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1. Introduction
There has been considerable research into the general properties of secondary

and higher order cohomology operations in K-theory [1], [6]. Most of this
has been directed towards the construction of a K-theoretic version of the
Adams spectral sequence.

In the present paper we calculate explicitly with particular operations to
prove the following two theorems"

(-THEOREM I. Let n 1 2 (2r+l) let n > 0 and let 0 e m,,- be such
that E+10 [,+1, .,+1]. Then:

(a) 2qi(0) whereq min ([(k+2)/2],n- r- 1).
(b) /It Oandn 2, k 0.

If r 2 (4),r > 0, andn 5, 7, k <_ 2r + 1.
/fr-- 2 (4),k <_ 2r+2.
/In 7, k_< 9.
Ifn 5, k <_ 5.
/fn=2, k_< 1.

THEOREM II. Suppose " e mn+8’- (Sn), H (-) p, 8j < 2n 3, 2 n T 4j
and r >_ 1. Then 2+- o (E’).

Part (b) of Theorem I is equivalent to a theorem about k-flames on S"
which differs from the best possible result, due to Adams [2], in that the condi-
tion k _< 2r should be replaced by k _< 2r 1 if r - 0, 1 (rood 4) and the ex-
ceptions for n 2, 5, 7 should be removed. Our proof differs from Adams’
in that it is essentially unstable and independent of the topology of stunted
projective spaces. It seems worth noting that Theorem Ib is equivalent to
the best result obtainable by Adams’ method without the use of K0-theory
except for the cases n 2, 5, 7.
Theorem II is of interest when r is large compared to j. In these cases

Mahowald’s results on metastable homotopy [5] leave open the essentiality of

Theorems I and II are both applications of our principal result, Theorem
5.3, which characterizes desuspensions of [+1, .+] in terms of the opera-
tions defined in 2.
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2. The operations 4,,
We work with the functor (X) [X, BU] which may be identified with

K (X) when X has the homotopy type of a finite CW-complex. By taking
limits over finite skeleta, we may define maps

f BU BU

which extend the operations p" to the functor i. We define

BU--BU X BU and B,, BUN BU---,BU

by the formulae

A,, (x) (f (x), f (x)) and B.q (y, z) (] (y) f, (z)).

The minus sign refers to the commutative H-structure on BU.
Since the operations, ( p’) and (bq q), commute, B,q o A.q is null-

homotopic on any finite sub-complex of BU. Since BU has nontrivial homo-
topy only in even dimensions and a CW-structure without odd dimensional
cells, it follows by elementary obstruction theory that B,q A,q is null-
homotopic.

If g e (X) is such that f o g and f’ g are null homotopic, the secondary
composition, .(g) (B,, A,,, g),

is defined in the sense of Toda [7]. ,(g) C: E (EX) and is a coset of

[, (EBU) o Eg - B, o [EX, BU X BU].

We note that (EBU) 0 and

B, o [EX, BU X BU] f o (EX) -t- f o (EX).
In particular, if X has the homotopy type of a finite CW-complex, ,q may
be regarded as a secondary operation on/ (X), defined on

ker (b, p) n ker ( q)

and taking values in/( (EX)/Im (, pn)

_
Im ( q).

The Bott isomorphism fl :/ (X) --,/i (EX) is extended to the functor, ,
by a homotopy equivalence, fl BU --, 2*BU, so that fl (g) is adioint to o g.
Since the operations, o fl and pfl o , are identical on/ (X), it follows by
another elementary obstruction theoretic argument that

Multiplication by p on the right hand side of the equality refers to the H-
structure on 2BU.
PROPOSITION 2.1. (a) If g E, (X) is in the domain of ,q, then (g) is in

the domain of, and pq(,q(g)) c , ((g)).
(b) ,q is additive on its domain.
(c) Iff X’ ---)X then (Ef’)(,,(g)) c ,q(ff (g)).
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Consider the following commutative diagram:

We have made implicit use of the fact that the loop-space is distributive
through Cartesian products. Dropping subscripts, we have (see [7])

pq o (B", As, g) c (pq B, As, g) (B’+1 o (pfl q ), A’, g)

(flB+, (pfl X q) o A, g) (2Bn+, aA+ o , g)

(aB+, A+, g).

An+lBut the first term is adjoint to pq(4;,q(g)) and the last to ,q ((g)).
(b) is proved similarly from a diagram which reflects the fact that A;,q and
B,q are H-maps. We shall not use part (b) in the sequel and the details are
left to the reader. (c) is merely a restatement of one of the 4ementary prop-
erties of secondary compositions.

3. The complexes X. and 2
Let n > 1 and let a e r4. (S2) be such that Ea [2+1, 2+1]. Let X. be

the complex, S u e u e+1 where e and e+1 are attached to S2 by [2, n]
and a respectively. We write h and j for the respective inclusions of Cc,.,..
and C. in X, and i for that of S in C,.,,. We note that the homotopy
type of X. is independent of the choice of a subject to the above condition.

