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1. Introduction and definitions
In [5], the author proved that if H is a PL homotopy 3-sphere bounding a

compact contractible PL 4-manifold, then the double suspension of H is
topologically homeomorphic to the 5-sphere S. (We write this as 2H S,
where 2; denotes double suspension and means topologically homeo-
morphic.) In [10], Siebenmann gives an elegant proof that 2H S,
for any homotopy 3-sphere H. However, this proof is somewhat unsatis-
factory in that it has to make use of some deep results of the Kirby-Sieben-
mann triangulation theory, and a key theorem needed to obtain this result
was given merely by a reference to a paper by Kirby and Siebermann, which
apparently was not even in preprint form at the time. In [6], the author
made use of a completely geometrical, but quite ivolved, argument, outlined
to him by Kirby, to show that if F is a homotopy 3-cell, then 2F I.
This requires a long and complicated argument, which depends quite heavily
on the full work of [4]. In an addendum to [10], Siebenmann remarks that
the same proof used to show that 2H S, also works to show that 2F I.

Here, we give an easy decomposition proof that 2.F Ia, for any homotopy
3-cell F. The proof only requires a simple application of the engulfing
lemma of [11], plus the fact that all homotopy 3-cells can be triangulated [1]
and some basic fundamentals of geometric PL theory. Moreover, by using
the collaring theorem of [2] and the topological h-cobordism theory of [3]
(which itself only requires [2] and the engulfing lemma), the proof given here
actually can be used to show that 2F I, without even using the fact that
3-manifolds can be triangulated (also refer to the remarks at the beginning
of 5).

In Corollary 4.3, we show that if M is an arbitrary homotopy 3-sphere and
h S --. N M is a homeomorphism carrying S onto the locally flat sub-
manifold N of M, then there exists a homeomorphism

H (2(v S v.), 2S) --. (2M, 2N)
such that H 2S 2h (here denotes join and 2h ZS --. 2hr denotes
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the natural homeomorphism extending h S --. N and carrying the suspen-
sion circle of 2fS", by the identity map, to the suspension circle of

In Corollary 5.4, we show that if N is a homotopy 3-sphere contained as a
locally flat submanifold of the homotopy 4-sphere M4, then there exists a
homeomorphism

H Yf(v S v2), y,2S3) ..., ( ,2M4 2N)
such that H I identity (here denotes the suspension circle of each
pair).
We now give a few additional definitions. We will use _.-- to denote PL

(or combinatorially) homeomorphic, and as we have already noted, means
topologically homeomorphic. By a homotopy 3-sphere M (3-cell F), we
will mean a closed (compact) topological 3-manifold (with nonempty bound-
ary) such that rx(M) 0 (F is contractible). By a homotopy 4-sphere
M (4-cell F), we will mean the above with 4 replacing 3, and (M*) 0
(i 1, 2, 3) replacing r(M8) 0.

If X is a metric space with metric p and Z is subset of X, then, given
e > 0, we will use V(Z, X, e) to denote the set {x e X p(x, Z) < e}. Also,
if Z is a compact subset of X, we will use d(Z) to denote the diameter of Z, i.e.

d(Z) max {p(zl, z2) zl, z e Z}.

If K is a compact subset of Euclidean n-space E, we define 2fK and
explicitly in 2. Finally, if N is a closed submanifold of the closed manifold
M, we say N is locally flat in M if, for every x N, there exists an open set
U c M containing x such that (U, U [’l N) (E, E).

2. Some preliminary notation and lemmas
Let F be a homotopy 3-cell and let N’(BdF, F8) denote the regular neigh-

borhood of BdF S in F under the second barycentric subdivision of F8.
By [12], N(BdF, F8) BdF )< [0, 1]. We identify N(BdF, F) with
BdF >( [0, 1], so that x BdF corresponds to (x, 0) e BdF )< [0, 1]. Let
h denote a 2-simplex in BdF and let {A} denote a sequence of concentric
2-simplexes in A2 so that a c int z2, zX+ int Z for each i, and Vl_la {p}
is the barycenter of . For each i 1, 2, let

T, F- (BdF X [0, 1/2- (1/2),+1)),
B, a, X [1/2 1/2 + (1/2)’+’],
F, T {int B u tint A, X (1/2 (1/2)’+)]}

and
K F (BdF X [0, 1/2)).

