COMPOSITION SERIES FOR SIMPLEX SPACES

BY

Alan Gleit¹

A general theory of composition series was given in [3]. It was there applied to the case of separable simplex spaces. The authors characterized the separable GC-spaces and partially characterized the separable GM-spaces. We shall, here, generalize and extend those results.

The notations and definitions are those used in [1], [2], [3], [4]. V will always denote a simplex space. For a set $A \subseteq P_1(V)$, we let \overline{A} or A^- be the weak^{*} closure of A and $A^+ = A - \{0\}$, with the exception that $E^+ = EP_1(V)^+$. For $q \in P_1(V)$, we shall denote by π_q the unique maximal probability measure with resultant q. If V is separable, then π_q is supported by $EP_1(V)$.

Let X be any topological space and p any topological property. If a subset $G \subseteq X$ has property p, we write $G \subseteq_p X$ and say that G is a p-subset of X. (For a full account, see [3, §3].) A property p is *inductive* if for each nonempty closed set F and each open G in X we have: $G \subseteq_p X$ implies that $G \cap$ $F \subseteq_p F$. We say a property p is strongly inductive if (1) p is inductive and, given G_1 , G_2 open, F closed in X, we also have:

- (2) $G_1 \subseteq G_2 \subseteq X$ and $G_1 \subseteq_p X$ imply $G_1 \subseteq_p G_2$.
- (3) $G_1 \subseteq G_2 \subseteq_p X$ implies $G_1 \subseteq_p X$.
- (4) $G_1 \subseteq_p F \subseteq X$ implies $G_1 \subseteq_p X$.

For $X = \max V$, we shall consider the following properties:

(C) $G \subseteq_c \max V$ means that elements of V restrict to continuous functions on G.

(M) $G \subseteq_{\mathcal{M}} \max V$ if each net in G which converges to a point of G converges to no other point of max V.

(n) (for $n \ge 2$) $G \subseteq_n \max V$ if each sequence in G which converges to a point of G converges to at most n points in max V.

PROPOSITION 1. The properties (C), (M) and (n) are strongly inductive.

Proof. That (C) and (M) are strongly inductive is shown in [3, Prop[•] 4.3]. That (n) is strongly inductive is obvious.

If J is a closed ideal in V, we let $P_1(J)$ be the positive states of J and $EP_1(J)$ be the pure states of J when we consider J as a simplex space in its own right.

Received February 9, 1970.

¹ Parts of this paper are from my Ph.D. thesis submitted to Stanford University, written under the direction of E. Effros. Partially supported by a National Science Foundation development grant while at Carnegie-Mellon University.

The restriction map $\rho: V^* \to J^*$ restricts to a continuous affine map of $P_1(V)$ onto $P_1(J)$ [1, Thm. 4.4]. This, in turn, restricts to a continuous one-to-one map of $EP_1(V) - J^{\perp}$ onto $EP_1(J)^+$. With these maps, we may consider $P_1(J)$ and $EP_1(J)^+$ to be subsets of $P_1(V)$ and $EP_1(V) - J^{\perp}$, respectively. As such $EP_1(J)$ considered as a subset of $EP_1(V)$ with the structure topology induced from $EP_1(V)$ is homeomorphic to max (J) [1, Thm. 4.4]. It is, therefore, structurally open in $EP_1(V)$. Furthermore, we may consider $EP_1(V)$ to be the union of $EP_1(J)$ with $EP_1(V) \cap J^{\perp}$.

In order to find structure closed sets, we use the following Proposition, cf. [4, Prop. 1.1]. First, a set $D \subseteq P_1(V)$ is *dilated* if for each $q \in D$, we have supp $\pi_q \subseteq D$.

PROPOSITION 2. (A) Let $D \subseteq P_1(V)$ be dilated and weak^{*} closed. Then the weak^{*} closed convex hull of $D \cup \{0\}$ is a face of $P_1(V)$ and $D \cap E^+$ is structurally closed.

(B) Let $D \subseteq E^+$. Then the following are equivalent:

- 1. D is structure closed.
- 2. D is weak^{*} closed in E^+ and $\overline{D} \cup \{0\}$ is dilated.
- (C) Let $q \in Z$ and suppose π_q is supported by E^+ . Then

$$\operatorname{supp} \pi_q = (\operatorname{supp} \pi_q \cap E^+)^-.$$

Proof. (A) The first conclusion is [2, Thm. 3.3] while the second follows easily from the Milman Theorem [5, p. 9].