LEMMA 3.1. There is a map

f S4"+ X
and a map

such that

(b)

and

k.2n+2G EC, EX -+ C,.+.,.+,

H+2(C]) Z
G induces isomorphisms

H2+ (S:,+. -- H+ (E2X

2n+2 H4n+4H+(C[+,+,) -- (C], X).

Proof. It is well known that C,.,, has the homotopy type of a (6n 1)-
dimensional skeleton of fS+. Under this identification . (a) evidently cor-
responds to 0[+1, ,+1]. It is easily proved by means of the Serre spectral
sequence that the non-trivial cohomology of the pair (f:S’+, f$2"+1), in
dimensions less than 6n, under the map

2S2+ 22S+,0 b2n-l-2
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is given by Han+2(2s2n+2, 2S+) Z. By the exactness of the EHP se-
quence, the kernel of

is generated by 0[:+, n+]. It follows that C,,(,) X has the homotopy
type of u (6n 1 )-dimensional skeleton of S+. We choose f to be in the
homotopy class corresponding to 0 [+, :+:] under this identification. The
above argument may be iterated to show that C has the homotopy type of
(6n 1)-dimensional skeleton of fiS+. (a) is now immediute and for the
map of (b) we choose the restriction to C, of a cellular upproximtion to the
map from

(ES+, E e2S+) to (S2+, S2+)
which is djoint to the identity map of the pair (S+, 2S+).
We shall write for C and ]c X for the natural inclusion.

4. Computation of R
In the following discussion will denote a generator of

or . an element of infinite order in R (Y) for some space, Y, which has the
property that (ff p") has strictly higher filtration than for each integer
p.

LEMMA 4.1. R (Ct,,,a,) is generated by p and where p may be chosen
to satisfy

k for all k, k( -1." -2

Proof. It is immediate from the exact sequence of the co-fibration

S" Ct,.,,l S

that K (ECt,,,,, 0 and that there is a short exact sequence

0 (z,n) (Ct,.,,.) (’) 0.
Since the Whitehead product is stably trivial, this sequence is stably split over
the operations ff. Since R (Ct,,,) is without torsion, a stable splitting
determines an unstable splitting.

Since the image of the squaring operation in integral cohomology has index
2 in H" (Ct,.,,.) it follows from the multiplicative properties of the Chern
character that " 2p. (#) may now be evaluated from the equation

,- 2x(.)[4]. I
LEMMA 4.2. h maps R (X) isomorphically onto (C,,,,). R (EX) is

generated by +.
Proof. Since d(a) is trivial, so is d(, a) R(C,,,)

Lemmu 4.2 is now immediate from the exact sequence of the co-fibration

C,,, C,,. X.
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LEMMA 4.3. There is a split exact sequence

h o to --, z --+ R (.) --,/ (c,.,,,.) o.
Proof. Co has the homotopy type of S4+ u2 e4"+2. Hence R (Co) Z2

and (EC) O. The exact sequence of Lemma 4.3 follows. It is split
because R (C,.,.I) is free.

We write e R() for the non-trivial element in the kernel of h . We
ite a and a for the images of and p under some splitting of the exact
sequence of Lemma 4.3.

LEMMA 4.4. For odd p, () p. 2() 2
Proof. Let G E. Ct,.+,,+ be the map of Lemma 3.1. Then

G (.+x) # (.) (or # (.), but the sign is immaterial to the argument) and
G (2n+2) (). Then

x . (.) G(x’(.+,)) (-2".+, + ,.+,) -2"() + ().

ButX2B -52. Hence2u. 2.+.

E(C,+.,+) is coreducible. E2G followed by a coreducing map for
E2C,.+,,,.+ is a coreducing map for. Hence a p.forall
k. Since R() lacks odd torsion, it follows that a. p’. for all odd p.

5. wl=ie. of (},,)
LEMMA 5.1. ( p’) () .() for any odd p.

Proof. We may interpret A.q and B}.q as operations from to $ and
back again respectively. Then by the Peterson-Stein formula,

(B,2)(Aa.)) a2(k(.)) 2(.).
But

A.2(.) (0, ) and (Ba)(0, ) (2 2)(0) + ( p")().

Since 0 e (2 2") (0), the lemma follows.

LEMMA 5.2. (pn+ p,)2"+, e ( p) (y).

Proof. The cofibration X +, + S+ induces the exact sequence

K(E,) 0 (EX,) R (S+) R() : R(Z) O.

It is eMdent that, e R (S’+2) maps to and that 2+, R (EX,) maps
to 22.+, (up to an unimportant sign). Here (p’+ p’)N2+, maps to

(P+ p").+, (@ p’)2"+,.

Thus by definition (p+ p’)2"+, e ( p’) ().
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TEORE 5.3. 1/2 (p’+ p").+ e (,) (#.) Jor all odd p.

Proof. By Lemmas 5.1 and 5.2,

1/2 (p’+ p).+ e,(.).
By Prop. 2.1 c,

1/2(p2n+I p,)Ejt(g2,,/l) e @,(jIg.) in K(C).
Theorem 5.3 follows by definition. |

Remark. Since there is no indeterminacy involved in the identification of
/ (C.) and/ (EC.) with/ (S’) and/ (S+) respectively, the indeterminacy
of the functional secondary operation (,.). corresponds under this identifica-
tion with the indeterminacy of the operation @,q on/ (C) and is generated by

( p’)+ and ( 2).+.