We note, for each i, T B u F,

B n F BdB n BdF

(Bda X [1/2 (1/2),+1, 1/2 + (1/2)+1]) u (a, X (1/2 + (1/2)+1)
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is a combinatorial 2-cell which we denote by C, T1 cint F, T+1 c int T,
Bi+lcintB,K f’l=iTandz (p, 1/2) f’l_lB. SinceBnF
BdB n BdFi C is a 2-cell, Fi Ti F3._-- Let D denote the 2-cell

BdF,- int C BdT- (int h X (1/2- (1/2)+1)).
We now quote an elementary lemma proved in [5]. This only requires a

simple application of the engulfing lemma of [11].

LEMMA 2.1. Suppose M is a compact contractible combinatorial 5-manifold,
U is a contractible open subset of BdM, is a positive number, and Z is a closed
subset of M such that Z n BdM U. If there exists a connected open subset
W of BdM missing Z n BdM so that rl(W) 0 and U u W BdM, then
there is a piecewise linear isotopy f (0

_
<_ 1) taking M onto itself such that

(1) fo identily,
(2) ft identity on BalM for all t, and
(3) f(Z) c V(U, M, 3).

Suppose K is u finite complex or an arbitrary compact subset of E". Let
q and -q (i 1 or 2) be the points of E given by ql (1, 0), q (0, 1),
-qi (-1, 0), and -q (0, -1). Let . denote the origin of E" and for
i 1 or 2, let u and v be the points of E"+ E" X E
(0,, -q) and v (0,, q). By the double suspension of K(-- K X
in E+, we will mean the complex or compact set 2K E"+ given by

2:K u * (Ul * K Vl) * v,

where denotes join (i.e. if A and B are two compact subsets of E, then

A.B {(1-t)a+tb[aeA, beB, andte[0,1]}).

Let 1 denote the polyhedral 1-sphere in 0. X E E" X E given by

O u (u u Vl) v.
Then

2;K K .
Let S denote the unit 1-sphere in 0. X E. Let /" --. S denote the
projection of 1 onto S from the origin (0., 0.) of 0. X E, and define

PK K * --* K * S

to be the natural homeomorphism sending the interval x y K O
(xeK, yO) to x,p(y) c K,81 (i.e. (1 t)x + ty goes to
(1- t)x + tp(y) (0

_ _
1)).

Now every point of (K S1) S has a unique representation in the form
(x, ty), where x e K, y e S and e [0, 1). That is,

(x, ty) (1 t)x+ tyex,y and (x, 0y) (x, 0) xeK.

Let K be the homeomorphism carrying K X E onto (K S1) S defined
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by sending
(x,w) eKXE to

where w (wl, w) e E and +
LEMMA 2.2 Suppose K and L are compact subsets of E X 02 c E X E,

and ZK and ZL are the double suspensions of K and L, respectively, as defined
above. If f K X E --* L X E is a continuous map carrying K X E onto
L X E such that f is bounded on the E factor (i.e. if p L X E -- E, then
w P2 o f(x, w) < constant), then f induces a continuous map g K
ZL such that g 1 identity. Furthermore, iffor some subset B K, f B X E
is of the form] X ida2, where ] B L, then g ZB ], i.e. if x y e S 1,
then

g((1 t)x + ty) (1 t)](x) + ty el(x) y.

Proof. Since f" K X E --* L X E is bounded on the E factor, we claim
that the map (ZK) 0 --, (2L) 01, defined as the composition

(ZK) 01 (K 01 01 pK (K S S (I’K)-I

K X E f L X E OL S S)(L.

