the multipliers of the space of almost convergent SEQUENCES

BY
Ching Chou

1. Introduction

Let N be the set of all positive integers, $m(N)$ the space of bounded realvalued functions on N with the sup norm. A continuous linear functional φ on $m(N)$ is called a Banach limit, cf. [6], if for $f \in m(N)$,

$$
\inf _{n} f(n) \leq \varphi(f) \leq \sup _{n} f(n) \quad \text { and } \quad \varphi(f)=\varphi(\tau f)
$$

where $\tau f \in m(N)$ is defined by $(\tau f)(n)=f(n+1)$. Let M be the set of all Banach limits. It is well-known that M is non-empty, w^{*}-compact and convex.

Let F be the set of all $f \in m(N)$ such that $\varphi(f)$ equals a fixed constant as φ runs through M. If $f \in F$ then we say f is almost convergent, cf. [6]. It is easy to see that F is a closed subspace of $m(N)$ and it contains constant functions. $f \in m(N)$ is a multiplier of F if $f F \subset F$. Since F is not an algebra, \mathfrak{N}_{F}, the set of all multipliers of F, is properly contained in F. Lloyd [5] gave an example to show that $\mathfrak{N C}_{F}$ is not even the largest subalgebra of F. The purpose of this paper is to provide a characterization of the set $\mathfrak{N}_{\boldsymbol{F}}$. We show that $f F \subset F$ if and only if f converges to a constant α in the following weak sense: given $\varepsilon>0$ there is a set $A \subset N$ such that $\varphi\left(X_{A}\right)=0$ for all $\varphi \in M$ and $|f(n)-\alpha|<\varepsilon$ if $n \epsilon N \backslash A$. Thus, in some sense, \mathscr{M}_{F} is a very small subspace of F. For example, it follows from the above characterization that if f is a non-constant almost periodic function on N then $f F \not \subset F$.

In the last section of this paper we shall consider the generalization of the above results to groups. The author wishes to thank Professor M. M. Day for suggesting the generalization.

2. Preliminaries

Let k_{j} and n_{j} be two sequences of positive integers such that $k_{j} \rightarrow \infty$ as $j \rightarrow \infty$. For $j \in N$ let φ_{j} be the linear functional on $m(N)$ defined as follows:

$$
\varphi_{j}(f)=k_{j}^{-1} \sum_{i=0}^{k_{j}-1} f\left(n_{j}+i\right) \quad(f \in m(N))
$$

It is easily verified and is well known that the w^{*}-cluster points of the sequence (φ_{j}) are Banach limits. With the above observation and the Krein-Milman theorem, Raimi [9] proved the following.
Lemma 2.1. For $f \in m(N)$, let

$$
\bar{d}(f)=\sup \{\varphi(f): \varphi \in M\} \quad \text { and } \quad \underline{d}(f)=\inf \{\varphi(f): \varphi \in M\}
$$

Received July 16, 1970.

Then

$$
\begin{gathered}
\bar{d}(f)=\lim \sup _{n} \sup _{k} n^{-1} \sum_{\substack{k=k}}^{k+n-1} f(j) \\
\underline{d}(f)=\lim \inf _{n} \inf _{k} n^{-1} \sum_{\substack{k+k \\
j=k}}^{k+n-1} f(j)
\end{gathered}
$$

If $f \epsilon F$, then $\bar{d}(f)=\underline{d}(f)$ and we shall denote the common value by $d(f)$. The above lemma implies that $f \epsilon F$ if and only if

$$
\lim _{n} n^{-1} \sum_{j=k}^{k+n-1} f(j) \text { exists uniformly in } k, \quad \text { cf. [6]. }
$$

For convenience, if $A \subset N$, then $\bar{d}\left(X_{A}\right), \underline{d}\left(X_{A}\right)$ and $d\left(X_{A}\right)$ will be denoted by $\bar{d}(A), \underline{d}(A)$ and $d(A)$ respectively, where X_{A} is the characteristic function of the set A in N. By applying Lemma 2.1 to the function X_{A}, we see that $d(A)$ exists if and only if A is "evenly distributed" in N and $d(A)=0$ if and only if A is "thinly distributed" in N.

