a DeCOMPOSITION PROOF THAT THE DOUBLE SUSPENSION OF A HOMOTOPY 3-CELL IS A TOPOLOGICAL 5-CELL ${ }^{1}$

BY
Leslie C. Glaser ${ }^{2}$
\section*{1. Introduction and definitions}

In [5], the author proved that if H^{3} is a $P L$ homotopy 3 -sphere bounding a compact contractible $P L$ 4-manifold, then the double suspension of H^{3} is topologically homeomorphic to the 5 -sphere S^{5}. (We write this as $\Sigma^{2} H^{3} \approx S^{5}$, where Σ^{2} denotes double suspension and \approx means topologically homeomorphic.) In [10], Siebenmann gives an elegant proof that $\Sigma^{2} H^{3} \approx S^{5}$, for any homotopy 3 -sphere H^{3}. However, this proof is somewhat unsatisfactory in that it has to make use of some deep results of the Kirby-Siebenmann triangulation theory, and a key theorem needed to obtain this result was given merely by a reference to a paper by Kirby and Siebermann, which apparently was not even in preprint form at the time. ${ }^{8}$ In [6], the author made use of a completely geometrical, but quite involved, argument, outlined to him by Kirby, to show that if F^{3} is a homotopy 3-cell, then $\Sigma^{2} F^{3} \approx I^{5}$. This requires a long and complicated argument, which depends quite heavily on the full work of [4]. In an addendum to [10], Siebenmann remarks that the same proof used to show that $\Sigma^{2} H^{3} \approx S^{5}$, also works to show that $\Sigma^{2} F^{3} \approx I^{5}$.

Here, we give an easy decomposition proof that $\Sigma^{2} F^{3} \approx I^{5}$, for any homotopy 3 -cell F^{3}. The proof only requires a simple application of the engulfing lemma of [11], plus the fact that all homotopy 3 -cells can be triangulated [1] and some basic fundamentals of geometric $P L$ theory. Moreover, by using the collaring theorem of [2] and the topological h-cobordism theory of [3] (which itself only requires [2] and the engulfing lemma), the proof given here actually can be used to show that $\Sigma^{2} F^{3} \approx I^{5}$, without even using the fact that 3 -manifolds can be triangulated (also refer to the remarks at the beginning of §5).

In Corollary 4.3, we show that if M^{3} is an arbitrary homotopy 3 -sphere and $h: S^{2} \rightarrow N^{2} \subset M^{3}$ is a homeomorphism carrying S^{2} onto the locally flat submanifold N^{2} of M^{3}, then there exists a homeomorphism

$$
H:\left(\Sigma^{2}\left(v_{1} * S^{2} * v_{2}\right), \Sigma^{2} S^{2}\right) \rightarrow\left(\Sigma^{2} M^{3}, \Sigma^{2} N^{2}\right)
$$

such that $H \mid \Sigma^{2} S^{2}=\Sigma^{2} h$ (here $*$ denotes join and $\Sigma^{2} h: \Sigma^{2} S^{2} \rightarrow \Sigma^{2} N^{2}$ denotes

[^0]the natural homeomorphism extending $h: S^{2} \rightarrow N^{2}$ and carrying the suspension circle of $\Sigma^{2} S^{2}$, by the identity map, to the suspension circle of $\Sigma^{2} N^{2}$).

In Corollary 5.4, we show that if N^{8} is a homotopy 3 -sphere contained as a locally flat submanifold of the homotopy 4 -sphere M^{4}, then there exists a homeomorphism

$$
H:\left(\Sigma^{2}\left(v_{1} * S^{3} * v_{2}\right), \Sigma^{2} S^{3}\right) \rightarrow\left(\Sigma^{2} M^{4}, \Sigma^{2} N^{3}\right)
$$

such that $H \mid \Theta^{1}=$ identity (here Θ^{1} denotes the suspension circle of each pair).

We now give a few additional definitions. We will use \cong to denote $P L$ (or combinatorially) homeomorphic, and as we have already noted, \approx means topologically homeomorphic. By a homotopy 3 -sphere M^{8} (3-cell F^{3}), we will mean a closed (compact) topological 3-manifold (with nonempty boundary) such that $\pi_{1}\left(M^{8}\right)=0$ (F^{8} is contractible). By a homotopy 4 -sphere $M^{4}\left(4\right.$-cell $\left.F^{4}\right)$, we will mean the above with 4 replacing 3 , and $\pi_{i}\left(M^{4}\right)=0$ ($i=1,2,3$) replacing $\pi_{1}\left(M^{8}\right)=0$.

If X is a metric space with metric ρ and Z is a subset of X, then, given $\varepsilon>0$, we will use $V(Z, X, \varepsilon)$ to denote the set $\{x \in X \mid \rho(x, Z)<\varepsilon\}$. Also, if Z is a compact subset of X, we will use $d(Z)$ to denote the diameter of Z, i.e.

$$
d(Z)=\max \left\{\rho\left(z_{1}, z_{2}\right) \mid z_{1}, z_{2} \in Z\right\}
$$

If K is a compact subset of Euclidean n-space E^{n}, we define $\Sigma^{2} K$ and $\Theta^{1} \subset \Sigma^{2} K$ explicitly in §2. Finally, if N^{k} is a closed submanifold of the closed manifold M^{n}, we say N^{k} is locally flat in M^{n} if, for every $x \in N^{k}$, there exists an open set $U \subset M^{n}$ containing x such that $\left(U, U \cap N^{k}\right) \approx\left(E^{n}, E^{k}\right)$.

2. Some preliminary notation and lemmas

Let F^{3} be a homotopy 3-cell and let $N\left(\mathrm{Bd} F^{3}, F^{3}\right)$ denote the regular neighborhood of $\operatorname{Bd} F^{3} \cong S^{2}$ in F^{3} under the second barycentric subdivision of F^{3}. By [12], $N\left(\operatorname{Bd} F^{3}, F^{3}\right) \cong \operatorname{Bd} F^{8} \times[0,1]$. We identify $N\left(\mathrm{Bd} F^{3}, F^{3}\right)$ with $\operatorname{Bd} F^{3} \times[0,1]$, so that $x \in \operatorname{Bd} F^{3}$ corresponds to $(x, 0) \in \operatorname{Bd} F^{3} \times[0,1]$. Let Δ^{2} denote a 2 -simplex in $\operatorname{Bd} F^{3}$ and let $\left\{\Delta_{i}\right\}$ denote a sequence of concentric 2 -simplexes in Δ^{2} so that $\Delta_{1} \subset \operatorname{int} \Delta^{2}, \Delta_{i+1} \subset$ int Δ_{i} for each i, and $\bigcap_{i=1}^{\infty} \Delta_{i}=\{p\}$ is the barycenter of Δ^{2}. For each $i=1,2, \cdots$, let

$$
\begin{aligned}
& T_{i}=\mathrm{F}^{3}-\left(\mathrm{Bd} F^{3} \times\left[0, \frac{1}{2}-\left(\frac{1}{2}\right)^{i+1}\right)\right) \\
& B_{i}=\Delta_{i} \times\left[\frac{1}{2}-\left(\frac{1}{2}\right)^{i+1}, \frac{1}{2}+\left(\frac{1}{2}\right)^{i+1}\right] \\
& \left.F_{i}=T_{i}-\left\{\operatorname{int} B_{i} \mathrm{u} \operatorname{lint} \Delta_{i} \times\left(\frac{1}{2}-\left(\frac{1}{2}\right)^{i+1}\right)\right]\right\}
\end{aligned}
$$

and

$$
K=F^{3}-\left(\operatorname{Bd} F^{3} \times\left[0, \frac{1}{2}\right)\right)
$$

We note, for each $i, T_{i}=B_{i} \cup F_{i}$,
$B_{i} \cap F_{i}=\mathrm{Bd} B_{i} \cap \mathrm{Bd} F_{i}$

$$
=\left(\operatorname{Bd} \Delta_{i} \times\left[\frac{1}{2}-\left(\frac{1}{2}\right)^{i+1}, \frac{1}{2}+\left(\frac{1}{2}\right)^{i+1}\right]\right) \mathrm{u}\left(\Delta_{i} \times\left(\frac{1}{2}+\left(\frac{1}{2}\right)^{i+1}\right)\right.
$$

is a combinatorial 2 -cell which we denote by $C_{i}, T_{1} \subset \operatorname{int} F^{3}, T_{i+1} \subset \operatorname{int} T_{i}$, $B_{i+1} \subset \operatorname{int} B_{i}, K=\bigcap_{i=1}^{\infty} T_{i}$ and $z=\left(p, \frac{1}{2}\right)=\bigcap_{i=1}^{\infty} B_{i} . \quad$ Since $B_{i} \cap F_{i}=$ $\mathrm{Bd} B_{i} \cap \mathrm{Bd} F_{i}=C_{i}$ is a 2-cell, $F_{i} \cong T_{i} \cong F^{3}$. Let D_{i} denote the 2-cell

$$
\operatorname{Bd} F_{i}-\operatorname{int} C_{i}=\operatorname{Bd} T_{i}-\left(\operatorname{int} \Delta_{i} \times\left(\frac{1}{2}-\left(\frac{1}{2}\right)^{i+1}\right)\right)
$$

We now quote an elementary lemma proved in [5]. This only requires a simple application of the engulfing lemma of [11].