(B) $(1) \rightarrow (2)$. Obviously D is weak^{*} closed in E^+ . Let K be the closed face containing zero such that $K \cap E^+ = D$. Let $q \in \overline{D} \cup \{0\}$. Then $q \in K$ and so supp $\pi_q \subseteq K$. Hence supp $\pi_q \subseteq (K \cap EP_1(V))^-$ [5, p. 30.]. As the latter set is $\overline{D} \cup \{0\}$, the implication is clear.

(2) \rightarrow (1) follows easily from (A).

(C) is [4, Prop. 1.1 (A)].

We let $R_n P_1(V)$ be the lateral *n*-skeleton of $P_1(V)$, i.e.

$$R_0P_1(V) = EP_1(V),$$

 $R_n P_1(V) = \{ \sum_{i=1}^n \lambda_i p_i \mid p_i \in E^+, \lambda_i \geq 0, \sum_{i=1}^n \lambda_i \leq 1 \} \text{ for } n > 0.$

In terms of $R_n P_1(V)$, we may recast properties (C), (M), and (n).

- **PROPOSITION 3.** Let J be a closed ideal in V. Then:
- (1) max $J \subseteq_c \max V$ if and only if

$$Z \subseteq EP_1(V) \cup J^{\perp} = R_0P_1(V) \cup J^{\perp}.$$

(2) max $J \subseteq_{M} \max V$ if and only if

$$Z \subseteq R_1 P_1(V) \cup J^{\perp}.$$

(3) Suppose V is separable. Then max $J \subseteq_n \max V$ if and only if

$$Z \subseteq R_n P_1(V)$$
 U J^{\perp} .

Proof. (1) and (2) are contained in [3, Thm. 2.2] and [3, Thm. 2.5], respectively.

(3) Suppose max $J \subseteq_n \max V$. Let $q \in Z - E^+$. Then there is a sequence $\{p_k\} \subseteq E^+$ such that $p_k \to q$. Let F be the structure closure of supp $\pi_q \cap E^+$. Then $\{p_k\}$ converges structurally to each element of F and to no others [4, Cor. 1.5]. Suppose there is a $z \in EP_1(J) \cap F$. As $EP_1(J)$ is structurally open, $p_k \in EP_1(J)$ eventually. Therefore cardinality $(F) \leq n$ and so $q \in R_n P_1(V)$. Suppose, on the other hand, that $EP_1(J) \cap F = \emptyset$. Then $F \subseteq E^+ \cap J^+$ and so Prop. 2(C) yields supp $\pi_q \subseteq J^+$. Thus $q \in J^+$. Therefore

$$Z - E^+ \subseteq R_n P_1(V) \cup J^\perp$$
.

Since $E^+ = EP_1(J)^+ \cup (E^+ \cap J^\perp)$, we have $Z \subseteq R_nP_1(V) \cup J^\perp$.

Conversely, suppose $Z \subseteq R_n P_1(V) \cup J^{\perp}$ and let $\{p_k\} \subseteq EP_1(J)$, $p \in EP_1(J)$ be such that $\{p_k\}$ converges structurally to p. Since Z is a compact metric space, going to a subsequence and re-indexing, there is a point $q \in Z$ such that $p_k \to q$. Let F be the structure closure of supp $\pi_q \cap E^+$. Then $\{p_k\}$ converges to each point of F and to no others [4, Cor. 1.5]. Hence, $p \in F$. Suppose $q \in J^{\perp}$. Then supp $\pi_q \cap E^+ \subseteq J^{\perp} \cap E^+$. As the latter is structure closed, $p \in F \subseteq J^{\perp} \cap E^+$. This contradicts $p \in EP_1(J)$ and so $q \in R_nP_1(V)$. Hence F has at most n points and the proposition has been proven.

Let J be a closed ideal in V. We define the following simplex properties (for a full account of such properties see $[3, \S 4]$):

- J is a C-ideal (or a 0-ideal) if max J has property (C).
- J is an M-*ideal* (or a 1-*ideal*) if max J has property (M).
- J is an n-*ideal* if V is separable and max J has property (n).

For the simplex properties $n \ge 0$, a closed ideal $J \subseteq V$ is Gn in V if for all closed ideals I, either $J \subseteq I$ or (J + I)/I contains a non-zero closed *n*-ideal in V/I. If V is Gn in V we say that V is a *Gn*-space. We say that V is an *Nn*-space if it contains no non-zero *n*-ideal. With this terminology we have the following theorem [3, Lemma 4.1 and Proposition 4.2].