(L.01) O (2L) 01,
extends by the identity map on 0 to a continuous map g 2*K -, 2L.
We see this as follows: Suppose [(x, t,y}} (i 1, 2, 3, is a sequence

of points of (K S ) S tending to y0 e S1. We note that t} --. 1, y} is a
sequence of points in S converging to y0, and [x,} is a sequence of points of
K. We consider a subsequence (x, t:y}} of (x, ty)} so that {x} --. x0 e K
and {y} --, y0e S. Then {(-l)(x, t:y}} is an unbounded sequence of
K X E of the form (x, sy)}, where {s.} . Let

where

and

f(z, ,w) (z, .)

p o f(xl sT) z P2 o f(xl siY)

(p o f(x sy) )/) e S1.
Since II sy < M, -- oo, and {11 Y ]1} 0. Thus

is a sequence in (L SI) S converging to y0 e S1, and our claim follows.
The final conclusion follows easily from the manner in which the various

maps defining are defined.

3. A shrinking theorem and a pseudo-isotopy
THEOREM 3.1. Suppose F is a homotopy 3-cell and {T} is the sequence of
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closed neighborhoods enclosing the contractible complex K in int F given in 2.
Also, suppose z 1B is the point of BdK as given in 2. Then for each
i and 0 there is a piecewise linear isotopy of F X E onto itself such that
o identity, , is uniformly continuous, and

(1) t* identity on {(F int T) X E} u {z X E} for each t,
(2) changes E coordinates < e, and
(3) for each w e E, d(t, T+4 X w} < .
Proof. Step 1. Let F be subdivided so as to contain subdivisions of

T+., B+., and F+ as combinatorial submanifolds for j 1, 4. Let
il be a positive number less than (1/2) d(B+l) (a further restriction will be
placed on the size of 1 later). Let D be a combinatorial 3-cell contained in
int Bi+l such that z e int D and d(D) . Since each of D and Bi+ are
combinatorial 3-cells contained in the interior of the combinatorial 3-cell B,
given uny closed neighborhood hr of z in int D, it follows by [13] that there
exists a piecewise linear isotopy f crrying B onto itself such that

f0 identity,

ft identity on/V t BdB for all t,

f(B+) D.

We extend f to all of F by the identity, and we denote the extended
isotopy by f also. Let h,_, be the isotopy of F X E onto itself defined by
h,(x, w) (f(x), w), where x, f(x) e F and w e E. We note that for all
e [0, 1] and w e E, h, crries B {w} onto itself and is the i4entity on
{Nu (F intB)} X lw}. Also, for anyweEand >_ i-l- 1, wehave
d(h,(B X {w})) <

Step 2. For each pair of integers (m, n) and positive number r, let

D((m,n),r) D(a,r) (a (re, n))

denote the 2-cell [m r, m + r] X [n r, n + r] E. Let M. denote the
combinatorial 5-manifold h,(Fi+ X D(a, 1/4)). Let C. be the combina-
torial 4-cell

h,a(C+ X D(a, 1/4))

(recall C+ B+I n F+). Define Z. to be

h.(T,+: X D(a, [) n M.
Since Z. n BdM. (::: int C. and BdM. is simply connected, we can apply

Lemma 2.1. (We can take U and W of Lemma 2.1 to be int C. and

(BdM. int C.) u {an open collar of BdC, in C,},
respectively.) Let t. be a positive number less than d(M) (this number
will also be restricted further later). We note that because of the way that
h. was defined, 2 is independent of the pair of integers (m, n) a. Thus,
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we obtain a piecewise linear isotopy f., taking M onto itself such that

f.,0-- identity,

f,t identity on BdM for all

fa(Z.) V(C M .).

Let h,)be the isotopy of F X E onto itself defined by

h, f, on M for each pair of integers a (m, n) E

identity outide U{M a (m, n)}.
We note that for each w e E, h, identity on h,(B+ X {w} ). Mso, for

each [0, 1], ,t moves no E coordinates by more than ], as measured along
either is of E. Furthermore, for each pair of integers (m, n) a,

ha(h,x(T,+ X D(a, )) V(h,,,(B+ X D(a, )), F X E, 8).