Lemma 2.1. Suppose M is a compact contractible combinatorial 5-manifold, U is a contractible open subset of $\mathrm{B} \mathrm{d} M, \delta$ is a positive number, and Z is a closed subset of M such that $Z \cap \mathrm{Bd} M \subset U$. If there exists a connected open subset W of $\operatorname{Bd} M$ missing $Z \cap \operatorname{Bd} M$ so that $\pi_{1}(W)=0$ and U u $W=\operatorname{Bd} M$, then there is a piecewise linear isotopy $f_{t}(0 \leq t \leq 1)$ taking M onto itself such that
(1) $f_{0}=$ identily,
(2) $f_{t}=$ identity on $\operatorname{Bd} M$ for all t, and
(3) $f_{1}(Z) \subset V(U, M, \delta)$.

Suppose K is a finite complex or an arbitrary compact subset of E^{n}. Let q_{i} and $-q_{i}(i=1$ or 2$)$ be the points of E^{2} given by $q_{1}=(1,0), q_{2}=(0,1)$, $-q_{1}=(-1,0)$, and $-q_{2}=(0,-1)$. Let θ_{n} denote the origin of E^{n} and for $i=1$ or 2 , let u_{i} and v_{i} be the points of $E^{n+2}=E^{n} \times E^{2}$ defined by $u_{i}=$ $\left(\theta_{n},-q_{i}\right)$ and $v_{i}=\left(\theta_{n}, q_{i}\right)$. By the double suspension of $K\left(=K \times \theta_{2}\right)$ in E^{n+2}, we will mean the complex or compact set $\Sigma^{2} K \subset E^{n+2}$ given by

$$
\Sigma^{2} K=u_{2} *\left(u_{1} * K * v_{1}\right) * v_{2}
$$

where $*$ denotes join (i.e. if A and B are two compact subsets of E^{m}, then

$$
A * B=\{(1-t) a+t b \mid a \in A, b \in B, \text { and } t \in[0,1]\})
$$

Let Θ^{1} denote the polyhedral 1-sphere in $\theta_{n} \times E^{2} \subset E^{n} \times E^{2}$ given by

$$
\Theta^{1}=u_{2} *\left(u_{1} \cup v_{1}\right) * v_{2}
$$

Then

$$
\Sigma^{2} K \cong K * \Theta^{1}
$$

Let S^{1} denote the unit 1 -sphere in $\theta_{n} \times E^{2}$. Let $\tilde{p}: \Theta^{1} \rightarrow S^{1}$ denote the projection of Θ^{1} onto S^{1} from the origin $\left(\theta_{n}, \theta_{2}\right)$ of $\theta_{n} \times E^{2}$, and define

$$
p_{K}: K * \Theta^{1} \rightarrow K * S^{1}
$$

to be the natural homeomorphism sending the interval $x * y \subset K * \Theta^{1}$ $\left(x \in K, y \in \Theta^{1}\right)$ to $x * \mathscr{p}(y) \subset K * S^{1}$ (i.e. $(1-t) x+t y$ goes to $(1-t) x+t p(y)(0 \leq t \leq 1))$.

Now every point of $\left(K * S^{1}\right)-S^{1}$ has a unique representation in the form $\langle x, t y\rangle$, where $x \in K, y \in S^{1}$ and $t \in[0,1)$. That is,

$$
\langle x, t y\rangle=(1-t) x+t y \in x * y \quad \text { and }\langle x, 0 y\rangle=\langle x, 0\rangle=x \in K .
$$

Let Φ_{K} be the homeomorphism carrying $K \times E^{2}$ onto $\left(K * S^{1}\right)-S^{1}$ defined
by sending

$$
(x, w) \in K \times E^{2} \quad \text { to } \quad\langle x, w /(1+\|w\|)\rangle
$$

where $w=\left(w_{1}, w_{2}\right) \in E^{2}$ and $\|w\|=\left(\left(w_{1}\right)^{2}+\left(w_{2}\right)^{2}\right)^{1 / 2}$.
Lemma 2.2 Suppose K and L are compact subsets of $E^{n} \times \theta_{2} \subset E^{n} \times E^{2}$, and $\Sigma^{2} K$ and $\Sigma^{2} L$ are the double suspensions of K and L, respectively, as defined above. If $f: K \times E^{2} \rightarrow L \times E^{2}$ is a continuous map carrying $K \times E^{2}$ onto $L \times E^{2}$ such that f is bounded on the E^{2} factor (i.e. if $p_{2}: L \times E^{2} \rightarrow E^{2}$, then $\left\|w-p_{2} \circ f(x, w)\right\|<$ constant $)$, then f induces a continuous map $g: \Sigma^{2} K \rightarrow$ $\Sigma^{2} L$ such that $g \mid \Theta^{1}=$ identity. Furthermore, if for some subset $B \subset K, f \mid B \times E^{2}$ is of the form $\tilde{f} \times \operatorname{id}_{\mathbb{E}^{2}}$, where $\tilde{f}: B \rightarrow L$, then $g \mid \Sigma^{2} B=\Sigma^{2} f$, i.e. if $x * y \in B * \Theta^{1}$, then

$$
g((1-t) x+t y)=(1-t) \tilde{f}(x)+t y \in \tilde{f}(x) * y
$$

Proof. Since $f: K \times E^{2} \rightarrow L \times E^{2}$ is bounded on the E^{2} factor, we claim that the map $\tilde{g}:\left(\Sigma^{2} K\right)-\Theta^{1} \rightarrow\left(\Sigma^{2} L\right)-\Theta^{1}$, defined as the composition

$$
\begin{aligned}
&\left(\Sigma^{2} K\right)-\Theta^{1}=\left(K * \Theta^{1}\right)-\Theta^{1} \xrightarrow{p_{K}}\left(K * S^{1}\right)-S^{1} \xrightarrow{\left(\Phi_{K}\right)^{-1}} \\
& K \times E^{2} \xrightarrow[f]{f} L \times E^{2} \xrightarrow{\Phi_{L}}\left(L * S^{1}\right)-S^{1} \xrightarrow{\left(p_{L}\right)^{-1}} \\
&\left(L * \Theta^{1}\right)-\Theta^{1}=\left(\Sigma^{2} L\right)-\Theta^{1}
\end{aligned}
$$

extends by the identity map on Θ^{1} to a continuous map $g: \Sigma^{2} K \rightarrow \Sigma^{2} L$.
We see this as follows: Suppose $\left\{\left\langle x_{i}, t_{i} y_{i}\right\rangle\right\}(i=1,2,3, \cdots)$ is a sequence of points of $\left(K * S^{1}\right)-S^{1}$ tending to $y_{0} \in S^{1}$. We note that $\left\{t_{i}\right\} \rightarrow 1,\left\{y_{i}\right\}$ is a sequence of points in S^{1} converging to y_{0}, and $\left\{x_{i}\right\}$ is a sequence of points of K. We consider a subsequence $\left\{\left\langle x_{j}, t_{j} y_{j}\right\rangle\right\}$ of $\left\{\left\langle x_{i}, t_{i} y_{i}\right\rangle\right\}$ so that $\left\{x_{j}\right\} \rightarrow x_{0} \in K$ and $\left\{y_{j}\right\} \rightarrow y_{0} \in S^{1}$. Then $\left\{\left(\Phi_{k}^{-1}\right)\left\langle x_{j}, t_{j} y_{j}\right\rangle\right\}$ is an unbounded sequence of $K \times E^{2}$ of the form $\left\{\left(x_{j}, s_{j} y_{j}\right)\right\}$, where $\left\{s_{j}\right\} \rightarrow \infty$. Let

$$
f\left(x_{j}, s_{j} y_{j}\right)=\left(z_{j}, \tilde{s}_{j} \tilde{y}_{j}\right)
$$

where

$$
p_{1} \circ f\left(x_{j}, s_{j} y_{j}\right)=z_{j}, \quad s_{j}=\left\|p_{2} \circ f\left(x_{j}, s_{j} y_{j}\right)\right\|
$$

and

$$
\tilde{y}_{j}=\left(\left(p_{2} \circ f\left(x_{j}, s_{j} y_{j}\right)\right) / \tilde{s}_{j}\right) \in S^{1}
$$

Since $\left\|s_{j} y_{i}-\tilde{s}_{j} \tilde{y}_{j}\right\|<M, \tilde{s}_{j} \rightarrow \infty$, and $\left\{\left\|y_{j}-\tilde{y}_{j}\right\|\right\} \rightarrow 0$. Thus

$$
\left\{\left(\Phi_{L}\right) \circ f \circ\left(\Phi_{K}\right)^{-1}\left\langle x_{j}, t_{j} y_{j}\right\rangle\right\}=\left\{\Phi_{L}\left(z_{j}, \tilde{s}_{j} \tilde{y}_{j}\right)\right\}=\left\langle z_{j}, \tilde{t}_{j} \tilde{y}_{j}\right\rangle
$$

is a sequence in $\left(L * S^{1}\right)-S^{1}$ converging to $y_{0} \epsilon S^{1}$, and our claim follows.
The final conclusion follows easily from the manner in which the various maps defining \tilde{g} are defined.

