) —flz) [

=1 j=1 $kv— 7
where the term is understood to have the appropriate limiting value in case
& = 2z;. If we rewrite this expression as follows, it is seen at once to satisfy
the inequality

| 2ot 205 N ¥i 2t Gt §5 727 [
= Qpam™ ‘ Do N £ lz) (Xmarm l 271 i 2t G 25 lz)

If on the right-hand side of inequality (13) we reduce the first term explicitly
and apply Theorem 4 to the second term, we have proved the following result.

CoRrOLLARY 3. LetfeZ,and letv;,j =1, -+, n, N, k=1, -+, N,
be arbitrary complex constants, z; ,j = 1, -+ ,n, (x, k=1, -+, N, points
in|z|> 1. Then

33" log [ =520

k=1 j=1 — 2

[(Z vi 7 log(1 — 27'%") )(ﬁél N A log(l — §71§;1)>:|1/2.

This result was obtained by Golusin [2] using Lowner’s method and contains
the result IV as a special case.

Next let the function f(z) be regular and univalent for | 2| < 1, and let
2i,j=1,---,n,bepointsin|z| < 1. Letw; = f(2;),j=1,--,n. Then
we can apply the same argument as before using now the metric

| 2oi a(w — wy) 7| | dw |

(13)

(14)
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where a;, 7 = 1, -+, n, are complex constants subject to the condition
D F1a; = 0, so that the area of a neighborhood of the point at infinity is
finite. Proceeding as before we obtain the inequality for 0 < » < 1 and r
sufficiently close to 1

a5) & [ 3w 1mTe =) (3 e loals(e) — ) S 0

|z|=r j=
We take the expansion, valid for |2 | < 1, |¢| < 1,
f(Z) - Q) _ 2”:

22— 1y 1=0

Amz mel.

Then we have

jé a; log(f(z) —'f(zj)) = Zn: aj logf_'(i)%f.(z_f) + é a log(z _ Zj)

J=1

(16) = Z a; logM + Zaj log(l — -)

=1

+ Z ajlog 2z
j=1

for suitable choices of the determinations. Thus the function (16) has on
the circle | z | = r the Laurent expansion

2=t (2051 Do Ama 25)2™ + comst. — D03y KT (207 05 25)2 7
Inserting this in inequality (15), letting r tend to one and reducing we obtain
THEOREM 5. Let f(z) be regular and univalent in |z| < 1, let 2;,
j=1,--- ,nbepoinisin|z| < 1,let the expansion
0g1E =IO _ 4
z f m, 1=0

be valid for |z| <1, |¢| < L,and let aj,j = 1, ---, n, be complex constants
such that Y 71— a; = 0. Then

Do m| D iy 2t A 25|t S = Dt oy @ log(1 — 25 7).
With essentially the same proof as for Corollary 3 we obtain

CoROLLARY 4. Let f(2) be regular and undvalent in |2| < 1, and let o;,
j=1,---,n, Bi,k=1,---,N,becomplex constants satisfying X ;- c; = 0,
DhaBe =0, z,j=1,-,n ¢,k=1, -, N, points in |2]| < 1.
Then

53 5, s 1og £ = (2

k=1 j=1 $o— 24

N 1/2
= I:(a'kz=1 o Qy, log(l — 2 Ek))(]kz=1 B; Ek log(l — fk)>:|

(17)
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While this appears to be the first explicit record of this result, it should be ob-
served that inequality (17) is an immediate consequence of inequality (14).
Indeed we need merely apply that result to the function

(& = 0/ @)™

with Ny = Bp, k=1,---,N, v; = a;j,j = 1, .-+, n, and reduce, using
the conditions Y 7y a;j = 0, D 4= B = 0. In the same way the result V
follows from the result IV.