We shall also need the following consequence of Lemma 2.1. We quote it here for later reference.

Lemma 2.2 (cf. [1]). Let $A \subset N$. Then $\underline{d}(A)>0$ if and only if there exists a positive integer m such that

$$
A \cap\{k, k+1, \cdots, k+m-1\} \neq \emptyset \quad \text { for each } k \in N
$$

Let βN be the Stone-Čech compactification of the discrete set N, cf. [4]. Each $f \in m(N)$ can be extended uniquely to a continuous function f^{-}on βN. The mapping $f \rightarrow f^{-}$is an isometry of $m(N)$ onto $C(\beta N)$, the space of realvalued continuous functions on βN with the sup norm. Therefore, each $\varphi \in m(N)^{*}$ corresponds to a measure μ_{φ} on βN. The correspondence is characterized by $\varphi(f)=\int_{\beta N} f^{-} d \mu_{\varphi}, f \in m(N)$.

If $A \subset N$, then A^{-}denotes the closure of A in βN. Sets of the form A^{-}, $A \subset N$, are closed-open and they form an open basis for βN. As in [10] we set

$$
K^{\tau}=\cap\left\{A^{-}: A \subset N, d(A)=1\right\}
$$

Then K^{r} is a compact nowhere dense subset of βN and

$$
K^{\tau}=\operatorname{cl}\left[\mathbf{U}\left\{\operatorname{suppt} \mu_{\varphi}: \varphi \in M\right\}\right]
$$

3. The main theorem

Definition. $f \in m(N)$ is said to be τ-convergent if there is a real number α satisfying the following: given $\varepsilon>0$ there exists a set $A \subset N$ such that $d(A)=0$ and $|f(n)-\alpha|<\varepsilon$ if $n \in N \backslash A$. In this case we denote α by $\tau-\lim f$.

Clearly, every convergent sequence is τ-convergent and if $\tau-\lim f=\alpha$ exists them $f \in F$ and $d(f)=\alpha$.

Theorem 3.1. Let $f \in m(N)$. Then the following three conditions are
equivalent:
(a) $f F \subset F$.
(b) f is $\boldsymbol{\tau}$-convergent.
(c) $f^{-} \equiv a$ constant on K^{τ}.

Proof. (b) \Rightarrow (c). Assume that $\tau-\lim f=\alpha$ exists. Then, for a given $\varepsilon>0$, there exists a set $A \subset N$ with $d(A)=1$ and $|f(n)-\alpha|<\varepsilon$ for $n \in A$. Therefore $\left|f^{-}(w)-\alpha\right| \leq \varepsilon$ if $w \in K^{\tau} \subset A^{-}$. Since $\varepsilon>0$ is arbitrary, $f^{-} \equiv \alpha$ on K^{τ}.
(c) \Rightarrow (b). Assume that $f^{-} \equiv \alpha$ on K^{τ} and let $\varepsilon>0$ be given. Then since K^{τ} is compact and sets of the form $B^{-}, B \subset N$, form a basis for βN, we can find a set $A \subset N$ such that $A^{-} \supset K^{\tau}$ and $\left|f^{-}(w)-\alpha\right|<\varepsilon$ if $w \in A^{-}$. It follows that $d(A)=1$ and $|f(n)-\alpha|<\varepsilon$ if $n \in A$.
(c) \Rightarrow (a). Assume $f^{-} \equiv \alpha$ on K^{τ}. If $g \in m(N)$ then $(f g)^{-} \equiv \alpha g^{-}$on K^{τ}. If $\varphi \in M$, then suppt $\mu_{\varphi} \subset K^{\tau}$ and hence

$$
\varphi(f g)=\int_{K^{\tau}} \alpha g^{-} d \mu_{\varphi}=\alpha \varphi(g)
$$