3. A shrinking theorem and a pseudo-isotopy

Theorem 3.1. Suppose F^{3} is a homotopy 3-cell and $\left\{T_{i}\right\}$ is the sequence of
closed neighborhoods enclosing the contractible complex K in int F^{3} given in §2. Also, suppose $z=\cap_{i=1}^{\infty} B_{i}$ is the point of $\mathrm{B} \mathrm{d} K$ as given in §2. Then for each i and $\varepsilon>0$ there is a piecewise linear isotopy μ_{t} of $F \times E^{2}$ onto itself such that $\mu_{0}=$ identity, μ_{1} is uniformly continuous, and
(1) $\mu_{t}=$ identity on $\left\{\left(F^{3}-\operatorname{int} T_{i}\right) \times E^{2}\right\} \cup\left\{z \times E^{2}\right\}$ for each t,
(2) μ_{t} changes E^{2} coordinates $<\epsilon$, and
(3) for each $w \in E^{2}, d\left(\mu_{1}\left(T_{i+4} \times\{w\}\right)\right)<\varepsilon$.

Prcof. Step 1. Let F^{3} be subdivided so as to contain subdivisions of T_{i+j}, B_{i+j}, and F_{i+j} as combinatorial submanifolds for $j=1, \cdots, 4$. Let δ_{1} be a positive number less than ($\frac{1}{2}$) $d\left(B_{i+1}\right)$ (a further restriction will be placed on the size of δ_{1} later). Let D be a combinatorial 3 -cell contained in int B_{i+1} such that $z \epsilon \operatorname{int} D$ and $d(D)<\delta_{1}$. Since each of D and B_{i+1} are combinatorial 3-cells contained in the interior of the combinatorial 3-cell B_{i}, given any closed neighborhood N of z in int D, it follows by [13] that there exists a piecewise linear isotopy f_{t} carrying B_{i} onto itself such that

$$
\begin{gathered}
f_{0}=\text { identity } \\
f_{t}=\text { identity on } N \cup \operatorname{Bd} B_{i} \text { for all } t \\
f_{1}\left(B_{i+1}\right)=D
\end{gathered}
$$

We extend f_{t} to all of F^{3} by the identity, and we denote the extended isotopy by f_{t} also. Let $h_{1, t}$ be the isotopy of $F^{3} \times E^{2}$ onto itself defined by $h_{1, t}(x, w)=\left(f_{t}(x), w\right)$, where $x, f_{t}(x) \in F^{3}$ and $w \in E^{2}$. We note that for all $t \in[0,1]$ and $w \in E^{2}, h_{1, t}$ carries $B_{i} \times\{w\}$ onto itself and is the identity on $\left\{N \cup\left(F^{3}-\operatorname{int} B_{i}\right)\right\} \times\{w\}$. Also, for any $w \in E^{2}$ and $k \geq i+1$, we have $d\left(h_{1,1}\left(B_{k} \times\{w\}\right)\right)<\delta_{1}$.

Step 2. For each pair of integers (m, n) and positive number r, let

$$
D^{2}((m, n), r)=D^{2}(\alpha, r) \quad(\alpha=(m, n))
$$

denote the 2-cell $[m-r, m+r] \times[n-r, n+r] \subset E^{2}$. Let M_{α}^{5} denote the combinatorial 5-manifold $h_{1,1}\left(F_{i+1} \times D^{2}\left(\alpha, \frac{1}{4}\right)\right)$. Let C_{α}^{4} be the combinatorial 4-cell

$$
h_{\mathfrak{1}, 1}\left(C_{i+1}^{2} \times D^{2}\left(\alpha, \frac{1}{4}\right)\right)
$$

(recall $\left.C_{i+1}^{2}=B_{i+1} \cap F_{i+1}\right)$. Define Z_{α} to be

$$
h_{1,1}\left(T_{i+2} \times D^{2}\left(\alpha, \frac{1}{8}\right)\right) \cap M_{\alpha}^{5}
$$

Since $Z_{\alpha} \cap \operatorname{Bd} M_{\alpha}^{5} \subset \operatorname{int} C_{\alpha}^{4}$ and $\mathrm{Bd} M_{\alpha}^{5}$ is simply connected, we can apply Lemma 2.1. (We can take U and W of Lemma 2.1 to be int C_{α}^{4} and

$$
\left(\operatorname{Bd} M_{\alpha}^{5}-\operatorname{int} C_{\alpha}^{4}\right) \cup\left\{\text { an open collar of } \mathrm{Bd} C_{\alpha}^{4} \text { in } C_{\alpha}^{4}\right\}
$$

respectively.) Let δ_{2} be a positive number less than $d\left(M_{\alpha}^{5}\right)$ (this number will also be restricted further later). We note that because of the way that $h_{1,1}$ was defined, δ_{2} is independent of the pair of integers $(m, n)=\alpha$. Thus,
we obtain a piecewise linear isotopy $f_{\alpha, t}$ taking M_{α}^{5} onto itself such that

$$
\begin{gathered}
f_{\alpha, 0}=\text { identity } \\
f_{\alpha, t}=\text { identity on } \operatorname{Bd} M_{\alpha}^{5} \text { for all } t, \\
f_{\alpha, 1}\left(Z_{\alpha}\right) \subset V\left(C_{\alpha}^{4}, M_{\alpha}^{5}, \delta_{2}\right)
\end{gathered}
$$

Let $h_{2, t}$ be the isotopy of $F^{3} \times E^{2}$ onto itself defined by

$$
\begin{aligned}
h_{2, t} & =f_{\alpha, t} \text { on } M_{\alpha}^{5} \text { for each pair of integers } \alpha=(m, n) \in E^{2} \\
& =\text { identity outside } \bigcup\left\{M_{\alpha}^{5} \mid \alpha=(m, n)\right\} .
\end{aligned}
$$

We note that for each $w \in E^{2}, h_{2, t}=$ identity on $h_{1,1}\left(B_{i+1} \times\{w\}\right)$. Also, for each $t \in[0,1], h_{2}, t$ moves no E^{2} coordinates by more than $\frac{1}{2}$, as measured along either axis of E^{2}. Furthermore, for each pair of integers $(m, n)=\alpha$,

$$
h_{2,1}\left(h_{1,1}\left(T_{i+2} \times D^{2}\left(\alpha, \frac{1}{8}\right)\right) \subset V\left(h_{1,1}\left(B_{i+1} \times D^{2}\left(\alpha, \frac{1}{4}\right)\right), F^{3} \times E^{2}, \delta_{2}\right)\right.
$$

In particular,

$$
d\left\{h_{2,1} \circ h_{1,1}\left(F_{i+2} \times \mathrm{Bd}\left(D^{2}\left(\alpha, \frac{1}{8}\right)\right)\right)\right\}<\delta_{1}+1+2 \delta_{2}
$$

and $h_{2,1} \circ h_{1,1}=f_{1}($ of Step 1$) \times$ identity on $B_{i+1}^{2} \times E^{2}$.
Step 3. This step will be quite similar to Step 2. For each pair of integers $(m, n)=\beta$, let $D_{\beta y}^{2}$ be the 2 -cell

$$
\left[m-\frac{1}{8}, m+\frac{1}{8}\right] \times\left[n+\frac{1}{8}, n+1-\frac{1}{8}\right]
$$

and let $D_{\beta x}^{2}$ be the 2-cell

$$
\left[m+\frac{1}{8}, m+1-\frac{1}{8}\right] \times\left[n-\frac{1}{8}, n+\frac{1}{8}\right] .
$$

We now want to consider the 5 -manifolds

$$
M_{\beta y}^{5}=h_{2,1} \circ h_{1,1}\left(F_{i+2} \times D_{\beta y}^{2}\right) \quad \text { and } \quad M_{\beta x}^{5}=h_{2,1} \circ h_{1,1}\left(F_{i+2} \times D_{\beta x}^{2}\right)
$$