In particar,

d{ha h,,(f,+ X Bd (D(a, ) < 8, + 1 + 2,

and h 2, h, f (of Step 1) X identity on B+
Step 3. This step will be quite similar to Step 2. For each pair of integers

(m, n) #, letD be the 2-cell

Ira- ,m+l X[n

and let D] be the 2-cell

[m+,m+ 1 ] X In- ,n + ].

We now want to consider the 5-mafolds

M h2a hla(F,+2XD) and M

Let C and C be the contractible 4-manifolds in BdM and in Bd i ,re-
spectively, ven by

C+ D$}
{F,+ [ , + ] {n + }}),

C+ D}
{F,+ { + } In , n + 1} ).

It follows from last comment of Step 2, that each of C nd C hve di-
ameter less thn ( 1 22) ( 1) ( 1 22) 3 3 42.

Let Z and Z be defined by

z h,, h,,( T,+ [ , + ] In + , n + E) "M,
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Then Z n BdM in C ndZ n BdM int C. We gsin spply
Lemm 2.1, where U nd W of Lemm 2.1 correspond to int C nd

(BdM int C,) {n open collr of Bd

a x or y. Let be positive number less than both d(M) and d(M).
We ll add a further restriction in Step 5.
Thus by Lemma 2.1, for a x or y, we obtain a piecese linear isotopy

f. tangM onto itself such that

f,.0 identity,

f,. identity on BdM for all t,

fa,.x(Za,) V(C,, M, ).

Let h.t be the isotopy of F X E onto itself defined by

h, f., on Ma. for each pair of integers (m, n) and a x or y

identity outsideu{M. (m,n) anda x or y}.

We note for each w e , ha, identity on ha h,(B+ X {w} ). Hence

ha ha o h, f (of Step 1) X identity on B+ X E.
so, for each e [0, 1], h, changes no E coordinate by more than ], as
measured ong either axis for E. Moreover, for each pair of tegers (m, n)
and a x or y, if. is the 2-cell used in defining Z., then

h,., o ha o h. ( T,+ X) h. o h.(S,+ X) U V(C, M, ,) }.

Step 4. We note, if w e D (a, }) (defined in Step 2), since

h.t identity outside U {Ma]5 (m, n) and a x or y},

ha. o h. o ha(T+a X {w}) ha o ha(T+ X {w} and hence

d(haa o h. o ha(T,+a X {w})) < 5 + 1 + 25.

If w e D,, then it follows from the last comment of Step 3, that

d(h.,.aoha(T+ X {w})) < (5, + 1) + [(3 + 3 + 4) + 28,]

45+44+2a.
For conveence, we ll denote ha ha o h. by Ha. For each pair of in-

tegers (m, n) , let

D [m W , m + 1- ] X [n W , n + 1- ].
Let M Ha(f,+a X D) and let C c BdM be defined by the equation

C H((C+a X D) (F,+a X BdD)).
We note,

SdM int C ga(D+a X D)
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(we recall that D+ Bd F+ int C+a). Thus

Bd C Ha(Bd (Di+3 X D))

is a 3-sphere and C is contractible. Also,

d(C) < (, + /2) + (() + () + 2[ + 4 + + 1)
< 13 + 9 + 86 + 4a.

LetZ (Ha(T+ XD)) nM. ThenZnBdM Candwecan
apply Lemma 2.1 a final time. Let 6 be a positive number less than d(M).
Hence, for y (m, n), we obtain a piecese linear isotopyf. takingM onto
itself such that

f.0 identity,

f. identity on BdM for all t,

f,a(Z,) V(C M ).

Let h. be the isotopy of F X E onto itself defined by

h., f,, on M for each pair of integers (m, n)

identity outside O M (m, n)}.

For each w, contained in E,
h.t identity on Ha(B+ X {w})

and
h,x o H f (of Step 1) X identity on B+ X E.