Thus if $g \epsilon F$ then so is $f g$. Thus $f F \subset F$.
(a) \Rightarrow (b). This is the most difficult implication. Let $f \in \mathscr{M}_{F}$ be fixed. We have to show that τ-lim f exists. Without loss of generality, we may assume that $f \geq 0$ and $d(f)=1$. For $\varepsilon>0$, let

$$
\begin{gathered}
A(\varepsilon)=\{n \in N: f(n) \geq 1+\varepsilon\}, \quad B(\varepsilon)=\{n \in N: f(n) \leq 1-\varepsilon\} \\
C(\varepsilon)=\{n \in N:|f(n)-1|<\varepsilon\}
\end{gathered}
$$

Note that N is the disjoint union of $A(\varepsilon), B(\varepsilon)$ and $C(\varepsilon)$. We need to show that $d(A(\varepsilon))=0$ and $d(B(\varepsilon))=0$ for each $\varepsilon>0$. For the sake of clearness, we divide the proof of this fact into several steps.
I. Let $a<b$ be real numbers. Let

$$
A=\{n \in N: f(n) \geq b\} \quad \text { and } \quad B=\{n \in N: f(n) \leq a\}
$$

Then either $\underline{d}(A)=0$ or $\underline{d}(B)=0$.
Notation. For a fixed positive integer m, N can be divided into blocks of m consecutive integers $N(m, n)$, where

$$
N(m, n)=\{(n-1) m+1,(n-1) m+2, \cdots, n m\}, \quad n \in N
$$

Proof of I. If both $\underline{d}(A)$ and $\underline{d}(B)$ are positive then by Lemma 2.2 there exists $m \in N$ such that $N(m, n) \cap A \neq \emptyset$ and $N(m, n) \cap B \neq \emptyset$ for $n \in N$. Choose

$$
a_{n} \in N(m, n) \cap A \quad \text { and } \quad b_{n} \in N(m, n) \cap B, \quad n \in N
$$

Let k_{1}, k_{2}, \cdots be an increasing sequence of positive integers such that
$k_{n+1}-k_{n} \rightarrow \infty$ as $n \rightarrow \infty$; let $k_{0}=0$. Define a subset $S=\left\{s_{1}, s_{2}, \cdots\right\}$
of N as follows

$$
\begin{aligned}
s_{j} & =a_{j} \quad \text { if } \quad k_{2 n}<j \leq k_{2 n+1}, \quad n=0,1,2, \cdots \\
& =b_{j} \quad \text { if } \quad k_{2 n-1}<j \leq k_{2 n}, \quad n=1,2, \cdots
\end{aligned}
$$

Then, for each $n \in N, N(m, n) \cap S$ is a singleton. Thus, by Lemma 2.1

$$
\begin{equation*}
X_{s} \in F \quad \text { and } \quad d(S)=1 / m \tag{1}
\end{equation*}
$$

On the other hand, since $k_{n+1}-k_{n} \rightarrow \infty$ as $n \rightarrow \infty$, we may apply Lemma 2.1 again to get the following inequalities:

$$
\begin{aligned}
\bar{d}\left(f X_{S}\right) & \geq \lim \sup _{n} \frac{1}{m\left(k_{2 n}-k_{2 n-1}\right)} \sum_{j=k_{2 n-1}+1}^{k_{2 n}} f\left(b_{j}\right) \\
& \geq b / m, \quad \text { since } b_{j} \in A, \\
d\left(f X_{S}\right) & \leq \lim \inf _{n} \frac{1}{m\left(k_{2 n+1}-k_{2 n}\right)} \sum_{j=k_{2 n}+1}^{k_{2 n+1}} f\left(a_{j}\right) \\
& \leq a / m, \quad \text { since } a_{j} \in B .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
f X_{s} \propto F . \tag{2}
\end{equation*}
$$

By (1) and (2), $f \& \mathscr{M}_{F}$. This contradicts our assumption and the proof of I is completed.
II. For a given $\varepsilon>0, \underline{d}(A(\varepsilon))=0$ and $\underline{d}(B(\varepsilon))=0$.