Let $C_{\beta y}^{4}$ and $C_{\beta x}^{4}$ be the contractible 4-manifolds in $\operatorname{Bd} M_{\beta y}^{5}$ and in $\operatorname{Bd} M_{\beta x}^{5}$, respectively, given by

$$
\begin{aligned}
& C_{\beta y}^{4}=h_{2,1} \circ h_{1,1}\left(\left\{F_{i+2} \times\left[m-\frac{1}{8} m+\frac{1}{8}\right] \times\left\{n+\frac{1}{8}\right\}\right\} \cup\left\{C_{i+2}^{2} \times D_{\beta y}^{2}\right\}\right. \\
&\left.\cup\left\{F_{i+2} \times\left[m-\frac{1}{8}, m+\frac{1}{8}\right] \times\left\{n+1-\frac{1}{8}\right\}\right\}\right) \\
& C_{\beta x}^{4}=h_{2,1} \circ h_{1,1}\left(\left\{F_{i+2} \times\left\{m+\frac{1}{8}\right\} \times\left[n-\frac{1}{8}, n+\frac{1}{8}\right]\right\} \cup\left\{C_{i+2}^{2} \times D_{\beta x x}^{2}\right\}\right. \\
&\left.\cup\left\{F_{i+2} \times\left\{m+1-\frac{1}{8}\right\} \times\left[n-\frac{1}{8}, n+\frac{1}{8}\right]\right\}\right)
\end{aligned}
$$

It follows from last comment of Step 2 , that each of $C_{\beta y}^{4}$ and $C_{\beta x}^{4}$ have diameter less than $\left(\delta_{1}+1+2 \delta_{2}\right)+\left(\delta_{1}+1\right)+\left(\delta_{1}+1+2 \delta_{2}\right)=3 \delta_{1}+3+4 \delta_{2}$.

Let $Z_{\beta y}$ and $Z_{\beta x}$ be defined by

$$
\begin{gathered}
Z_{\beta y}=h_{2,1} \circ h_{1,1}\left(T_{i+3} \times\left[m-\frac{1}{16}, m+\frac{1}{16}\right] \times\left[n+\frac{1}{8}, n+1-\frac{1}{8}\right]\right) \cap M_{\beta y}^{5} \\
Z_{\beta x}=h_{2,1} \circ h_{1,1}\left(T_{i+3} \times\left[m+\frac{1}{8}, m+1-\frac{1}{8}\right] \times\left[n-\frac{1}{18}, n+\frac{1}{16}\right]\right) \cap M_{\beta x}^{5}
\end{gathered}
$$

Then $Z_{\beta y} \cap \operatorname{Bd} M_{\beta y}^{5} \subset \operatorname{int} C_{\beta y}^{4}$ and $Z_{\beta x} \cap \operatorname{Bd} M_{\beta x}^{\mathfrak{b}} \subset \operatorname{int} C_{\beta x}^{4}$. We again apply Lemma 2.1, where U and W of Lemma 2.1 correspond to int $C_{\beta \alpha}^{4}$ and
$\left(\operatorname{Bd} M_{\beta \alpha}^{\mathrm{b}}-\operatorname{int} C_{\beta \alpha}^{4}\right) \cup\left\{\right.$ an open collar of $\operatorname{Bd} C_{\beta \alpha}^{4}$ in $\left.C_{\beta \alpha}^{4}\right\}$,
$\alpha=x \quad$ or $\quad y$. Let δ_{z} be a positive number less than both $d\left(M_{\beta_{x}}^{\mathrm{b}}\right)$ and $d\left(M_{\beta_{y}}^{\mathrm{b}}\right)$. We will add a further restriction in Step 5 .
Thus by Lemma 2.1, for $\alpha=x$ or y, we obtain a piecewise linear isotopy $f_{\beta \alpha, t}$ taking $M_{\beta \alpha}^{5}$ onto itself such that

$$
f_{\beta \alpha, 0}=\text { identity, }
$$

$$
\begin{gathered}
f_{\beta \alpha, t}=\text { identity on Bd } M_{\beta \alpha}^{b} \text { for all } t, \\
f_{\beta \alpha, 1}\left(Z_{\beta \alpha}\right) \subset V\left(C_{\beta \alpha}^{4}, M_{\beta \alpha}^{b}, \delta_{3}\right) .
\end{gathered}
$$

Let $h_{3, t}$ be the isotopy of $F^{3} \times E^{2}$ onto itself defined by

$$
\begin{aligned}
h_{3, t} & =f_{\beta \alpha, t} \text { on } M_{\beta \alpha}^{5} \text { for each pair of integers } \beta=(m, n) \text { and } \alpha=x \text { or } y \\
& =\text { identity outside } \mathbf{u}\left\{M_{\beta \alpha}^{5} \mid \beta=(m, n) \text { and } \alpha=x \text { or } y\right\} .
\end{aligned}
$$

We note for each $w \in E^{2}, h_{3, t}=$ identity on $h_{2,1} \circ h_{1,1}\left(B_{i+2} \times\{w\}\right)$. Hence

$$
h_{3,1} \circ h_{2,1} \circ h_{1,1}=f_{1} \text { (of Step 1) } \times \text { identity on } B_{1+2} \times E^{2} .
$$

Also, for each $t \in[0,1], h_{3,1}$ changes no E^{2} coordinate by more than $\frac{3}{2}$, as measured along either axis for E^{2}. Moreover, for each pair of integers $(m, n)=$ β and $\alpha=x$ or y, if $\widehat{D}_{\beta \alpha}^{2}$ is the 2 -cell used in defining $Z_{\beta \alpha}$, then

$$
h_{\beta, 1} \circ h_{2,1} \circ h_{1,1}\left(T_{i+3} \times \hat{D}_{\beta \alpha}^{2}\right) \subset\left\{h_{2,1} \circ h_{1,1}\left(B_{i+2} \times \hat{D}_{\beta \alpha}^{2}\right)\right\} \cup\left\{V\left(C_{\beta \alpha}^{4}, M_{\beta \alpha}^{5}, \delta_{3}\right)\right\} .
$$

Step 4. We note, if $w \in D^{2}\left(\alpha, \frac{1}{8}\right)$ (defined in Step 2), since

$$
h_{3, t}=\text { identity outside } \cup\left\{M_{\beta}^{5} \alpha \mid \beta=(m, n) \text { and } \alpha=x \text { or } y\right\},
$$

$h_{3,1} \circ h_{2,1} \circ h_{1,1}\left(T_{i+3} \times\{w\}\right)=h_{2,1} \circ h_{1,1}\left(T_{i+3} \times\{w\}\right)$ and hence

$$
d\left(h_{3,1} \circ h_{2,1} \circ h_{1,1}\left(T_{i+3} \times\{w\}\right)\right)<\delta_{1}+1+2 \delta_{2} .
$$

If $w \in D_{\beta \alpha}^{2}$, then it follows from the last comment of Step 3, that

$$
\begin{aligned}
d\left(h_{3,1} \circ h_{2,1} \circ h_{1,1}\left(T_{i+3} \times\{w\}\right)\right)<\left(\delta_{1}+1\right)+\left[\left(3 \delta_{1}\right.\right. & \left.\left.+3+4 \delta_{2}\right)+2 \delta_{3}\right] \\
= & 4 \delta_{1}+4+4 \delta_{2}+2 \delta_{3} .
\end{aligned}
$$

For convenience, we will denote $h_{3,1} \circ h_{2,1} \circ h_{1,1}$ by H_{3}. For each pair of integers $(m, n)=\gamma$, let

$$
D_{\gamma}^{2}=\left[m+\frac{1}{18}, m+1-\frac{1}{18}\right] \times\left[n+\frac{1}{18}, n+1-\frac{1}{18}\right] .
$$

Let $M_{\gamma}^{\mathrm{b}}=H_{3}\left(F_{i+3} \times D_{\gamma}^{2}\right)$ and let $C_{\gamma}^{4} \subset \mathrm{Bd} M_{\gamma}^{\mathrm{b}}$ be defined by the equation

$$
C_{\gamma}^{4}=H_{3}\left(\left(C_{i+3}^{2} \times D_{\gamma}^{2}\right) \cup\left(F_{i+3} \times \operatorname{Bd} D_{\gamma}^{2}\right)\right) .
$$

We note,

$$
\mathrm{Bd} M_{\gamma}^{5}-\operatorname{int} C_{\gamma}^{4}=H_{3}\left(D_{i+3}^{2} \times D_{\gamma}^{2}\right)
$$

(we recall that $D_{i+3}^{2}=\mathrm{Bd} F_{i+3}-\operatorname{int} C_{i+3}^{2}$). Thus

$$
\mathrm{Bd} C_{\gamma}^{4}=H_{3}\left(\mathrm{Bd}\left(D_{i+3}^{2} \times D_{\gamma}^{2}\right)\right)
$$

is a 3 -sphere and C_{γ}^{4} is contractible. Also,

$$
\begin{aligned}
d\left(C_{\gamma}^{4}\right) & <\left(\delta_{1}+\sqrt{ } 2\right)+\left(\sqrt{\left(\frac{3}{2}\right)^{2}+\left(\frac{3}{2}\right)^{2}}+2\left[4 \delta_{1}+4+4 \delta_{2}+2 \delta_{3}\right]\right) \\
& <13+9 \delta_{1}+8 \delta_{2}+4 \delta_{3}
\end{aligned}
$$

