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1. Introduction
Let N be the set of all positive integers, re(N) the space of bounded real-

valued functions on N with the sup norm. A continuous linear functional
on re(N) is called a Banach limit, cf. [6], if for f e re(N),

inf f(n) .<_. (f) <_ sup f(n) and

where rf e re(N) is defined by (rf)(n) f(n - 1). Let M be the set of all
Banach limits. It is well-known that M is non-empty, w*-compact and
convex.

Let F be the set of all f e re(N) such that (]) equals a fixed constant as
runs through M. If f e F then we say f is almost convergent, cf. [6]. It is
easy to see that F is a closed subspace of re(N) and it contains constant
functions, f re(N) is a multiplier of F if fF c F. Since F is not an algebra,, the set of all multipliers of F, is properly contained in F. Lloyd [5] gave
an example to show that is not even the largest subalgebra of F. The
purpose of this paper is to provide a characterization of the set 9r. We
show that fF F if and only if f converges to a constant in the following
weak sense" given e > 0 there is a set A c N such that (X) 0 for all

e M and If(n) a < e if n N\A. Thus, in some sense, is a very
small subspace of F. For example, it follows from the above characterization
that iff is a non-constant almost periodic function on N thenfF F.

In the last section of this paper we shall consider the generalization of the
above results to groups. The author wishes to thank Professor M. M. Day
for suggesting the generalization.

2. Preliminaries
Let k and n be two sequences of positive integers such that k.--* as

j --, o. For j e N let be the linear functional on re(N) defined as follows"

f(n + i) (f

It is easily verified nd is well known that the w*-cluster points of the sequence
() re Banch limits. With the bove observation nd the Krein-Milman
theorem, Raimi [9] proved the following.

LEMM. 2.1. For f e m N) let

3(f) sup{q(f) :eM} and d_(f) =inf{(/) :,eM}.
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Then
(f) lim sup sup n-’- V’+--z.,’- /(J);

d(f) lim inf. infk n-1 z..,y.- :(J).

If f e F, then d(f) d(f) and we shall denote the common value by d(f).
The above lemma implies that f e F if and oy if

lim. n- +
_

f(j) exists unifory in k, cf. [6].

For conveence, if A N, then 3(X), d(X) and d(X) 1 be denoted
by 3(A), (A and d(A) respectively, where X is the characteristic function
of the set A in N. By applying Lemma 2.1 to the function X, we see that
d(A) exists if and oMy if A is "every distributed" in N and d(A) 0 if and
oMy if A is "thiMy distributed" in N.
We shM1 also need the follong consequence of Lemma 2.1. We quote it

here for later reference.

LEMMA 2.2 (cf. [1]). Let A N. Then (A) > 0 if and ly if there
exists a positive integer m such tt

A {k,k 1,..-,k+m- 1} forchkeN.
Let N be the Stone-ech compactification of the screte set N, cf. [4].

Each f re(N) can be extended uniquely to a continuous function f- on N.
The mapping f ff is an isomet of re(N) onto C(N), the space of real-
valued continuous functions on BN th the sup norm. Therefore, each
era(N)* corresponds to a measure on N. The correspondence is

characterized by e(f) f f-d f re(N).
If A N, then A- denotes the closure of A in N. Sets of the form A-,

A N, are closed-open and they form an open basis for BN. As in [10] we
set

g {A-" A N, d(A) 1}.

Then K" is a compact nowhere dense subset of N and

K cl [u {suppt " e e M}].

3. Ihe min Cheoem

DNTON. f re(N) is said to be r-cvergent if there is a real number
a satisfying the following" ven e > 0 there exists a set A N such that
d(A) O and f(n) a < e if neNA. Inthis casewedenoteaby
r-lira f.

Clearly, eve convergent sequence is r-convergent and if r-lim f a

exists them f e F and d(f) .
THEOE 3.1. Let f m(N). Then the folling three conditions are
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(a) IFF.
(b) fist-convergent.
c) f- =-- a constant on K.

Proof. (b) (c). Assume that r-lim f a exists. Then, for a given
e > 0, there exists a set A hr with d(A) 1 and if(n) a < for
n e A. Therefore f-(w) a -< if w e/C A-. Since e > 0 is arbitrary,
f---aonK.

(c) (b). Assume that f- =- aonKandlet > 0begiven. Then
since K" is compact and sets of the form B-, B N, form a basis for/N, we
can find a set A N such that A- K and f-(w) a < if w cA-.
It follows that d(A) 1 and If(n) < if n e A.

(c) =, (a). Assume f- a on K. If g m(N) then (fg)- =- g- on K.
If e M, then suppt K and hence

Thus if g F then so is fg. Thus fF F.