Proof. Let $A=\{n \in N: f(n) \geq 1\}$. Assume that $\underline{d}(B(\varepsilon))>0$. Then, by $I, \underline{d}(A)=0$. Thus there exists a $\varphi \in M$ such that

$$
\begin{equation*}
\varphi\left(X_{A}\right)=0 \tag{3}
\end{equation*}
$$

But,

$$
\begin{equation*}
\varphi\left(X_{B(\varepsilon)}\right) \geq \underline{d}(B(\varepsilon))>0 \tag{4}
\end{equation*}
$$

Hence,

$$
\begin{align*}
1= & d(f)=\varphi(f) \\
= & \varphi\left(f X_{B(\varepsilon)}\right)+\varphi\left(f X_{A}\right)+\varphi\left(f X_{C(\varepsilon) \backslash \Delta}\right) \\
\leq & \sup \{f(n): n \in B(\varepsilon)\} \varphi\left(X_{B(\varepsilon)}\right)+\|f\| \varphi\left(X_{\Delta}\right) \\
& \quad+\sup \{f(n): n \epsilon C(\varepsilon) \backslash A)\} \varphi\left(X_{C(\varepsilon) \backslash A}\right) \tag{3}\\
\leq & (1-\varepsilon) \varphi\left(X_{B(\varepsilon)}\right)+\varphi\left(X_{C(\varepsilon)}\right) \\
= & \varphi\left(X_{B(\varepsilon) \cup C(\varepsilon)}\right)-\varepsilon \varphi\left(X_{B(\varepsilon)}\right)<1 \tag{4}
\end{align*}
$$

This is impossible and, hence, $d(B(\varepsilon))=0$. Similarly, $d(A(\varepsilon))=0$.
III. For a given $\varepsilon>0, \bar{d}(C(\varepsilon))=1$.

Proof. If $\bar{d}(C(\varepsilon))<1$ then $d(A(\varepsilon) \cup B(\varepsilon))=t>0$. Since, by II, $d(A(\varepsilon t / 2))=0$, there exists $\varphi \in M$ such that

$$
\begin{equation*}
\varphi\left(X_{A(\varepsilon t / 2)}\right)=0 \tag{5}
\end{equation*}
$$

Since $\varphi\left(X_{A(\varepsilon) \cup B(\varepsilon)}\right) \geq t$ and ${ }_{\varphi}\left(X_{A(\varepsilon)}\right) \leq \varphi\left(X_{A(\varepsilon t / 2)}\right)$, we see that

$$
\begin{equation*}
\varphi\left(X_{B(\varepsilon)}\right) \geq t \tag{6}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
1 & =\varphi(f)=\varphi\left(f X_{B(\varepsilon)}\right)+\varphi\left(f X_{A(\varepsilon t / 2)}\right)+\varphi\left(f X_{N \backslash B(\varepsilon) \backslash A(\varepsilon t / 2)}\right) \\
& \leq(1-\varepsilon) \varphi\left(X_{B(\varepsilon)}\right)+(1+\varepsilon t / 2) \varphi\left(X_{N \backslash B(\varepsilon)}\right) \\
& \leq \varphi\left(X_{B(\varepsilon)}\right)-\varepsilon t+\varphi\left({ }_{N \backslash B(\varepsilon)}\right)+\varepsilon t / 2 \\
& =1-\varepsilon t / 2<1
\end{aligned}
$$

This is impossible. Thus, $\tilde{d}(C(\varepsilon))=1$, as we claimed.
IV. For $n \in N, d\left(f^{n}\right)=1$.

Proof. Since $f \in \mathfrak{T M}_{F}, f^{n} \in F$. For a fixed $\delta>0$, since, by III, $\bar{d}(C(\delta))=1$, there exists a $\varphi \in M$ such that $\varphi\left(X_{C(\delta)}\right)=1$. It follows that

$$
\begin{equation*}
d\left(f^{n}\right)=\varphi\left(f^{n}\right)=\varphi\left(f^{n} X_{c(\delta)}\right) \tag{7}
\end{equation*}
$$

On the other hand, since $(1-\delta)^{n}<f^{n} X_{C(\delta)}<(1+\delta)^{n}$. We see that

$$
\begin{equation*}
(1-\delta)^{n} \leq \varphi\left(f^{n} X_{C(\delta)}\right) \leq(1+\delta)^{n} \tag{8}
\end{equation*}
$$

Combining (7) and (8), we have $(1-\delta)^{n} \leq d\left(f^{n}\right) \leq(1+\delta)^{n}$ for each $\delta>0$. Thus $d\left(f^{n}\right)=1$.
V. For $\varepsilon>0, d(A(\varepsilon))=0$ and $d(B(\varepsilon))=0$.