Let $Z_{\gamma}=\left(H_{3}\left(T_{i+4} \times D_{\gamma}^{2}\right)\right) \cap M_{\gamma}^{5} . \quad$ Then $Z_{\gamma} \cap \operatorname{Bd} M_{\gamma}^{5} \subset C_{\gamma}^{4}$ and we can apply Lemma 2.1 a final time. Let δ_{4} be a positive number less than $\mathrm{d}\left(M_{\gamma}^{\mathrm{b}}\right)$. Hence, for $\gamma=(m, n)$, we obtain a piecewise linear isotopy $f_{\gamma, t}$ taking M_{γ}^{5} onto itself such that

$$
\begin{gathered}
f_{\gamma, 0}=\text { identity }, \\
f_{\gamma, t}=\text { identity on Bd } M_{\gamma}^{5} \text { for all } t, \\
f_{\gamma, 1}\left(Z_{\gamma}\right) \subset V\left(C_{\gamma}^{4}, M_{\gamma}^{5}, \delta_{4}\right) .
\end{gathered}
$$

Let $h_{4, t}$ be the isotopy of $F^{3} \times E^{2}$ onto itself defined by

$$
\begin{aligned}
h_{4, t} & =f_{\gamma, t} \text { on } M_{\gamma}^{5} \text { for each pair of integers } \gamma=(m, n) \\
& =\text { identity outside } \cup\left\{M_{\gamma}^{5} \mid \gamma=(m, n)\right\}
\end{aligned}
$$

For each w, contained in E^{2},

$$
h_{4, t}=\text { identity on } H_{3}\left(B_{i+3} \times\{w\}\right)
$$

and

$$
h_{4,1} \circ H_{3}=f_{1}(\text { of Step } 1) \times \text { identity on } B_{i+3} \times E^{2}
$$

For $w \in U\left\{D_{\gamma}^{2} \mid \gamma=(m, n)\right\}$,

$$
h_{4,1} \circ H_{3}\left(T_{i+4} \times\{w\}\right) \subset H_{3}\left(B_{i+3} \times\{w\}\right) \cup V\left(C_{\gamma}^{4}, M_{\gamma}^{5}, \delta_{4}\right)
$$

for some $\gamma=(m, n)$. Thus, for $w \in \mathbf{U}\left\{D_{\gamma}^{2} \mid \gamma=(m, n)\right\}$,

$$
\begin{aligned}
d\left(h_{4,1} \circ H_{8}\left(T_{i+4} \times\{w\}\right)\right) & <\delta_{1}+\left(\left(13+9 \delta_{1}+8 \delta_{2}+4 \delta_{3}\right)+2 \delta_{4}\right) \\
& =13+10 \delta_{1}+8 \delta_{2}+4 \delta_{3}+2 \delta_{4}
\end{aligned}
$$

By the first paragraph of Step 4, since $h_{4, t}=$ identity outside $\cup\left\{M_{\gamma}^{5} \mid \gamma=\right.$ $(m, n)\}$, if $w \in E^{2}-\left(\bigcup\left\{D_{\gamma}^{2} \mid \gamma=(m, n)\right\}\right)$, then

$$
d\left(T_{i+4} \times\{w\}\right)<4 \delta_{1}+4+4 \delta_{2}+2 \delta_{3} .
$$

Also $h_{4, t}$ changes no E^{2} by more than $\frac{3}{2}$, as measured along either axis of E^{2}.
Step 5. We now can obtain the desired isotopy μ_{t} of Theorem 3.1. Let $\varepsilon>0$ be given. We modify our scale on each axis of E^{2} so that $1<\left(\frac{1}{13}\right)(\varepsilon / 5)$, and then apply Steps $1-4$, where we further restrict the various δ 's used in these steps as follows:

$$
\delta_{1}<\left(\frac{1}{10}\right)(\varepsilon / 5), \quad \delta_{2}<\left(\frac{1}{8}\right)(\varepsilon / 5), \quad \delta_{3}<\left(\frac{1}{4}\right)(\varepsilon / 5) \quad \text { and } \quad \delta_{4}<\left(\frac{1}{2}\right)(\varepsilon / 5)
$$

We define the isotopy μ_{t} of $F^{3} \times E^{2}$ onto itself by

$$
\begin{array}{rlrl}
\mu_{t} & =h_{1,4 t} & & \text { if } \quad 0 \leq t \leq \frac{1}{4} \\
& =h_{2,4 t-1} \circ h_{1,1} & & \text { if } \frac{1}{4} \leq t \leq \frac{1}{2} \\
& =h_{3,4 t-2} \circ h_{2,1} \circ h_{1,1} & & \text { if } \quad \frac{1}{2} \leq t \leq \frac{3}{4} \\
& =h_{4,4 t-3} \circ h_{3,1} \circ h_{2,1} \circ h_{1,1} & & \text { if } \\
\frac{3}{4} \leq t \leq 1
\end{array}
$$

Clearly, μ_{t} is well defined and $\mu_{0}=$ identity. Also, if during each step, we just don't arbitrarily define the various $f_{(m, n), t} s$, applying Lemma 2.1 separately for each (m, n), but obtain one "model" function via Lemma 2.1 (we need two such functions in Step 3) and then translate this "model" function around to obtain the various $f_{(m, n), t}$'s of the given step, it will follow that, for each $i=1, \cdots, 4$ and $t \epsilon[0,1], h_{i, t}$ is uniformly continuous (also, the diameters of the various $M_{(m, n)}^{5}$'s of a given step would be independent of (m, n)). Hence, μ_{1} is uniformly continuous.

It is also clear from the way the $h_{i, t}$'s have been defined that
(1) $\mu_{t}=$ identity on $\left\{\left(F^{3}-\operatorname{int} T_{i}\right) \times E^{2}\right\} \cup\left\{z \times E^{2}\right\}$ for each t.

Since μ_{t} changes $E^{2}-$ coordinates <3, as measured each axis of E^{2}, it follows that
(2) μ_{t} changes E^{2} coordinates $<\sqrt{(3)^{2}+(3)^{2}}<5<\varepsilon / 13$. Finally, by the last paragraph of Step 4, we see, for all $w \varepsilon E^{2}$, that

$$
d\left(T_{i+4} \times\{w\}\right)<13+10 \delta_{1}+8 \delta_{2}+4 \delta_{3}+2 \delta_{4}
$$

Hence, by the further restrictions on the δ_{i} 's above, we get that
(3) for each $w \in E^{2}, d\left(\mu_{1}\left(T_{i+4} \times\{w\}\right)\right)<\varepsilon$,
and this completes the proof of Theorem 3.1.
Let F^{3} be an arbitrary homotopy 3 -cell and let $z \in \mathrm{Bd} K$ be the point $z=\bigcap_{i=1}^{\infty} B_{i}$ as defined in §2. Let G^{\prime} denote the decomposition of F^{3} given by

$$
G^{\prime}=\left\{g^{\prime} \mid g^{\prime} \text { is a point of } F^{3}-K \text { or } g^{\prime}=K\right\}
$$

and let G denote the decomposition of $F^{3} \times E^{2}$ given by

$$
G=\left\{g=g^{\prime} \times w \mid g^{\prime} \in G^{\prime} \quad \text { and } \quad w \in E^{2}\right\}
$$

The following result is modeled after Theorem 3 of [14] and is included for completeness.

Theorem 3.2. Suppose F^{3} is an arbitrary homotopy 3 -cell and G is the decomposition of $F^{3} \times E^{2}$ defined above. Then, given $\varepsilon>0$, there is a pseudoisotopy $f(x, t)\left(x \in F^{3} \times E^{2}, \quad 0 \leq t \leq 1\right)$ of $F^{3} \times E^{2}$ onto itself such that
(a) $f(x, 0)$ is the identity (i.e. $f(x, 0)=x)$,
(b) for each fixed $\mathrm{t}<1, f(x, t)$ is a homeomorphism of $F^{3} \times E^{2}$ onto itself,
(c) for each $\mathrm{t}(0 \leq t \leq 1), f(x, t)=$ identity on

$$
\left\{\left(F^{3}=V\left(K, F^{3}, \varepsilon\right)\right) \times E^{2}\right\} \cup\left\{z \times E^{2}\right\}
$$

and changes E^{2} coordinates $<\varepsilon$, and
(d) $f(x, 1)$ takes $F^{3} \times E^{2}$ onto itself and each element of G onto a distinct point.