6. We now wish to investigate the relationship between the area method
and the method of the extremal metrie, particularly inthe form of the General
Coefficient Theorem. As is well known the latter contains as special cases
most of the standard results in the theory of univalent functions. Moreover
it would provide a complete explicit solution to a much wider range of problems
were it not for the fact that its application requires certain normalizations on
initial coefficients of the functions considered. While the area method admits
on the whole much less extensive application, no such restriction appears in
the conditions for its use. We will now show that by somewhat strengthening
other requirements appearing in the enunciation of the General Coefficient
Theorem it is possible to drop the coefficient normalization restrictions found
there. The result obtained does not include many of the most interesting
consequences of the General Coefficient Theorem but does make possible the
explicit treatment of a wide variety of new problems. It may be remarked
that the method used here has already been applied in one special case [8].
There it provides new insights into the nature of span theorems and a con-
siderable increase in their range of applicability.

We begin in the usual framework of a finite oriented Riemann surface
%R, a positive quadratic differential Q(z) dz” on %, and a family {A} of admissible
domains A;,j = 1, - - - , K, on % with respect to Q(z) dz’. Then we enunciate
the following definition.

Derintrion 1. Let {f} be a family of functions f;,j = 1, «- -, K, with the
following properties:

(1) f; maps A; conformally into R,

(ii) if a pole or zero of odd order A of Q(2) d2’ lies in A;, fi(A) = A,

(i) f;(45) nfi(A) =0, j#1, jl=1--,K.
Then the family {f} is said to admit a specital admissible homotopy F into the
identity if there exists a function F(P, t) defined for P eUj_1A;,0 =t £ 1,
with values in RN, continuous in both variables together satisfying the following
conditions:

(a) F(P,0) =fi(P), Pedr;, j=1,---,K,

(b) F(P,1) =P, PeU%,4a;,

(¢) F(P,t) = P, P a pole or zero of odd order of Q(z) d2* in Ul_; 4A;,

0=t=1,
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(d) F(P,t) # Q, Q a pole or zero of odd order of Q(z) d2° in R, P # Q,
0<t=1.

The notion of deformation degree remains the same as before [6, p. 50].
However the function families considered are governed by the following
definition.

DeriNITioN 2. Let {A} be an admissible family of domains A;,5 =1, -+ | K,
on the finite oriented Riemann surface R with respect to the positive quadratic
differential Q(z) dz°. Then by a special admissible family {f} of functions

fi, g =1, , K, associated with {A} we mean a family with the following prop-
erties:
(1) f; maps A; conformally into R, j = 1, , K,
(ii) 4f a pole or zero of odd order A of Q(z) dz lies 1n A;, fi(A) = A,
(lll) fJ(AJ) ﬂfz(Al) =0, .7 # l .7’ l = IR K,

(iv)  the family {f} admits a special admissible homotopy F into the identity.
We are now ready to state our principal result.

TuroreEM 6 (Special Coefficient Theorem). Let R be a finite oriented
Riemann surface. Let Q(z) d2° be a positive quadratic differential on R such
that each branch of [(Q(2))"* dz is single-valued in a sufficiently small neigh-
borhood of each pole of Q(z) dz" (with that pole deleted) of order greater than two.
Let {A} be an admissible family of domains A;,j = 1, -+, K, on R relative to
Q(z) d’, and {f} @ special admissible family of functions f;,j = 1, --+, K,
associated with {A}. Let Q(z2) d2° have double poles Py, -+, P, and poles
P, -+, P. of order greater than two. Let P;,j = v, lie tn the domain Ay,
and in terms of a local parameter z representing P; as the point at infinity let
f1 have the expansion

(18) f1(2) = a2 + af” + negative powers of z,
and @ the expansion
(19) Q(z) = a2 + higher powers of 2.