Proof. Let $\varphi \in M$. Then,

$$
\begin{aligned}
1 & =\varphi\left(f^{n}\right) \geq \varphi\left(f^{n} X_{A(\varepsilon)}\right) \quad(\text { since } f \geq 0) \\
& \geq(1+\varepsilon)^{n} \varphi\left(X_{\Delta(\varepsilon)}\right)
\end{aligned}
$$

Since n can be arbitrarily big, $\varphi\left(X_{A(\varepsilon)}\right)=0$. Thus $\bar{d}(A(\varepsilon))=d(A(\varepsilon))=0$ for each $\varepsilon>0$.

By way of contradiction, if there exist an $\varepsilon>0$ and a $\varphi \in M$ such that $\varphi\left(X_{B(\varepsilon)}\right)>0$ then set $\delta=\varphi\left(X_{B(\varepsilon)}\right) \cdot \varepsilon / 2$. Then, by the above, $\varphi\left(X_{\Delta(\delta)}\right)=0$. Thus, as in the proof of III, we have the following inequalities:

$$
\begin{aligned}
1 & \leq(1-\varepsilon) \varphi\left(X_{B(\varepsilon)}\right)+(1+\delta) \varphi\left(X_{C(\varepsilon) \backslash A(\delta)}\right) \\
& \leq 1-\varepsilon \varphi\left(X_{B(\varepsilon)}\right)+\delta \\
& =1-\delta<1
\end{aligned}
$$

This is impossible. Thus $\varphi(B(\varepsilon))=0$ for each $\varepsilon>0$ and each $\varphi \in M$. Thus $d(B(\varepsilon))=0$ for each $\varepsilon>0$. This completes the proof of the theorem.

Remarks. (1) We actually proved that if (i) $f X_{A} \in F$ for each $X_{A} \in F$ and (ii) $f^{n} \epsilon F$ for each $n \in N$, then f is τ-convergent. In particular, let $A \subset N$. Then $X_{A \cap B} \in F$ for each $X_{B} \in F$ if and only if $d(A)=0$ or 1 .
(2) Let $A(N)$ be the algebra of almost periodic functions on N. Then it is well known that $A(N) \subset F$. But $A(N) \cap \mathfrak{N r}_{F}$ only consists of constant functions. Indeed, if $f \in A(N) \cap \mathfrak{N}_{F}$, say, $\tau-\lim f=\alpha$, then $f^{-} \equiv \alpha$ on K^{τ}. Thus $\varphi(|f-\alpha|)=0$ for each $\varphi \in M$. Thus the non-negative almost periodic function $|f-\alpha|$ has mean value 0 . Thus $f \equiv \alpha$ on N.

As an example, let $A=\{1, m+1,2 m+1, \cdots\}$ where $m>2, m \in N$. Then $X_{A} \in A(N)$ and there exists $B \subset N$ such that $X_{B} \in F$ but $X_{A} X_{B} \notin F$. Thus, the almost convergent function X_{B} is not even weakly almost periodic.
(3) The fact that $\tau-\lim f=\alpha$ exists does not imply the existence of a set $B=\left\{b_{1}, b_{2}, \cdots\right\}$ in $N, b_{1}<b_{2}<\cdots$, such that $d(B)=1$ and $\lim _{n} f\left(b_{n}\right)$ exists.