ForT, {D I (m, n)},

h. o H(T+ X {w}) H(B+ X w}) V(C M ),

for some (m, n). Thus, for w e u {D (m, n) },

d(haoH(T+ X {w})) < + ((13 + 9 + 8 + 4) + 2)

By the first paragraph of Step 4, since h, identity outside {M]?
E (m, n)} ), then(m,n)} if we -(0{ni?=

d(T+ X {w}) < 4 + 4 + 4 + 2.

so h, changes no E by more thun , as measured long either axis of E.
Step 5. We now can obtain the desired isotopy of Theorem 3.1. Let
> 0 be given. We modify our scale on each axis of E so that

1 < ()(/5), and then apply Steps 1-4, where we further restrict the
various ’s used in these steps as follows"

< (I)(/5), < ()(/5), < ()(/5) nd < ()(/5).
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We define the isotopy of F E onto itself by

hl,4 if 0 <: t_<

h2,4-1 o hi,1 if 1/4 _< 1/2,

h3,4_, o h2,1 o hl, if 1/2 __<t _< ,
h,4-3 ha,1 o h2,1 o hla if - _< <_ 1.

Clearly, is well defined and 0 identity. Also, if during each step, we
just don’t arbitrarily define the various f(,.),’s, applying Lemma 2.1 sepa-
rately for each (m, n), but obtain one "model" function via Lemma 2.1 (we
need two such functions in Step 3) and then translate this "model" function
around to obtain the various f(,),’s of the given step, it will follow that, for
each i 1, ..., 4 and e [0, 1], h, is uniformly continuous (also, the diameters
of the various M ’s(..) of a given step would be independent of (m, n) ). Hence,
zl is uniformly continuous.

It is also clear from the way the hi,’s have been defined that

(1) identity on (F -int T) X E2} u {z X ,2} for each t.

Since changes E coordinates ,<3, as measured each axis of if, it follows
that

(2) changes E coordinates < //(3)2 - (3) < 5 < e/13.

the last paragraph of Step 4, we see, for all w E, that

Finally, by

Hence, by the further restrictions on the ’s above, we get that

(3) for each w e E2, d(l(T+ X {w} )) < e,

and this completes the proof of Theorem 3.1.
Let F be an arbitrary homotopy 3-cell and let z e Bd K be the

point z [B as defined in 2. Let G denote the decomposition of F
given by

FG’ {g’ g is point of K or g K}

and let G denote the decomposition of F X E given by

g’ g’ GG {g= Xw] e and wee2}
The following result is modeled after Theorem 3 of [14] and is included for
completeness.

THEOREM 3.2. Suppose F is an arbitrary homotopy 3-cell and G is the de-
composition of F X E defined above. Then, given O, there is a pseudo-
isotopy f(x, t) (x F X E2, 0 <_ <_ 1) ofF E onto itself such that
() f(x, O) is the identity (i.e. f(z., 0) x),
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(b) for eachfixed t < 1, f(x, t) is a homeomorphism of F X E onto itself,
(c) for each t(O <_ <_ 1),f(x, t) identity on

(F V(K,F8,) X E2} ulz X EI
and changes E coordinates , and

(d) f(x, 1) takes F X E onto itself and each element of G onto a distinct
point.

Proof. We will obtain the isotopy promised above by a sequence of appli-
cations of Theorem 3.1. Let {T} be the sequence of compact neighborhoods
in int F enclosing m as given in Theorem 3.1. We suppose 2e ( distance
(K, Bd F). Let el, e, be a sequence of positive numbers such that
-1 " e/2. We will define a monotone increasing sequence nl, n,
of integers and a sequence of isotopies

f(x,t) (xeF X E,O <_ <_ 1/2), f(x,t) (xeFaXE, <_ <_ ]),

such that

T, c V(K, F, ),
f(, o) ,
two adjacent f(x, t)’s agree on their common end,
each f(x, i/(i -t- 1 is uniformly continuous,
(1) f(x, (i 1)/i) f(x,t)((i 1)/i <_ <_ i/(i + 1))except possibly

on (T, E) (z E).
(2) f(x, t)changes E coordinates < e ((i- 1)/i <_ <_ i/(i + 1)),
(3) d(f(T,,+l X w,i/(i- 1))) < eforallweE,
(4) no point moves more than 2e_1 during

f(x, t) ((i- 1)/i <__ <_ i/(i - 1)),
and

(5) f(F X V(w, E, e), (i- 1)/i) f(F X w, i/(i -q- 1)).