THEOREM 4. Let V be a simplex space, separable if $n \ge 2$. Then there is a largest Gn-ideal J. If $V \ne J$, then V/J is an Nn-space. There is a collection of distinct closed ideals J_{γ} indexed by ordinals $0 \le \gamma \le \gamma_0$ such that:

(1) $J_0 = \{0\}, J_{\gamma_0} = J.$

(2) If $\gamma < \gamma_0$ is a successor ordinal, then J_{γ} is a proper subset of $J_{\gamma+1}$ and $J_{\gamma+1}/J_{\gamma}$ is an n-ideal in V/J_{γ} .

(3) If $\gamma \leq \gamma_0$ is a limit ordinal, then $J_{\gamma} = (\mathbf{U}_{\beta < \gamma} J_{\beta})^-$.

Further, ideals and quotients of Gn-spaces are again Gn-spaces.

Such a sequence of closed ideals is called an n-composition series for V.

To ease the notation, we let

$$Z_n = Z \cap R_n P_1(V)^+.$$

Hence

$$Z_n = \{ z \in Z \mid z = \sum_{i=1}^n \lambda_i p_i, 0 \le \lambda_i \le 1, p_i \in E^+, z \neq 0 \}, n > 0,$$
$$Z_0 = E^+.$$

For any $L \subseteq E^+$, let

$$k_n(L) = (\mathsf{u} \{ \operatorname{supp} \pi_q \mid q \in \overline{L} - Z_n \})^-.$$

We let

$$e_n(L) =$$
structure closure $(k_n(L) \cap E^+)$.

We note the following.

PROPOSITION 5. Let $L \subseteq E^+$ be structurally closed. Then:

- (1) $e_n(L) \subseteq L$.
- (2) $k_0(L)$ is closed and dilated.
- (3) $k_0(L) \cap E^+ = e_0(L)$.

Proof. If $q \in \overline{L}$, then supp $\pi_q \subseteq \overline{L} \cup \{0\}$ by Prop. 2(B). Hence

$$k_n(L) \subseteq \overline{L} \cup \{0\}.$$

So $k_n(L) \cap E^+ \subseteq (\bar{L} \cup \{0\}) \cap E^+ = L$. Thus $e_n(L) \subseteq L$ which is (1). In particular, $k_0(L) \subseteq \bar{L} \cup \{0\}$. Let $q \in k_0(L) \cup \{0\}$. If $q \in EP_1(V)$, then supp $\pi_q = \{q\} \subseteq k_0(L) \cup \{0\}$. If $q \notin EP_1(V)$, then $q \notin \bar{L} - L$. Hence supp $\pi_q \subseteq k_0(L)$ and so (2) holds. Therefore $k_0(L) \cap E^+$ is already structure closed by Prop. 2(A) which yields (3).

With these concepts we may now attack the problem of characterizing the Gn spaces for $n \ge 0$.

PROPOSITION 6. Let V be a simplex space. We assume π_q is supported by $EP_1(V)$ for each $q \in Z$ if n = 1 and that V is separable if $n \ge 2$. Let $F \subseteq E^+$ be a non-empty structure closed set. Let I be the closed ideal satisfying $I^{\perp} \cap E^+ = F$. Then the following are equivalent:

(1) There is a closed non-trival ideal J such that (J + I)/I is an n-ideal in V/I.

(2) $U = F - e_n(F)$ is non-empty.

In fact, there is a one-to-one correspondence between closed, non-trivial ideals J such that (J + I)/I is an n-ideal in V/I and non-empty sets $W \subseteq U$ which are structure-open relative to F.

Proof. Since I^{\perp} is a closed face, the structure and weak^{*} topologies for $(V/I)^*$ coincide with the restrictions to I^{\perp} of the structure and weak^{*} topologies of V, respectively [1, Thm. 3.4]. Thus, it suffices to consider the case that $F = E^+$ and $I = \{0\}$.