Example. Let a_{n} be an arbitrary increasing sequence of positive integers such that $a_{n+1}-a_{n} \rightarrow \infty$. Let $A_{n}=(n-1)+\left\{a_{1}, a_{2}, \cdots\right\}, n \in N$. Then u $A_{n}=N$ and $d\left(A_{n}\right)=0$ for $n \in N$. Define a function $f \in m(N)$ as follows:

$$
\begin{aligned}
f & \equiv 1 & & \text { on } A_{1} \\
& \equiv 1 / n & & \text { on } A_{n} \backslash\left(A_{1} \cup \cdots \cup A_{n-1}\right), \quad n \geq 2
\end{aligned}
$$

Given $\varepsilon>0$, choose $n_{0} \in N$ such that $1 / n_{0}<\varepsilon$ and let $B=\mathbf{U}_{k=1}^{n_{0}} A_{k}$. Then $d(B)=0$ and $|f(n)|<\varepsilon$ if $n \in N \backslash B$. Thus $\tau-\lim f=0$. On the other hand, if $B \subset N$ such that $\bar{d}(B)<1$, then, by Lemma 2.1, there exists $n \in N$ such that $A_{1} \cup \cdots$ บ $A_{n} \backslash B$ is infinite. Let $N \backslash B=\left\{b_{1}, b_{2} \cdots\right\}$, where $b_{1}<b_{2} \cdots$. Then clearly $\lim _{n} f\left(b_{n}\right)$ does not exist. (A similar example is also considered by Raimi [8].)

4. The generalization

Let G be an amenable group and denote the set of all left invariant means on G by $M L(G)$ (cf. Day [3] for the basic facts concerning amenable groups.) As before, we set

$$
\bar{d}(f)=\sup \{\varphi(f): \varphi \in M L(G)\} \quad \text { and } \quad \underline{d}(f)=\inf \{\varphi(f): \varphi \in M L(G)\}
$$

where f is a bounded real function on G. If $\bar{d}(f)=\underline{d}(f)$ then we say f is almost convergent and in this case we denote the common value by $d(f)$. The space of almost convergent functions on G is denoted by $F(G)$. A bounded real function f on G is said to be G-convergent if there exists a real number α such that for each $\varepsilon>0$ there is a set $A \subset G$ satisfying (a) $d(A)=0$ and (b) $|f(x)-\alpha|<\varepsilon$ if $x \notin A$. We wonder whether $f F(G) \subset F(G)$ implies that f is G-convergent. (The other implications of Theorem 3.1 can be readily
generalized.) We can only answer the above question when G has an additional property:
(*) If $A \subset G$ and $\underline{d}(A)>0$ then there exists $B \subset A$ such that X_{B} is almost convergent and $d(B)>0$.
It is easy to show that finitely generated abelian groups and locally finite groups have property (*). We would like to conjecture that every amenable group has property (*).

Lemma 4.1. Let G be an amenable group.
(1) If $C \subset G$ and $\underline{d}(C)>0$ then there exist x_{1}, \cdots, x_{n} in G such that for each $x \in G$,

$$
C \cap\left\{x_{1} x, \cdots, x_{n} x\right\} \neq \emptyset
$$

(2) If x_{1}, \cdots, x_{n} are n distinct elements of G then there exists $C \subset G$ such that $\underline{d}(C)>0$ and

$$
x_{i} C \cap x_{j} C=\emptyset, \quad i \neq j
$$

(3) Let $C \subset G$ and $x_{i} \in G, i=1, \cdots, n$, such that $x_{i} C \cap x_{j} C=\emptyset$ if $i \neq j$. A ssume that $c \in C$ is associated with an element

$$
t(c) \in\left\{x_{1} c, \cdots, x_{n} c\right\}
$$

and set $T=\{t(c): c \in C\}$. Then for each $\varphi \in M L(G), \varphi\left(X_{T}\right)=\varphi\left(X_{c}\right)$.
Proof. (1) is an easy consequence of [7, Theorem 7].
(2) Choose $C \subset G$ such that $x_{i} C \cap x_{j} C=\emptyset$ if $i \neq j$ and that C is a maximal with this property. Then $u_{i, j=1}^{n} x_{i}^{-1} x_{j} C=G$. Thus $\underline{d}(C)>0$.
(3) Let $C_{i}=\left\{c \in C: t(c)=x_{i} c\right\}$. Then $C=C_{1} \cup \cdots \cup C_{n}, C_{i} \cap C_{j}=\emptyset$ if $i \neq j$ and $T=x_{1} C_{1} \cup \cdots \cup x_{n} C_{n}$. Thus $\varphi\left(X_{T}\right)=\varphi\left(X_{C}\right)$ if $\varphi \in M L(G)$.