It follows that the indeterminacy of (,). "/ (S" --./ (S’+ is the cyclic
subgroup of/ (S’+) generated by

GOD (p" (p+ 1), 2 (2"+ 1)).+.

1/2 (p+ p’)+l is not an element of this subgroup unless

2"[1/2
In prtieulr, i p =-- 3, 5 (rood 8) (,) is non-trivial unless n 0, i or 3.
This is the translation into the lnguge of secondary eohomology operations
of he Adms-Aiyh proo [3] o he non-existence o elements of I-Iopf in-
vrin 1.

6. An important lemma

LEPTA 6.1. Let 0 < lo < n 2 and . m,+ ). Let p be odd and sup-
pose 2" X p" 1. Then (,)(u.) contains odd multiples of u,,++ iff
( p).() (2.) does.

Proof. By n argument similar to those of 3, f2C has a skeleton of the
form Y X._ u e+2-x which admits a map F EY --+ C inducing co-
homology isomorphisms in dimensions 2n and 2n + 2/ + 1. If is evident that
Y/C,2-,,-2 has the homotopy type of C-(). We can choose generators
g.-x, g2.-2 for/(Y); g2.-1, g2.+ for/ (EY), . for/(C); and #2.++x for
g. (EC) such that

u,- is in the domain of @. and p is in the domain of @,.

By the results of 5 and the naturality of the operation, -, (._) contains
an element of the form 1/2 (p- p’-).._ -t- m.+ for some integer m.
By Prop. 2.1 a,

(p’* p" )fl,,- -t- 2pm,,+ e @, (,,_).
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We note that

( p)_ (p p),._ + a+
where ag.++l e (b p)(). Hence

(2pro a)fl+ e @.(-l).

Let c,++ e @. (R,). Then c,+ e @.(,_). Then

(2pu a- c)+ e Im (@ p") + Im (@ 2").

Under the hypothesis on p, it is not difficult to verify by computation that
2pm a c must be even. It follows that (@ p")() and (@.)
have the same parity.

7. Proofs of Theorems and II
Proof of Theorem II. Since p is defined for j 1, it follows that n 6.

Therefore 2" 3"- 1. Since

p S+s- S

has the property that ( 3) u contains odd multiples of ,+s, it fol-
lows by Lemma 6.1 that the same is true of (). Thus
contains odd multiples of 2 ++. The indeterminacy subgroup of the
operation . )s is the cyclic group generated by

GCD (2+ (2+ 1), 3+ (3 1))++.

Under the hypotheses of Theorem II, 2+ (3+ 1) and n r + 2. Hence
odd multiples of 2 ++ are not in the indeterminacy of the operation for
q < r W 2 and Theorem II is proved.

Proof of Theorem I. Let a E0. Then a is as in 3-5. By Theorem
5.3,

If we ignore the exceptional cases n 1, 3 in which Theorem I is vacuously
true, then (@2) p, consists of odd multiples of p2,+1 if r 0, and (@2
consists of odd multiples of 2+2,+ if r > 0.
In the case r 0, the proof of part (a) consists of the observation that

2 o()(.).

Provided n 2, we may apply Lemma 6.1 to conclude that ($a 3" )(,) (g,)
contains odd multiples of +. It follows that 2 o (H (a)) from which we
may conclude that a does not admit desuspension, proving part (b).
In the case r > 0, we may assume without loss of generality that k is even.

Let

m2nTl--k]2 e k5,2

Then by Prop. la 2/m is an odd multiple of 2+. Hence m is an odd multiple
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of 2r+l-. As in the proof of Theorem II, the indeterminacy subgroup of the
n-/. does not contain odd multiples of 2 +1-/ unlessoperation 5, j

q >__ min (r + 2, n //2). This proves part (a) of Theorem I.
Suppose now that k 2r + 2. Then 5. ) (_) contains odd mul-

tiples of n+l_.. Provided n 5, 7, 0 satisfies the hypotheses of Lemma 6.1
and we may conclude that

EH (O ) e m,-,- (S’’-’-

is such that (@ 5 (-r-)).(o) g.(-_) contains odd multiples of
This is not possible unless r -= 2 (4) as one may prove by using the commuta-
tion of with if r is odd and by introducing KO and complexification if
r--0 (4).

It follows that the element 0 cannot exist if r 2 (4) and does not admit
a desuspension if r 2 (4). This completes the proof of Theorem 1 except
for the cases n 2, 5, 7. In the case n 7 we simply note that if k 10,
2m must be an odd multiple of 2. The cases n 2 and n 5 are similar.

Note. It seems very likely that a more detailed study of the space
will lead to a considerable relaxation of the hypothesis on the degree of , in
Lemma 6.1. This would improve Theorem II and eliminate from Theorem I
the exceptions for n 2, 5, 7.
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