356

 $(1) \rightarrow (2)$. Let J be a closed, non-trivial *n*-ideal. We know that

$$Z \subseteq J^{\perp}$$
 ט $R_n P_1(V)$

and so $Z \subseteq J^{\perp} \cup Z_n$. If $q \in Z - Z_n$, then $q \in J^{\perp}$. Since J^{\perp} is a closed face containing zero, supp $\pi_q \subseteq J^{\perp}$. Hence

$$k_n(E^+) \cap E^+ \subseteq J^\perp \cap E^+$$

Because $J^{\perp} \cap E^{+}$ is structurally closed, $e_n(E^{+}) \subseteq J^{\perp} \cap E^{+}$. Letting $W = E^{+} - J^{\perp}$, we have $W \subseteq E^{+} - e_n(E^{+})$ and W is a non-empty structurally open set.

 $(2) \rightarrow (1)$. Let W be a non-empty structurally open set such that

$$W\subseteq E^+-e_n(E^+).$$

Let J be the closed ideal satisfying $J^{\perp} \cap E^{+} = E^{+} - W$. Suppose $q \in Z - Z_n$. Thus $\operatorname{supp} \pi_q \subseteq k_n(E^{+})$. If n = 0, then $k_0(E^{+}) \cup \{0\}$ is closed and dilated so its closed convex hull F is a face by Prop. 2(A). As

$$F \cap E^+ = k_0(E^+) \cap E^+ = e_0(E^+) \subseteq E^+ - W = J^\perp \cap E^+,$$

we must have $F \subseteq J^{\perp}$. Hence supp $\pi_q \subseteq J^{\perp}$. If $n \ge 1$, then π_q is supported by $EP_1(V)$. So

 $\operatorname{supp} \pi_q = (\operatorname{supp} \pi_q \cap E^+)^- \subseteq (k_n(E^+) \cap E^+)^- \subseteq (e_n(E^+))^- \\ \subseteq (J^{\perp} \cap E^+)^- \subseteq J^{\perp}.$

In either case, supp $\pi_q \subseteq J^{\perp}$. Thus, $q \in J^{\perp}$. Therefore

$$Z \subseteq J^{\perp} \cup Z_n \subseteq J^{\perp} \cup R_n P_1(V)$$

and, consequently, J is a non-trivial n-ideal.

COROLLARY 7. Let J be the closed ideal in V satisfying

$$J^{\perp} \cap E^{+} = (\bigcup \{ supp \ \pi_{q} | q \in Z - E \})^{-} \cap E^{+}.$$

Then J is a C-ideal and it contains every other C-ideal.

Using Proposition 6 we easily get the following main result.

THEOREM 8. Suppose V is a simplex space. We assume that π_q is supported by $EP_1(V)$ for each $q \in Z$ if we are considering the property (M); we assume that V is separable if we are considering property $(n), n \ge 2$. Then V is a GC-, GM-, or Gn-space if and only if, for each non-empty structure closed set F, we have $F \neq e_0(F), F \neq e_1(F)$, or $F \neq e_n(F)$, respectively.

COROLLARY 9. Suppose V is a simplex space satisfying the hypothesis o. Theorem 8. If

cardinality $(\{z \mid z \in \text{supp } \pi_q \text{ for some } q \in Z - Z_m\}) < \infty$,

then V is a GC-, GM-, or Gn-space for m = 0, m = 1, or $m = n \ge 2$, respectively.

Proof. $e_m(E^+)$ is a finite set so Theorem 8 applies trivially.

COROLLARY 10. Suppose there is a $q_0 \in Z$ such that $q_0 \in \text{supp } \pi_{q_0}$. If π_{q_0} is supported by $EP_1(V)$, then V is not a GC-space or a GM-space. Further, if V is separable, then V is not a Gn-space for any $n \geq 2$.

Proof. We take F to be the structure closure of $\sup \pi_{q_0} \cap E^+$. Then F is a non-empty structure closed set which satisfies $F = e_n(F)$ for each n.

References

- 1. E. EFFROS, Structure in simplexes, Acta Math., vol. 117 (1967), pp. 103-121.
- 2. ---, Structure in simplexes II, J. Functional Anal., vol. 1 (1967), pp. 379-391.
- 3. E. EFFROS AND A. GLEIT, Structure in simplexes III, Trans. Amer. Math. Soc., vol. 142 (1969), pp. 355-379.
- 4. A. GLEIT, On the structure topology of simplex spaces, Pacific J. Math., vol. 34 (1970), pp. 389-405.
- 5. R. PHELPS, Lectures on Choquet's Theorem, van Nostrand, Princeton, 1966.

UNIVERSITY OF MASSACHUSETTS AMHERST, MASSACHUSETTS