Theorem 4.2. Let G be an amenable group with property (*). Then $f F(G) \subset F(G)$ implies that f is G-convergent.

Proof. The proof is similar to $(\mathrm{a}) \Rightarrow(\mathrm{b})$ of Theorem 3.1 except step I there. Let f be a multiplier of $F(G), f \geq 0$; let

$$
A=\{x \in G: f(x) \geq b\} \quad \text { and } B=\{x \in G: f(x) \leq a\}
$$

where $a<b$ are real numbers. We have to show that either $\underline{d}(A)=0$ or $\underline{d}(B)=0$.

Assume that both $\underline{d}(A)$ and $\underline{d}(B)$ are positive. Then, by Lemma 4.1 (1) there exist x_{1}, \cdots, x_{n} in G such that for each $x \in G$,

$$
\left\{x_{1} x, \cdots, x_{n} x\right\} \cap A \neq \emptyset \text { and }\left\{x_{1} x, \cdots, x_{n} x\right\} \cap B \neq \emptyset
$$

Let C be a subset of G such that $x_{i} C \cap x_{j} C=\emptyset$ if $i \neq j$ and that $\underline{d}(C)>0$, cf. Lemma 4.1 (2). Since G has property (*), there exists $D \subset C$ such that $d(D)>0$. Without loss of generality, we may assume that G is infinite. Then there exists $E \subset G$ such that $\bar{d}(E)=1$ and $\underline{d}(E)=0$, cf. [2]. For
$x \in D$, choose

$$
\begin{array}{cc}
t(x) \in A \cap\left\{x_{1} x, \cdots, x_{n} x\right\} & \text { if } x \in D \cap E, \\
t(x) \in B \cap\left\{x_{1} x, \cdots, x_{n} x\right\} & \text { if } x \in D \backslash E .
\end{array}
$$

Let $T=\{t(x): x \in D\}$. Then, by Lemma 4.1 (3), $d(T)=d(D)$. It is clear that $\bar{d}\left(f X_{T}\right) \geq d(D) \cdot b$ and $\underline{d}\left(f X_{T}\right) \leq d(D) \cdot a$. This contradicts the fact that f is a multiplier of $F(G)$.

Added in Proof. (1) We are able to show that every group in $E G$ has property (*). Cf. [3, p. 520] for the definition of EG. (2) J. P. Duran and the author have proved recently that Theorem 4.2 holds for countable left amenable cancellative semigroups.

References

1. C. Chou, Minimal sets and ergodic measures for $\beta \mathrm{N} / \mathrm{N}$, Illinois J. Math., vol. 13 (1969), pp. 777-788.
2. - On the size of the set of left invariant means on a semigroup, Proc. Amer. Math. Soc., vol. 23 (1969), pp. 199-205.
3. M. M. Dax, Amenable semigroups, Illinois J. Math., vol. 1 (1957), pp. 509-544.
4. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, New York, 1960.
5. S. P. Lloyd, Subalgebras in a subspace of $C(X)$, Illinois J. Math., vol. 14 (1970), pp. 259-267.
6. G. G. Lorentz, A contribution to the theory of divergent sequences, Acta. Math., vol. 80 (1948), pp. 167-190.
7. T. Mitcheld, Constant functions and left invariant means on semigroups, Trans. Amer. Math. Soc., vol. 119 (1965), pp. 244-261.
8. R. A. Raimi, Convergence, density, and τ-density of bounded sequences, Proc. Amer. Math. Soc., vol. 14 (1963), pp. 708-712.
9. -_, Invariant means and invariant matrix methods of summability, Duke Math. J., vol. 30 (1963), pp. 81-94.
10. -, Homeomorphisms and invariant measures for $\beta \mathrm{N} / \mathrm{N}$, Duke Math. J., vol. 33 (1966), pp. 1-12.

State University of New York at Buffalo
Buffalo, New York