Proof. We will obtain the isotopy promised above by a sequence of applications of Theorem 3.1. Let $\left\{T_{i}\right\}$ be the sequence of compact neighborhoods in int F^{3} enclosing m as given in Theorem 3.1. We suppose $2 \varepsilon<$ distance $\left(K, \operatorname{Bd} F^{3}\right)$. Let $\varepsilon_{1}, \varepsilon_{2}, \cdots$ be a sequence of positive numbers such that $\sum_{i=1}^{\infty} \varepsilon_{i}<\varepsilon / 2$. We will define a monotone increasing sequence n_{1}, n_{2}, \cdots of integers and a sequence of isotopies

$$
f(x, t)\left(x \in F^{3} \times E^{2}, 0 \leq t \leq \frac{1}{2}\right), \quad f(x, t)\left(x \in F^{3} \times E^{2}, \frac{1}{2} \leq t \leq \frac{2}{3}\right), \cdots
$$

such that
$T_{n_{1}} \subset V\left(K, F^{3}, \varepsilon\right)$,
$f(x, 0)=x$,
two adjacent $f(x, t)$'s agree on their common end,
each $f(x, i /(i+1))$ is uniformly continuous,
(1) $f(x,(i-1) / i)=f(x, t)((i-1) / i \leq t \leq i /(i+1))$ except possibly on $\left(T_{n_{i}} \times E^{2}\right)-\left(z \times E^{2}\right)$.
(2) $f(x, t)$ changes E^{2} coordinates $<\varepsilon_{i}((i-1) / i \leq t \leq i /(i+1))$,
(3) $d\left(f\left(T_{n_{i+1}} \times w, i /(i+1)\right)\right)<\varepsilon_{i}$ for all $w \in E^{2}$,
(4) no point moves more than $2 \varepsilon_{i-1}$ during

$$
f(x, t)((i-1) / i \leq t \leq i /(i+1))
$$

and

$$
\begin{equation*}
f\left(F^{3} \times V\left(w, E^{2}, \varepsilon_{i}\right),(i-1) / i\right) \supset f\left(F^{3} \times w, i /(i+1)\right) \tag{5}
\end{equation*}
$$

Before defining the sequence of $f(x, t)$'s, we show that the existence of such a sequence is enough to guarantee the truth of Theorem 3.2. Since $f(x, 0)=x$, it follows by (1), that $f(x, t)=$ identity on

$$
\left\{\left(F^{3}-T_{n_{1}}\right) \times E^{2}\right\} \cup\left\{z \times E^{2}\right\} \quad(0 \leq t<1)
$$

Condition (4) and the above fact, along with the fact that each $f(x, i /(i+1))$ is uniformly continuous, implies that $f(x, 1)=\lim (t \rightarrow 1) f(x, t)$ is a continuous map of $F^{3} \times E^{2}$ onto itself. Conditions (1) and (2) insure that for each $t(0 \leq t \leq 1)$,

$$
f(x, t)=\text { identity on }\left\{\left(F^{3}-V\left(K, F^{3}, \varepsilon\right)\right) \times E^{2}\right\} \cup\left\{z \times E^{2}\right\}
$$

and changes E^{2} coordinates $<\varepsilon$.
Condition (3) insures that $f(g, 1)$ is a point for each element g of G. Condi-
tion (1) implies that, if $f\left(g_{1}, 1\right)=f\left(g_{2}, 1\right)\left(g_{1}, g_{2} \in G\right)$, then each g_{i} must be of the form $K \times w_{i}\left(w_{i} \in E^{2}, i=1,2\right)$. The reason is as follows. If one of g_{1} or g_{2} is a point, say g_{1}, then there is an integer i so large that $f(x,(i-1) / i)=f$ $(x, 1)$ in a neighborhood of g_{1}. Finally, Condition (5) implies that no two points with different w coordinates to into the same point under $f(x, 1)$. That is, if $w_{1} \neq w_{2}$, there is an i such that

$$
\varepsilon_{i}+\varepsilon_{i+1}+\cdots<\delta=\left\|w_{2}-w_{1}\right\| / 2
$$

and Condition (5) implies that

$$
\begin{array}{r}
f\left(F^{3} \times V\left(w, E^{2}, \epsilon_{i}+\epsilon_{i+1}+\cdots\right),(i-1) / i\right) \supset f\left(F^{3} \times V\left(w, E^{2}, \epsilon_{i+1}+\cdots\right)\right. \\
i /(i+1)) \\
\supset \cdots \supset f\left(F^{3} \times w, 1\right)
\end{array}
$$

Thus, $f\left(F^{3} \times w_{1}, 1\right)$ and $f\left(F^{3} \times w_{2}, 1\right)$ lie respectively in the mutually exclusive curved "tubes"

$$
f\left(F^{3} \times V\left(w_{1}, E^{2}, \delta\right),(i-1) / i\right) \quad \text { and } \quad f\left(F^{8} \times V\left(w_{2}, E^{2}, \delta\right),(i-1) / i\right)
$$

The existence of the desired $f(x, t)\left(x \in F^{3} \times E^{2}, 0 \leq t \leq \frac{1}{2}\right)$ and n_{2} follow directly from Theorem 3.1. (Clearly, n_{1} exists so that $T_{n_{1}} \subset V\left(K, F^{3}, \varepsilon\right)$. The ε and i used in Theorem 3.1 is ε_{1} and n_{1}, respectively, and $n_{2}=n_{1}+4$. We ignore Condition (4), since ε_{0} is not defined.) We now proceed, inductively, to define $f(x, t)((i-1) / i \leq t \leq i /(i+1))$ and n_{i+1}.

Let γ be a positive number so small that

$$
d\left(T_{n_{i}} \times V\left(w, E^{2}, \gamma\right)\right)<2 \varepsilon_{i-1}
$$

for all $w \in E^{2}$. The existence of such a γ follows from Condition (3) and the uniform continuity of $f(x,(i-1) / i)$. Let δ be a positive number so small that for each set S of diameter $<\delta, d(f(S,(i-1) / i))<\varepsilon_{i}$. It follows from Theorem 3.1 that there is an isotopy

$$
\mu_{t}(x) \quad\left(x \in F^{3} \times E^{2},(i-1) / i \leq t \leq i /(i+1)\right)
$$

and an integer $n_{i+1}=n_{i}+4$ such that

$$
\begin{aligned}
& \mu(i-1) / i(x)=x \\
& \mu_{t}(x)=x \text { unless } x \in\left(T_{n_{i}} \times E^{2}\right)-\left(z \times E^{2}\right)
\end{aligned}
$$

μ_{t} moves no point with respect to the E^{2} factor by more than the minimum of (γ, δ),
$d\left(\mu_{i /(i+1)}\left(T_{n_{i+1}} \times w\right)\right)<\delta$, and
$\mu_{i /(i+1)}$ is uniformly continuous.
Then

$$
f\left(\mu_{t}(x),(i-1) / i\right)=f(x, t)((i-1) / i \leq t \leq i /(i+1))
$$

The $f(x, t)\left(x \in F^{3} \times E^{2},(i-1) / i \leq t \leq i /(i+1)\right)$ we have defined satisfies Condition (1) because $\mu_{(i-1) / i}(x)=x$ except possibly on

$$
\left(T_{n_{i}} \times E^{2}\right)-\left(z \times E^{2}\right)
$$

It satisfies Condition (2), since μ_{t} changes E^{2} coordinates $<\delta$, and satisfies Condition (3) because $d\left(\mu_{i /(i+1)}\left(T_{n_{i+1}} \times w\right)\right)<\delta$. It satisfies Condition (4) because

$$
d\left(T_{n_{i}} \times V\left(w, E^{2}, \gamma\right)\right)<2 \varepsilon_{i-1}
$$

and μ_{t} moves no point along the E^{2} factor by more than γ. Finally, it satisfies Condition (5) because $\mu_{t}\left(F^{3} \times w\right) \subset F^{3} \times V\left(w, E^{2}, \delta\right)$ and

$$
\begin{aligned}
f\left(F^{3} \times w, i /(i+1)\right) & =f\left(\mu_{i /(i+1)}\left(F^{3} \times w\right),(i-1) / i\right) \\
& \subset f\left(F^{3} \times V\left(w, E^{2}, \epsilon_{i}\right),(i-1) / i\right)
\end{aligned}
$$

4. The main results

Theorem 4.1. Suppose F^{3} is an arbitrary homotopy 3 -cell, and

$$
h: S^{2} \rightarrow \operatorname{Bd} F^{3}
$$

is a homeomorphism carrying S^{2} onto $\mathrm{B} \mathrm{d}^{3}$. Then, given $\varepsilon>0$, there exist a point $z \epsilon \operatorname{int} F^{3}$ and a homeomorphism

$$
H:\left(v * S^{2}\right) \times E^{2} \rightarrow F^{3} \times E^{2}
$$

such that $H \mid S^{2} \times E^{2}=h \times \operatorname{id}_{E^{2}}, H(v, w)=(z, w)$ for all $w \in E^{2}$, and

$$
\left\|w-P_{2} \circ H(x, w)\right\|<\varepsilon
$$

for all $w \in E^{2}$.
Proof. Let K and $z \in \mathrm{Bd} K$ denote the subcomplex of int F^{3} and the point of int F^{3} described in $\S 2$ and used in Theorem 3.2. If G^{\prime} and G are the decompositions of F^{3} and $F^{3} \times E^{2}$, as given just before the proof of Theorem 3.2, then $F^{3} / G^{\prime}=F^{3} / K \approx z * \mathrm{Bd} F^{3}$ and

$$
\left(F^{3} \times E^{2}\right) / G \approx\left(F^{3} / G^{\prime}\right) \times E^{2}=\left(F^{3} / K\right) \times E^{2} \approx\left(z * \mathrm{Bd} F^{3}\right) \times E^{2}
$$