Before defining the sequence of f(x, t)’s, we show that the existence of such
a sequence is enough to guarantee the truth of Theorem 3.2. Sincef(x, 0) x,
it follows by (1), thatf(x, t) identity on

{(Fa- T,) XE} u{z XEI (0_<. < 1).

Condition (4) and the above fact, along with the fact that each f(x,//(i + 1
is uniformly continuous, implies that f(x, 1) lira (t --. 1)f(x, t) is a con-
tinuous map of F X E onto itself. Conditions (1) and (2) insure that for
each (0 <_

_
1),

f(x, t) identity on {(F V(K, F, )) X E} t {z X E}
and changes E coordinates ( e.

Condition (3) insures that f(g, 1) is a point for each element g of G. Condi-
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tion (1) implies that, if f(gl, 1) f(g, 1)(gl, g. e G), then each g must be of
the form K w (w e E2, i 1, 2). The reason is as follows. If one of gl or
g2 is a point, say g, then there is an integer i so large that f(x, (i 1)/i) f
(x, 1) in a neighborhood of gl. Finally, Condition (5) implies that no two
points with different w coordinates to into the same point under f(x, 1). That
is, if w w, there is an i such that

+ / -4- < w W111/2
and Condition (5) implies that

f(F r(w, E, + + + ), (i )/i) (F r(w, E, + + ),

i/(i + 1)) f(F X w, 1).

Thus, ](F wl, 1) and f(F X w, 1) lie respectively in the mutually ex-
clusive curved "tubes"

f(F X V(w,E,8), (i- 1)/i) and f(F X V(w,E,8),(i- 1)/i).

The existence of the desired f(x, t) (x e F E, 0 <_ <_ 1/2) and n follow
directly from Theorem 3.1. (Clearly, n exists so that T,,1 c V(K, F, ).
The and i used in Theorem 3.1 is e and n, respectively, and n nl + 4.
We ignore Condition (4), since 0 is not defined.) We now proceed, induc-
tively, to define f(x, t) (i 1)/i <_ _< i/(i + 1) and n+l.
Let, be a positive number so small that

d( T,,, X r(w, E, ") < 2 e_l

for all w e E. The existence of such a , follows from Condition (3) and the
uniform continuity of f(x, (i 1)/i). Let be a positive number so small
that for each set S of diameter < 8, d(f(S, (i 1)/i) < e. It follows from
Theorem 3.1 that there is an isotopy

t(x) (xef X E, (i- 1)/i <_ <_ i/(i + 1))

and an integer n+ n + 4 such that

g(i- 1)/i(x) x,
gt(x) x unless x e (T,,, X E) (z X E),
gt moves no point with respect to the E factor by more than the minimum

of (, ),
d(/(+)(T,,+ X w)) < 8, and
g/(+l) is uniformly continuous.

Then
f((x), (i 1)/i) f(x, t)((i 1)/i <_ <_ i/(i + 1)).

The$(x, t) (x E X E, (i 1)/i <_ <_ i/(i + 1) we have defined satisfies
Condition (1) because (_)(x) x except possibly on

(T,, ) (z F2).



486 LESLIE C. GLASER

It satisfies Condition (2), since # changes E coordinates < , and satisfies
Condition (3) because d(t/+l) (Tn+, w)) < . It satisfies Condition (4)
because

d( T, r(w, , ./)) <
and u moves no point along the E factor by more than ,. Finally, it satisfies
Condition (5) because u(F X w) c F V(w, E, ) and

f(F X w, i/(i - 1)) f(,/(+)(F X w), (i- 1)/i)

f(FX r(w, E, ), (i- 1)/i).