For j > r,let ¢ denote a specifically chosen branch of f(Q(z)) dz in a netghbor-
hood of P; . Let v(P;, L) denote the antecedent on R of the trace on the Riemann
image of a netghborhood of P; under ¢ of a square in the {-plane of side 2L,
center at the origin, and with sides parallel to the real and imaginary axes, where
L 1s to be sufficiently large that v(P; , L) bounds a simply-connected neighborhood
U(P;, L) of P;. The curve v(P;, L) s to be sensed so that U(P;, L) lies to
its right. Let P;,j > r, lie in the domain Ay, and let w denote the single-valued
function obtained in a neighborhood of P; by substituting fi(2) for z in the func-
tion ¢. Let ® denote the intersection of U'—y A; with the union of density domains
in the trajectory structure of Q(z) d2°, and let

6;(L) =4 —®— Ui U(Py, L), j=1,---,K.

1/2
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Then

3 12,7 1/2 12

S [ 1 @UE R — @) aa,
(20) = -@ (21r Zl @ log a<f>)

n 1 _ _
# 5, @-Dae-0-s] war)+o.

Here log a'” = log | a'? | — i d(F, P;),j < r, where d denotes the deformation
degree. The roots (Q(f:(2)))'?, (Q(2))"* correspond under passage from fi(z)
to z along the path curve for the deformation F. Finally dA, denotes the element
of area for the local parameter z.

For poles of order two, P;,j =< r, we define the curves v(P;, L) and neigh-
borhoods U(P;, L) as in [6, p. 60], v(P;, L) being sensed so that U(P;, L)
lies to its right. We define

Ad(L) = A — U, U(P;, L), i=1,-,K,

and denote fi(A(L)) by AYL), 7 = 1, , K. We will estimate the area of
U A(L) in the Q-metric | Q(z) || dz | from above in terms of the area of
U%_1 Ai(L), also in the Q-metric. As usual this is done by determining the
change in area arising from the displacement of each boundary curve v(P;, L),
j =1, ---, n, under its mapping by the appropriate function in {f}. In the
case of a pole P;,r 4+ 1 =7 = n, of order greater than two, the desired
quantity is given by

1

57:' Y (PjL)

(& dow — Edf).

At the corresponding point in the proof of the General Coeflicient Theorem
we immediately made further estimates, but now we leave the expression in
this form. The corresponding quantity for a pole P;,j < r, of order two is
given by

270 (] a? | log ) + o(1)

as in the proof in [6, §4. 4] Thus we have the evaluation

S an=E [ ar+Eoma e

1
i=r+1 20 Jy (P 1)

(21)
(& dw — §dg) + o(1)

where dA denotes the element of area in the @-metric.

We now obtain an estimate in the opposite direction by use of a modified
form of the method of the extremal metric. In this connection we study
separately each type of basic domain associated with the trajectory structure
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of Q(2) d2’; see [7, Theorem 1]. Let &' denote the image of & under the
respective functions in {f}, i.e., Ut f:(A; n ®). At present the best we can
do is to assert as in [6, p. 57] that

(22) [[ aaz[[ aa

Next let © be a ring domain in the trajectory structure. Its intersection
with Uf_; A; consists of one or several doubly-connected domains possibly
slit along trajectory arcs. We slit the totality of these along an arc of an
orthogonal trajectory. Then any branch of f(Q(z))” *dz will map this
configuration onto a rectangle, which by choice of a suitable branch { we may
take to be (¢ = ¢ + 1)

0 <E<) 0<9g<h,

this being slit along certain horizontal segments which may extend its full
length. We now define as follows a mapping on this slit rectangle B. Irom a
point of R we pass back to a point P on R by the inverse of the chosen branch
of [(Q(2))"* de, perform the mapping f; corresponding to the appropriate
domain A; such that P e A;, and map again by the branch of f (Q(2))"* dz
obtained by continuation of the chosen branch from P to f;(P) along the
path F(P,t),1 =t = 0. We denote the mapping so obtained by w = ¢(¢).