(a) (b). This is the most difficult implication. Let f eg be fixed.
We have to show that r-lim f exists. Without loss of generality, we may
assume thatf >_ 0 and d(f) 1. For e > 0, let

A(e) {n eN :f(n) >_ 1 + e}, B(e) {neN :f(n) _< 1 e},

C(e) {n e N:lf(n) 1] < e}.
Note that N is the disjoint union of A(e), B(e) and C(e). We need to
show that d(A(e)) 0 and d(B(e)) 0 for each e > 0. For the sake of
clearness, we divide the proof of this fact into several steps.

I. Let a < b be real numbers. Let

A {neN:f(n) >_b} and B {neN:f(n) _< a}.

Then either d(A) 0 or d(B) 0.

Notation. For a fixed positive integer m, N can be divided into blocks of
m consecutive integers N(m, n), where

N(m,n) {(n- 1)m+ 1, (n- 1)m+2,...,nm}, neN.

Proof of I. If both d_(A) and d_(B) are positive then by Lemma 2.2 there
exists m e N such that N(m, n) l A # 0 and hr(m, n) f B # 0 for n e N.
Choose

a,, e N m, n f A and b,, e N(m, n f B, n e N.

Let kx, k, be an increasing sequence of positive integers such that
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k.+l-- k,-- oo asn-- oo;letk0 0. Define a subset S {sl, s,...}
of N as follows

s#= a# if ks <j<ks+, n =0,1,2,...,

b# if k_l <j_<k, n-- 1,2,....

Then, for each n e N, N(m, n) f’l S is a singleton. Thus, by Lemma 2.1

(1) XF and d( S) 1/m.
On the other hand, since k.+l k. -- o as n --, oo, we may apply Lemma

2.1 again to get the following inequalities"

1 f(bj)3(fXs) >_ lim sup
m(k /_) ._,+

> b/m, since bj e A,

d(fX) <_ lim inf. m(k,+ k,) j-.+l f(a)

<_ a/m, since aj e B.

Thus,

(2)

By (1) and (2),f
I is completed.

II. For a given e > 0, d_(A (e)) 0 and d_(B (e)) 0.

Proof. Let A {n N f(n) > 1}. Assume that d_(B(e)) > O.
by I, d_(A) 0. Thus there exists a e M such that

(X) 0.(3)

But,

(4)

Hence,

fXscF.
This contradicts our assumption and the proof of

(X)) > d_(B(e)) > O.

1 d(f) ,p(f)

,(fx...)) + ,(fx) +
_< sup {f(n) n e B(e)}(X,(,)) + Ilfll(X)

+ sup {f(n) n

Ts is impossible and, hence, d(B(e)) 0.

Then,

(by (3))

Similarly, d(A (e)) 0.
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III. For a given e > 0, (C(e)) 1.

Proof. If 3(C(e)) < 1 then d(A (e) t B(e) > O. Since, by
II, d(A (et/2)) 0, there exists o Msuch that

(5) (z) o.
Since(Xos) and (X) (X), wesee that

(6) (x) t.

Thus,

() (yx)) + (yx()) + (yx.()(,,))

(1 e)(X(,)) + (1 + et/2)(X,s(,)) (by (5))
(Z(,) st + (() + st/2 (by (6))

1 et/2 < 1.

This is impossible. Thus, (C(e) 1, as we claimed.

IV. For neN, d(ff 1.

Proof. Sincef e,ff eF. Forafixed > 0, since, by III, 3(C(6)) 1,

there ests a e M such that (Xc()) 1. It follows that

(7) d(/") () (/Z(,)).

On the other hand, since (1 )" < f’Xc() < (1 + ). We see that

(s) (1 ) (/x()) ( + )’.

Combining (7) and (8), we have (1 ) E d(ff) (1 + ) for each
> 0. Thusd(ff) 1.

V. For e > 0, d(A (e) 0 and d(B(e) O.

Proof. Let e M. Then,

1 (ff) (ffZ,()) (since f 0)

( + e) (z,(,)).

Since n can be arbitrarily big, (Xa(,)) 0. Thus (A (e)) d(A (e)) 0
for each e > 0.

By way of contraction, if there est an e > 0 and a M such that
(X()) > 0 then set (X(,)).e/2. Then, by the above, (X,(,)) 0.
Thus, as in the proof of III, we have the follong inequalities"

1 (1 e)(X(,)) + ( + )(X(,)x,()

=1--61.
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This is impossible. Thus(B(e)) 0foreache > 0andeachM. Thus
d(B(e)) 0 for each e > 0. This completes the proof of the theorem.

Remarks. (1) We actually proved that if (i) fX F for each X e F and
(ii) f e F for each n e N, then f is r-convergent. In particular, let A N.
Then Xn . e F for eachX e F if and only if d(A 0 or 1.

(2) Let A (N) be the algebra of almost periodic functions on N. Then it
is well known that A (N) F. But A (N) CI 9E only consists of constant
functions. Indeed, if f e A (N) n 9E, say, lim f a, thenf- a on K.
Thus o( f a I) 0 for each e M. Thus the non-negative almost periodic
function If a has mean value 0. Thusf a on N.