4. The main results
THEOREM 4.1. Suppose F is an arbitrary homotopy 3-cell, and

h S --, BdF

is a homeomorphism carrying So. onto BdF. Then, given > O, there exist a
point z e int F and a homeomorphism

H: v , S) X EFXE
such that H $2 X E h X ides, H(v, w) (z, w) for all w e E, and

]]w-- PoH(x,w) < c

for all w e Eo..
Proof. Let K and z e BdK denote the subcomplex of int F and the point

of int F described in 2 and used in Theorem 3.2. If G and G are the de-
compositions of F and F X E, as given just before the proof of Theorem 3.2,
then F/G F/K z BdF and

(F X E)/G (F/G’) X E (F/K) X E (z, BdF) X E2.
Let (v S) X E -- (F3/K) X Eo. denote the homeomorphism defined by

f( ((1 t)x -4- tv), w) ((1 t)h(x) -I- t{K} w),

where x e So., w e E, and {K} e Fa/K corresponds to z e z BdF under the
natural homeomorphism z BdF Fa/K. Then

)ISXE hXidEs, /(v,w) ({K},w)
and

((v. S X w) (F3/K) X w.

Let f" F X E --* F X E denote the map of F X Eo. onto itself given by
Theorem 3.2, where f f( 1) described there. We see that f identity
on (BdF X Eo.) u (z X E) and ]lw pof(x, w)[[ < for allweE2.
Also, G {f-(x, w) (x, w)eF3 X Eo.} and hence f factors through
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(F/K) X E. That is, if

o F X E-- F/K) X E

is the quotient map, then g f o (p-) is a 1-1 continuous map taking
(F/K) X E onto F X E. Since (F/K) E is a manifold
( (v S:) X E) and g is a compact map (preimage of compact sets com-
pact), g is homeomorphism crrying (Fa/K) X E onto F X E. We note,
g identity on BdF X E, g({K}, w) (z, w) and

g( (Fa/K) X w) F X V(w, E, ).

It follows immediately that H g o is the desired homeomorphism carry-
ing(v.S) X EontoF X E.
Cononv 4.2. If F is an arbitrary homotopy 3-cell, and

h S -* BdF

is a homeomorphism carrying S onto BdF, then Zh" ZS --. 2f(BdF)
extends to a homeomorphism Z(v S) --. ZF.
The proof follows immediately from Theorem 4.1 and Lemm 2.2.

COnOLLAnY 4.3. If M is an arbitrary homotopy 3-sphere and

h S--*N M

is a homeomorphism carrying S onto the locally fiat submanifold N of M,
then there exists a homeomorphism

H (Z2(v $2, v2), 22S) --, (2M3,
such that H Z2S Z2h.
The proof follows immediately from Corollary 4.2, since N decomposes M

into the union of two homotopy 3-cells F1 F, where F a F N2. That
2is, if / 2f(v, --, 2; F (i 1, 2) is the homeomorphism extending

Zh, then H is defined by

H IZ2(v,,S2) /, (i 1,2).

5. Some corresponding results involving homotopy 4-cells
and 4-spheres

Clearly, the proof of Theorem 3.1 applies, as given, to PL homotopy 4-
cells F, where BdF is a homotopy 3-sphere. Moreover, it is not necessary to
assume that F is a PL 4-manifold. That is, Lemma 2.1 holds for all compact
contractible topological n-manifolds M (n _> 5), since we really only need
(and, in fact, only use) the hypothesis that int M" is a PL manifold (and
this fact follows from [3]). Also, by [3], int F E E. Thus, int F X E
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has a PL structure and the interior of any compact 6-manifold in int F X E2

has an induced PL structure. Therefore, the following result, corresponding
to Theorem 3.2, will also hold.