We know that for any trajectory = lying in ® n U’ A; and its image +’
under the appropriate mapping f; we have

[@ey™a:= [ @)™

where the branches are chosen according to the prescription just given.
Thus we have

f( SO (0) dE =,

where o(7) is the intersection of B with the line 9¢ = 5, for all but a finite
number of values of 7 in 0 < 9 < h. Integrating with respect to n over
(0, h) we have

(23) ffR G’ (£) dA; = N = ffR dA; .

Similarly for a circle domain G if we denote the image of € n Ui; A;(L)
slit along an orthogonal trajectory under an appropriate branch of
[(Q(2))"* dz by €(L) and define the mapping ¢({) by the same prescription
as above, we have

(24) f fa ) 06 (©) ddr = i f@ ., dds.

Now let P; be a pole of order m; greater than two. Our hypotheses actually
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require that m; be even, so at least four. With P; are associated m; — 2
end domains which we denote by €,,¢ = 1, - - - , m; — 2 and which are taken
to be numbered in cyclic order about P;, so that under the single-valued
branch ¢ of [(Q(2))"* dz chosen in the enunciation of the theorem @ is mapped
into an upper half-plane. Let P;lie in the domain A;. We denote €, n A;(L)
by €,(L), ¢ = 1, ---, m; — 2. TIts image under the given branch ¢ will
be denoted by E,(L) and consists of a rectangle, possibly provided with a
finite number of horizontal slits

(25) —L<i<L, MN<g<lL
or
(26) —L<t<IL, —L<n<\,

according as j is odd or even, where A\, may be positive or negative. The
mapping from { to w associated with P; in the enunciation of the theorem
extends to a single-valued function defined throughout E,(L) which we de-
note by ¢(¢) once again. Then for all but a finite number of values of 5 in
the range (25) or (26) we have

[f 09 (©) dt = R(s(A(n)) = (B(n)))

where o(n) is the intersection of E,(L) with the line §¢ = 5 and A (%), B(4)
are the points of this line on ¢ = L, § = — L respectively. Integrating with
respect to n over the appropriate interval (25) or (26) we have

(27) H}W) G’ (£) dA; = f(Rw dss = fqum dA; + f (G — ®) ot

where the line integrals on the right-hand side may be taken over the three
sides of H,(L) arising from arcs on v(P;, L).

Finally let & be a strip domain which has boundary elements arising from
poles P, and P; which may be distinet or coincident and of any (even) order
greater than or equal to two. These poles must lie in the same domain,
say A;, of the family {A}, and & can meet no domain in {A} other than A;.
We denote © n A,(L) by ©(L). A suitable determination of f(Q(z))” *de
maps & onto a strip S given by

0 <9 <A

(N positive) where the boundary element of & arising from P, corresponds to
the boundary point of S at infinity in whose neighborhood ®{ becomes posi-
tively infinite. KEvidently the present choice of determination may differ
from those used to define the neighborhoods U(P;, L),j = ¢, . Thus under
this mapping, to ©(L) corresponds a domain S(L) consisting of a rectangle
(§ =&+ i)

—L+b<t<L+a 0<np<\
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provided perhaps with a finite number of horizontal slits where a, b are real
numbers possibly either positive or negative. Let o(n) denote the horizontal
segment lying in S(L) on the line 9¢ = %, defined for all but a finite number
of values of in 0 < 5 < X\. Let A(y), B(n) be the end points of ¢(n) on
the lines ¢ = L + a, £ = —L + b respectively. Let us denote by w = ¢({)
the mapping induced by f; on S, apart from any slits occurring in S(L), in
the following manner. From a point { we pass back to a point P on R by
the inverse of the present branch of f(Q(z))” * dz, perform the mapping f:
and map again by the branch of f(Q(z) )2 dz obtained by continuation of the
previous branch from P to f;(P) along the path F(P,t), 1 = ¢ = 0. The
current determination ¢ of [(Q(2))"*dz is related to the determination ¢
used to define the neighborhood U(P;, L), 7 = ¢, 1, by a relation { = ¢ &= {1
where ¢ is a constant. Let §; = =1 according as we have +{;. If P;,
j = q,1,1s a pole of order two, the mapping ¢ is represented asymptotically by
the expansion
w = ¢+ 5;(a?)?log a” + o(1)
(we note in this case 5, = 1,8; = —1) where («'”)"*is the root with positive
real part and log a'” has the determination given in the statement of Theorem 6.
Now