Let $\tilde{h}:\left(v * S^{2}\right) \times E^{2} \rightarrow\left(F^{3} / K\right) \times E^{2}$ denote the homeomorphism defined by

$$
\tilde{h}(((1-t) x+t v), w)=((1-t) h(x)+t\{K\}, w)
$$

where $x \in S^{2}, w \in E^{2}$, and $\{K\} \in F^{3} / K$ corresponds to $z \in z * \operatorname{Bd} F^{3}$ under the natural homeomorphism $z * \operatorname{Bd} F^{3} \approx F^{3} / K$. Then

$$
\tilde{h} \mid S^{2} \times E^{2}=h \times \operatorname{id}_{E^{2}}, \tilde{h}(v, w)=(\{K\}, w)
$$

and

$$
\tilde{h}\left(\left(v * S^{2}\right) \times w\right)=\left(F^{3} / K\right) \times w
$$

Let $f: F^{3} \times E^{2} \rightarrow F^{3} \times E^{2}$ denote the map of $F^{3} \times E^{2}$ onto itself given by Theorem 3.2, where $f=f(, 1)$ described there. We see that $f=$ identity on $\left(\mathrm{Bd} F^{3} \times E^{2}\right) \cup\left(z \times E^{2}\right)$ and $\left\|w-p_{2} \circ f(x, w)\right\|<\varepsilon$ for all $w \in E^{2}$. Also, $G=\left\{f^{-1}(x, w) \mid(x, w) \in F^{3} \times E^{2}\right\}$ and hence f factors through
$\left(F^{3} / K\right) \times E^{2} . \quad$ That is, if

$$
\rho: F^{3} \times E^{2} \rightarrow\left(F^{3} / K\right) \times E^{2}
$$

is the quotient map, then $g=f \circ\left(\rho^{-1}\right)$ is a 1-1 continuous map taking $\left(F^{3} / K\right) \times E^{2}$ onto $F^{3} \times E^{2}$. Since $\left(F^{3} / K\right) \times E^{2}$ is a manifold ($\approx\left(v * S^{2}\right) \times E^{2}$) and g is a compact map (preimage of compact sets compact), g is a homeomorphism carrying $\left(F^{3} / K\right) \times E^{2}$ onto $F^{3} \times E^{2}$. We note, $g=$ identity on $\operatorname{Bd} F^{3} \times E^{2}, g(\{K\}, w)=(z, w)$ and

$$
g\left(\left(F^{3} / K\right) \times w\right) \subset F^{3} \times V\left(w, E^{2}, \varepsilon\right) .
$$

It follows immediately that $H=g \circ \tilde{h}$ is the desired homeomorphism carry$\operatorname{ing}\left(v * S^{2}\right) \times E^{2}$ onto $F^{3} \times E^{2}$.

Corollary 4.2. If F^{3} is an arbitrary homotopy 3 -cell, and

$$
h: S^{2} \rightarrow \mathrm{Bd} F^{3}
$$

is a homeomorphism carrying S^{2} onto $\mathrm{Bd} F^{3}$, then $\Sigma^{2} h: \Sigma^{2} S^{2} \rightarrow \Sigma^{2}\left(\mathrm{Bd} F^{3}\right)$ extends to a homeomorphism $\hat{H}: \Sigma^{2}\left(v * S^{2}\right) \rightarrow \Sigma^{2} F^{3}$.

The proof follows immediately from Theorem 4.1 and Lemma 2.2.
Corollary 4.3. If M^{3} is an arbitrary homotopy 3 -sphere and

$$
h: S^{2} \rightarrow N^{2} \subset M^{3}
$$

is a homeomorphism carrying S^{2} onto the locally flat submanifold N^{2} of M^{3}, then there exists a homeomorphism

$$
H:\left(\Sigma^{2}\left(v_{1} * S^{2} * v_{2}\right), \Sigma^{2} S^{2}\right) \rightarrow\left(\Sigma^{2} M^{3}, \Sigma^{2} N^{2}\right)
$$

such that $H \mid \Sigma^{2} S^{2}=\Sigma^{2} h$.
The proof follows immediately from Corollary 4.2 , since N^{2} decomposes M^{3} into the union of two homotopy 3 -cells F_{1}^{3} u F_{2}^{3}, where $F_{1}^{3} \cap F_{2}^{3}=N^{2}$. That is, if $\hat{H}_{i}: \Sigma^{2}\left(v_{i} * S^{2}\right) \rightarrow \Sigma^{2} F_{i}^{3}(i=1,2)$ is the homeomorphism extending $\Sigma^{2} h$, then H is defined by

$$
H \mid \Sigma^{2}\left(v_{i} * S^{2}\right)=\hat{H}_{i} \quad(i=1,2) .
$$

5. Some corresponding results involving homotopy 4 -cells and 4 -spheres

Clearly, the proof of Theorem 3.1 applies, as given, to PL homotopy 4cells F^{4}, where $\mathrm{Bd} F^{4}$ is a homotopy 3 -sphere. Moreover, it is not necessary to assume that F^{4} is a $P L 4$-manifold. That is, Lemma 2.1 holds for all compact contractible topological n-manifolds $M^{n}(n \geq 5)$, since we really only need (and, in fact, only use) the hypothesis that int M^{n} is a $P L$ manifold (and this fact follows from [3]). Also, by [3], int $F^{4} \times E^{2} \approx E^{6}$. Thus, int $F^{4} \times E^{2}$
has a $P L$ structure and the interior of any compact 6 -manifold in int $F^{4} \times E^{2}$ has an induced $P L$ structure. Therefore, the following result, corresponding to Theorem 3.2, will also hold.

Theorem 5.1. Suppose F^{4} is an arbitrary homotopy 4-cell such that BdF ${ }^{4}$ is a homotopy 3-sphere. Also, suppose that N is a collared neighborhood of $\mathrm{B} \mathrm{d} F^{4}$ in F^{4}. For convenience, we identify N with $\operatorname{Bd} F^{4} \times[0,1]$, with $x \in \operatorname{Bd} F^{4}$ corresponding to $(x, 0)$ (such an N exists by [2]). If K is the subset of int F^{4} defined by

$$
K=F^{4}-\left(\mathrm{Bd} F^{4} \times\left[0, \frac{1}{2}\right)\right)
$$

G^{\prime} is the decomposition of F^{4} given by

$$
G^{\prime}=\left\{g^{\prime} \mid g^{\prime} \text { is a point of } F^{4}-K \text { or } g^{\prime}=K\right\}
$$

and G is the decomposition of $F^{4} \times E^{2}$ given by

$$
G=\left\{g=g^{\prime} \times w \mid g^{\prime} \in G^{\prime} \quad \text { and } \quad w \in E^{2}\right\}
$$

then, given $\varepsilon>0$, there is a pseudo-isotopy f_{t} of $F^{4} \times E^{2}$ onto itself such that
(a) $f_{0}=$ identity,
(b) for each fixed $t<1, f_{t}$ is a homeomorphism of $F^{4} \times E^{2}$ onto itself,
(c) for each $t(0 \leq t \leq 1) f_{t}=$ identity on $\left(F^{4}-V\left(K, F^{4}, \varepsilon\right)\right) \times E^{2}$ and changes E^{2} coordinates $<\varepsilon$, and
(d) f_{1} takes $F^{4} \times E^{2}$ onto itself and each element of G onto a distinct point.

Remark 5.2. In [5], we show that an analogous result holds for $F^{4} \times E^{1}$ (where E^{1} replaces E^{2} above, and F^{4} is an arbitrary $P L$ homotopy 4 -cell such that $\mathrm{Bd} F^{8}$ is a homotopy 3 -sphere). Since int $F^{4} \times E^{1} \approx E^{5}$ [3], we also did not really need the fact that F^{4} was a $P L 4$-manifold, and this corresponding result, in [5], was used to show that $\Sigma\left(\operatorname{Bd} F^{4}\right) \approx S^{5}$.