THEOREM 5.1. Suppose F is an arbitrary homotopy 4-cell such that BdF is
a homotopy 3-sphere. Also, suppose that is a collared neighborhood of BdF
in F. For convenience, we identify 1 with BdF X [0, 1], with x e BdF
corresponding to (x, O) (such an 1 exists by [2]). If K is the subset of int F
defined by

g F- (BdFX [0,1/2)),

G’ is the decomposition of F given by

G’ g’ g’ is a point of F K or K},

and G is the decomposition of F X E given by

g’ g’ G’G {g--" Xw] e and weE},
then, given e > O, there is a pseudo-isotopy f of F X E onto itself such that

a f identity,
(b) for eachfixed < 1, f is a homeomorphism of F X E onto itself,
(c) for each (0 <_ <_ 1) f identity on (F V(K, F, e)) X E

and changes E coordinates < e, and
(d f takes F X E onto itself and each element of G onto a distinct point.

Remark 5.2. In [5], we show that an analogous result holds for F X E
(where E replaces E above, and F is an arbitrary PL homotopy 4-cell such
that BdF is a homotopy 3-sphere). Since int F X E E [3], we also did
not really need the fact that F was a PL 4-manifold, and this corresponding
result, in [5], was used to show that (BdF) S.
THOaEM 5.2. Suppose F is an arbitrary homotopy 4-cell such that BdF

is a homotopy 3-sphere. Then, given e > O, there exists a homeomorphism h
carrying (v . BdF) X E onto F X E such that

w p o h(x, w) < e for all w e E’
and h]BdF X E "identity". Furthermore, h induces a homeomorphism

H 2 (v BdF) -- 2Esuch that H 2BdF "identity".

Remark 5.3. If we further assume that BdF Sa, then it follows from
[5], when extended by [3], that 2F 2(v. Sa) I. This requires the
use of a difficult result of [7]. (By also using [3] and [7], this same result was
obtained in [8]. Also, refer to [9].)

Proof. Let g be a homeomorphism of BdF X [0, 1] onto a closed neighbor-
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hood N of BdF in F such that g(x, O) x e BdF N I [2]. Let
g F-g(BdF X [0,1/2)).

By Theorem 5.1, there exists a map f taking F X E onto itself such that
f identity on (F g(BdF X [0, ))) X E,f changes E" coordinates < e,
andf factors through (F/K) X E" (i.e. {f(x, w) x e F, w E} G, as de-
fined in Theorem 5.1).

FIf p X E -- (I/K) X E is the quotient map, then

f ,, p-’ F’/g) X E F X E

is a 1-1 continuous compact map carrying (F/K) X E onto F X E" such
that identity on BdF X E and

( (F/K) w) c F’ V(w, E, e).

Since f identity on { neighborhood of BdF} X E and f is a compact mp,
is a homeomorphism. Let k denote the natural homeomorphism carrying

(v. BdF) X E onto (F’/K) X E (i.e.

k((v BdF’) X w) (F/K) X w

with k( (v, w)) ({K}, w) nd k BdF X w identity). The desired
homeomorphism

h" (v.BdF) XE"--*FXE
is given by h o k.

It follows by Lemma 2.2, that h induces a homeomorphism

H" 2"(v BdF) -- 2;"F

such that H 2"BdF identity.

CoonzlV 5.3. If " S X E" BdF X E is any homeomorphism
carrying S X E onto BdF X E that is bounded on the E ]actor, then induces
(by Lemma 2.2) a homeomorphism k" "S 2"(BdF) such that k l)
identity (recall ) is the suspension circle of each set), and k extends to a homeo-
morphism K Z v S -- Z"I.

Proof. Since

2;’(v S") v (2;S) and 2;(v BdF) v (2BdF),
k" 2;"S --, 2;(BdF*) extends to a homeomorphism

f v k v (Z’S") --, v (2;*BdF).
We define K Z"(v S") -- 2"F by K H fi where

H 2"(v BdF’) --, 2;"F

is the homeomorphism of Theorem 5.2. Since H I2;"BdF identity,
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COROLLARY 5.4. If N is a homotopy 3-sphere contained as a locally fiat
submanifold of the homotopy 4-sphere M, then there exists a homeomorphism
H (2;(vl S v.), S3) --. (ZM, N) such that H 01 identity.

This follows immediately from Corollary 5.3, just as Corollary 4.3 followed
from Corollarv 4.2.
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