[  0'(6) dE = o(A(n) — 9(B(m)),

and integrating with respect to  over the interval (0, A\) we have

@) [ es@ad= [[ s+ e+t o)

where for j = ¢, [ . .
pi = )\(a(]))1/2 log a(J)
if P; has order 2, and

pi= [ (B —ag) dsg

if P; has order greater than two with the integral taken over the arc of v(P;, L)
in ©. It is clear that in this last term we may take { and w to have the de-
terminations canonically associated with the pole P; .
Now let
AdL) = A(L) — ®,  Al(L) = A(L) — @

Then from the inequalities (21) and (22) we find

K e ,
= ©) )
;ffmmdfl = fo“m dA + Y 27®(] | log a?)

(29) i=1 =1
=1

j=ri1 20 Jy(p )

(&dw — §dg) + o(1).
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We subtract from (29) twice the sum of equations (23), (24), (27), and (28)

and recall that
ffA;m dd = Zf/ | 6'(6) | dds

with the integrals in the sum on the right-hand side being taken over the por-
tions of basic domains making up A;(L). In this way we obtain

> ff |¢’(§) —1 |2 dA; £ —® (27r > o log a(”)
j=1
(30) . ’
+ 22 (2—f (0do — Fdi) — 2 (®w — ®F) d9§> + o(1)
j=r+1 \&% Yy (P;,L) Y(PjL)
with the integrals in the sum on the left-hand side being taken over all por-
tions of basic domains making up Uty A,(L).
The second term on the right-hand side of (30) reduces by elementary
operations to

n 1 B _
> (2—z [ oy @D A=)~ [ o dr) .

Making this substitution in (30) and taking account of the meaning of
¢’(¢) we see that this reduces to the form

S L 1@ i) — (@) Paa,

(31) = —-@® (27:' > o log a(j)>

i=1

n 1 _ _

3 (5f,  @-Daw-0-s[ i)+
j=r+1 \&? Yy (P;L) Y(P;L)

Letting the curve y(P;, L),j = 1, - -, r, shrink to the point P;, we obtain

the enunciation of Theorem 6.

Remark. If Q(z) d2* has only poles of order greater than two, and the
family {A} consists of a single simply-connected domain A; which contains
no zeros of Q(z) d2° of odd order, or if % is the z-sphere, Q(z) dz’ has a single
pole and no zeros of odd order, and {A} consists of a single domain A; either
simply- or multiply-connected, the result of Theorem 6 reduces to a form of
the area principle. Indeed the left-hand side of inequality (20) becomes

=1 - 1 .-

Ygi) ., @-Pae—0 -5 [ G-Bdw-0
where the second term is taken over the boundary v of A; sensed to have
A; to its right and is understood in a limiting sense if necessary. Thus our
result takes the form
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) —afG-Die-0s- ig[ﬂwwdmo(l).

j=1

The left-hand side evidently expands out to

17 1 7. 1. ]
—%frwdw-—%/rfdg‘—l-%fr(wd§+§dw).
Now

P N I )
2—ifr(wd§+§dw)——2—./r(wd§ wdf) = slfrwdgf

4

J=1

= —gfrwdf T igfw’ﬂ)wdg‘.

Moreover

1r . 1L
- r;dg_%frgd;_o.

Performing the proper cancellations in inequality (32) and letting L tend to

in

10.

11.

12.

13

finity we obtain
1 f i,
—_— >
% . @ dw = 0.
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