Theorem 5.2. Suppose F^{4} is an arbitrary homotopy 4 -cell such that $\mathrm{Bd} F^{4}$ is a homotopy 3-sphere. Then, given $\varepsilon>0$, there exists a homeomorphism h carrying ($v * \operatorname{Bd} F^{4}$) $\times E^{2}$ onto $F^{4} \times E^{2}$ such that

$$
\left\|w-p_{2} \circ h(x, w)\right\|<\varepsilon \quad \text { for all } w \in E^{2}
$$

and $h \mid \mathrm{B} \overline{\mathrm{F}}^{4} \times E^{2}=$ "identity". Furthermore, h induces a homeomorphism

$$
H: \Sigma^{2}\left(v * \operatorname{Bd} F^{4}\right) \rightarrow \Sigma^{2} F^{4}
$$

such that $H \mid \Sigma^{2} \operatorname{Bd} F^{4}=$ "identity".
Remark 5.3. If we further assume that $\operatorname{Bd} F^{4} \approx S^{3}$, then it follows from [5], when extended by [3], that $\Sigma^{1} F^{4} \approx \Sigma^{1}\left(v * S^{3}\right) \cong I^{5}$. This requires the use of a difficult result of [7]. (By also using [3] and [7], this same result was obtained in [8]. Also, refer to [9].)

Proof. Let g be a homeomorphism of $\mathrm{Bd} F^{4} \times[0,1]$ onto a closed neighbor-
$\operatorname{hood} N$ of $\operatorname{Bd} F^{4}$ in F^{4} such that $g(x, 0)=x \epsilon \operatorname{Bd} F^{4} \subset N \subset F^{4}[2]$. Let

$$
K=F^{4}-g\left(\mathrm{Bd} F^{4} \times\left[0, \frac{1}{2}\right)\right)
$$

By Theorem 5.1, there exists a map f_{1} taking $F^{4} \times E^{2}$ onto itself such that $f_{1}=$ identity on $\left(F^{4}-g\left(\operatorname{Bd} F^{4} \times\left[0, \frac{1}{4}\right)\right)\right) \times E^{2}, f_{1}$ changes E^{2} coordinates $<\varepsilon$, and f_{1} factors through $\left(F^{4} / K\right) \times E^{2}$ (i.e. $\left\{f_{1}^{-1}(x, w) \mid x \in F^{4}, w \in E^{2}\right\}=G$, as defined in Theorem 5.1).

If $\rho: F^{4} \times E^{2} \rightarrow\left(F^{4} / K\right) \times E^{2}$ is the quotient map, then

$$
\tilde{h}=f_{1} \circ \rho^{-1}:\left(F^{4} / K\right) \times E^{2} \rightarrow F^{4} \times E^{2}
$$

is a 1-1 continuous compact map carrying $\left(F^{4} / K\right) \times E^{2}$ onto $F^{4} \times E^{2}$ such that $\tilde{h}=$ identity on $\operatorname{Bd} F^{4} \times E^{2}$ and

$$
\tilde{h}\left(\left(F^{4} / K\right) \times w\right) \subset F^{4} \times V\left(w, E^{2}, \varepsilon\right)
$$

Since $f=$ identity on $\left\{\right.$ a neighborhood of $\left.\mathrm{Bd} F^{4}\right\} \times E^{2}$ and f is a compact map, \tilde{h} is a homeomorphism. Let k denote the natural homeomorphism carrying $\left(v * \operatorname{Bd} F^{4}\right) \times E^{2}$ onto $\left(F^{4} / K\right) \times E^{2}$ (i.e.

$$
k\left(\left(v * \operatorname{Bd} F^{4}\right) \times w\right)=\left(F^{4} / K\right) \times w
$$

with $k((v, w))=(\{K\}, w)$ and $k \mid \operatorname{Bd} F^{4} \times w=$ identity $)$. The desired homeomorphism

$$
h:\left(v * \operatorname{Bd} F^{4}\right) \times E^{2} \rightarrow F^{4} \times E^{2}
$$

is given by $h=\tilde{h} \circ k$.
It follows by Lemma 2.2, that h induces a homeomorphism

$$
H: \Sigma^{2}\left(v * \operatorname{Bd} F^{4}\right) \rightarrow \Sigma^{2} F^{4}
$$

such that $H \mid \Sigma^{2} \mathrm{Bd} F^{4}=$ identity.
Corollary 5.3. If $\tilde{k}: S^{3} \times E^{2} \rightarrow \operatorname{Bd} F^{4} \times E^{2}$ is any homeomorphism carrying $S^{3} \times E^{2}$ onto $\operatorname{Bd} F^{4} \times E^{2}$ that is bounded on the E^{2} factor, then \tilde{k} induces (by Lemma 2.2) a homeomorphism $k: \Sigma^{2} S^{s} \rightarrow \Sigma^{2}\left(\mathrm{Bd} F^{4}\right)$ such that $k \mid \Theta^{1}=$ identity (recall Θ^{1} is the suspension circle of each set), and k extends to a homeomorphism $K: \Sigma^{2}\left(v * S^{3}\right) \rightarrow \Sigma^{2} F^{4}$.

Proof. Since

$$
\Sigma^{2}\left(v * S^{3}\right)=v *\left(\Sigma^{2} S^{3}\right) \quad \text { and } \quad \Sigma^{2}\left(v * \operatorname{Bd} F^{4}\right)=v *\left(\Sigma^{2} \mathrm{~B} \mathrm{~d} F^{4}\right)
$$

$k: \Sigma^{2} S^{3} \rightarrow \Sigma^{2}\left(\operatorname{Bd} F^{4}\right)$ extends to a homeomorphism

$$
f=v * k: v *\left(\Sigma^{2} S^{3}\right) \rightarrow v *\left(\Sigma^{2} \operatorname{Bd} F^{4}\right)
$$

We define $K: \Sigma^{2}\left(v * S^{3}\right) \rightarrow \Sigma^{2} F^{4}$ by $K=H \circ f$, where

$$
H: \Sigma^{2}\left(v * \operatorname{Bd} F^{4}\right) \rightarrow \Sigma^{2} F^{4}
$$

is the homeomorphism of Theorem 5.2. Since $H \mid \Sigma^{2} \mathrm{~B} d F^{4}=$ identity, $K\left|\Sigma^{2} S^{3}=f\right| \Sigma^{2} S^{3}=k$.

Corollary 5.4. If N^{3} is a homotopy 3-sphere contained as a locally flat submanifold of the homotopy 4 -sphere M^{4}, then there exists a homenmorphism $H:\left(\Sigma^{2}\left(v_{1} * S^{3} * v_{2}\right), \Sigma^{2} S^{3}\right) \rightarrow\left(\Sigma^{2} M^{4}, \Sigma^{2} N^{3}\right)$ such that $H \mid \Theta^{1}=$ identity.

This follows immediately from Corollary 5.3, just as Corollary 4.3 followed from Corollarv 4.2.

References

1. R. H. Bing, An alternative proof that 3 -manifolds can be triangulated, Ann. of Math., vol. 69 (1959), pp. 37-65.
2. M. Brown, Locally flat embeddings of topological manifolds, Ann. of Math., vol. 75 (1962), pp. 331-341.
3. E. H. Connell, A topological \boldsymbol{H}-cobordism theorem for $n \geq 5$, Illinois J. Math., vol. 11 (1967), pp. 300-309.
4. Robert D. Edwards and Robion C. Kirby, Deformations of spaces of Imbeddings, Ann. of Math., vol. 93 (1971), pp. 63-88.
5. L. C. Glaser, On double suspensions of certain homotopy 3 -spheres, Ann. of Math., vol. 85 (1967), pp. 494-507.
6. - On suspensions of homology spheres, mimeographed notes, University of Utah, 1970, pp. 1-104.
7. Robion C. Kirby, On the set of non-locally flat points of a submanifold of codimension one, Ann. of Math., vol. 88 (1968), pp. 281-290.
8. P. W. Harley, On suspending homotopy spheres, Proc. Amer. Math. Soc., vol. 19 (1968), pp. 1123-1124.
9. Ronald Rosen, Concerning suspension spheres, Proc. Amer. Math. Soc., vol. 23 (1969), pp. 225-231.
10. L. C. Siebenmann, "Are non-triangulable manifolds triangulable?" in Topology of manifolds, Markham, Chicago, 1969, pp. 77-84.
11. J. Stallings, The piecewise linear structure of Euclidean space, Proc. Cambridge Philos. Soc., vol. 58 (1962), pp. 481-488.
12. J. H. C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc., vol. 45 (1939), pp. 243-327.
13. V. K. Gugenheim, Piecewise linear isotopy and embedding of elements and spheres:I, Proc. London Math. Soc., vol. 3 (1953), pp. 29-53.
14. R. H. Bing, The cartesian product of a certain non-manifold and a line is E^{4}, Ann. of Math., vol. 70 (1959), pp. 399-412.

The Institute for Advanced Study
Princeton, New Jersey
The University of Utah
Salt Lake City, Utah

[^0]: Received April 27, 1970.
 ${ }^{1}$ Work partially supported by a National Science Foundation grant.
 ${ }^{2}$ Alfred P. Sloan Fellow.
 ${ }^{3}$ After this paper was written, Siebenmann informed the author that he and Kirby also know an "elementary" proof of this result using engulfing and an infinite meshing process of Černavskiy; however, this also is not written down anywhere.