/ks an example, let A 1, m W 1, 2m - 1, where m > 2, m e N. Then
X e A(N) and there exists B N such that X e F but X.X F. Thus,
the almost convergent function X is not even weakly almost periodic.

(3) The fact that limf a exists does not imply the existence of a set
B {b, b., ...} in N, b < b. < ..., such that d(B) 1 and lim,f(b.)
exists.

Example. Let a, be an arbitrary increasing sequence of positive integers
such thata.+-a.-- . LetA. (n- 1) {a,a,...},neN. Then
u A. N and d(A,) 0 for n e N. Define a functionf e re(N) as follows"

f-- 1 onA
1In onA,\(Au u A,_), n >_ 2.

Given e > 0, choose no e N such that l/no and let B
_

A. Then
d(B) 0 and If(n) < if n e NB. Thus r-limf 0. On the other hand,
if B N such that 3(B) < 1, then, by Lemma 2.1, there exists n e N such that
A u u A,,\B is infinite. Let N\B {b, b...}, where b < b ....
Then clearly lim,f(b,) does not exist. (k similar example is also considered
by Raimi [8].)

4. The generalization
Let G be an amenable group and denote the set of all left invariant means on

G by ML(G) (cf. Day [3] for the basic facts concerning amenable groups.)
As before, we set

(f) sup {(f)" e ML(G)} and d_(f) inf ((f) e ML(G)},

wheref is a bounded real function on G. If 3(f) d_(f) then we sayf is almost
convergent andin this casewe denote the common value by d(f). The space of
almost convergent functions on G is denoted by F(G). /k bounded real func-
tion f on G is said to be G-convergent if there exists a real number a such that
for each e > 0 there is a set A G satisfying (a) d(A) 0 and
(b) If(x) a < e if x A. We wonder whether fF(G) F(G) implies
thatf is G-convergent. (The other implications of Theorem 3.1 can be readily
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generalized.) We can only answer the above question when G has an addi-
tional property:

(,) IrA c G and d_(A) > 0 then there exists B c A such thatXB is almost
convergent and d(B) > 0.
It is easy to show that finitely generated abelian groups and locally finite
groups have property (,). We would like to conjecture that every amenable
group has property (,).

LEMMA 4.1. Let G be an amenable group.
(1) If C G and d_(C) > 0 then there exist x ..., x,, in G such that for each

x e,
C {xx, ..., xx} O.

(2) If xl .", x,, are n distinct elements o/G then there exists C c G such
that d_ C > 0 and

xCaxf 0, ij.

(3) Let C G and x e G, i 1, ., n, such that xC r xf O if i j.
Assume that c e C is associated with an element

(c) {xc, ...,
andset T {t(c) c eC}. Thenforeach ML(G),(Xr) (Xc).

Proof. (1) is an easy consequence of [7, Theorem 7].
(2) Choose C G such that xC n xC if i j and that C is a maximal

with this property. Then u.._ xTxf G. Thus d_(C) > 0.
(3) LetC={ceC:t(c) xc}. ThenC=Clu...uCa,CnC=t

if/jand T xlCl u u x,,C,, Thus(Xr) (Xc) if ML(G).

THEORE 4.2. Let G be an amenable group with property (,). Then
fF G) F G) implies that f is G-convergent.

Proof. The proof is similar to (a) (b) of Theorem 3.1 except step I
there. Letfbe a multiplier of F(G),f >_ 0; let

A {xeG:f(x) >_b} and B {xeG:f(x) <_ a}

where a < b are real numbers. We have to show that either d_(A) 0 or
d_(B) O.

Assume that both d_(A) and d_(B) are positive. Then, by Lemma 4.1 (1)
there exist xl, ., x, in G such that for each x e G,

{xx, ., x,,x} n A 0 and {xx, ., x,,x} r B 0.
Let C be a subset of G such that xC n xC 0 if i j and that d_(C) > 0,
cf. Lemma 4.1 (2). Since G has property (.), there exists D C such that
d(D) > O. Without loss of generality, we may assume that G is infinite.
Then there exists E G such that 3(E) 1 and d_(E) O, cf. [2]. For
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x D, choose
(x) A {xx, ., xx} ifxDE,

t(x) B {xx, ..., xx} if x D\E.
Let T {t(x) x D}. Then, by Lemma 4.1 (3), d(T) d(D). It is clear
that 3(]Xr) >_ d(D).b and d_(fXr) <_ d(D).a. This contradicts the fact
that :f is a multiplier of F(G).

Added in Proof. (1) We are able to show that every group in EG has prop-
erty (.). Cf. [3, p. 520] for the definition of EG. (2) J. P. Duran and the
author have proved recently that Theorem 4.2 holds for countable left amen-
able cancellative semigroups.
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