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1. Introduction

The relationship between the volume of a tube around a submanifold and
integral invariants of the submanifold has interested geometers for years.
Steiner considered the problem as long ago as 1840 [10].
Many results on the subject appear in the 1940’s but Hermann Weyl’s

work in 1939 [11] yields the definitive answer for tubes around submanifolds
in the model spaces of Riemannian geometry (euclidean, spherical, or hyper-
bolic space). In fact, Weyl’s results are so powerful that the first general
Gauss-Bonnet theorem, proved by Allendoerfer [1] and Allendoerfer-Weil
[2], used Weyl’s formula in a fundamental manner. Of course, all of this took
place before Chern provided us with his intrinsic proof of the general Gauss-
Bonnet theorem [3].

In this paper we compute the volume of a tube around a compact sub-
domain, with smooth boundary, of a holomorphic submanifold of complex
projective space. Essentially, we identify certain extrinsically defined
functions as intrinsic scalar densities. The computation appears in Sec-
tion 4.
A very crude estimate of the sum of the Betti numbers of the path space

of a submanifold of a pinched manifold appears in work of Flaherty and
Grossman [6]. In fact, in the present paper, we prove that the sum of the
first ), Betti numbers of the path space of a compact holomorphic submanifold
of complex projective space is dominated by a linear polynomial in .

Sections 2 and 3 serve as background for the main theorems, found in
Sections 4 and 5. Section 2 recalls basic ideas and fixes notation for complex
projective space necessary to the calculations in Section 4 while Section 3
reviews the local geometry of holomorphic submanifolds of Kaehler mani-
folds, on which the remainder of the paper rests.
We plan in the future to investigate the relation of this formula to equidis-

tribution theory of holomorphic curves [13].

2. Complex projective space
We devote this section to the geometry of complex projective space, the

ambient space for our submanifolds.
Let C+ be the space of (n - 1)-tuples of complex numbers and e e

a frame field on C+; then
Bde esoa (0 <: B _n) and d ’c0 ^ (0_ C _n).
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Let Pn(C) be complex projective space and

C/ (0) P.(C)

the canonical fibering. A frame eo en in Cn+ is said to be adapted to
P(C) if eo is tangent to the fiber. Thus

If we suppose eo... e unitary then the hermitian structure on Pn(C) is
given by

as 2og&g (1 _<j_<n).

In homogeneous coordinates

ds (2/(z, z))((z, z)(dz, dz) (z, dz)(dz, z)).

The Kaehlerian connection on P.((3) is given by

r. .- % (1 <i,j_<n).

and the curvature form (f) is given by

o’ ,,
All of the details of these calculations may be found in [8].

3. Holomorphic submanifolds of Kaehler manifolds
Let Y be a Kaehler manifold, for a unitary coframe field 0 0 locally

defined on Y the Kaehler form is given by

(3.1) /--1 .O ^ 0 (1 _<j_<n)

and the hermitian volume is given by
Let 0 0 be a local unitary coframe field and (r) the connection form

matrix of the Kaehlerian connection then

(3.2) do+ r ^ 0+= 0 (1 _< j < n).

Let X: be a holomorphic submanifold of Y, then we may choose the O’s
so that 0... 0 is a unitary coframe field on X, moreover (r), 1 _<

_< m, is the connection form matrix of the Kaehlerian connection on X.
Since 0 0 on X for r m q- 1, n, it follows from (3.2) that

,r ^ 0"=0 (l_<a_<m).
As a result

(3.3) r a-O (1 _< _< m) with S S.
To complete the discussion of the local gometry of holomorphic submani-

folds, let us recall that if () is the curvature form matrix of (r) and (f)
the curvature form of (r) then
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Zt. Voome of robe in P(C)
First we 11 compute the volume element of a tube around a holomohic

submafold of C". By a tube of radius around a submanifold we mean the
image of the normal z-disc bundle under the exponential map. The calcula-
tion is simpler than the case of P,(C) but necessary for the final formula.
The added assumption of holomorphicity here is artificial as may be seen in
[111.
Let X C be holomohic submanifold, represented over small

neighborhood V by a holomohic function z. Further let e... e. be an
adapted (1, 0)-utaw frame field; thus e... e is tangent to X and
e+ e. is normal to X. If is the dual coframe field to e e
then since z is holomorphic and hence type-preserving

A typical normal vector is of the form

(4.1) w z + e#/V2 + g/V2 (m + 1 r n).

We observe the follong convention on indices from here on 1 a, ,
m, m + 1 r, s, n. Derentiating (4.1),

+ ,e,d#+ ...).

Since the normal bundle is trivial over U we may choose a field of frames so
that , and vanish on U. As a result

If we restrict the Kaehler form to the tube

which by (3.3) yields

Thus, the volume element for the tube is
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(/--1)" det (a 1/2 ,( t, S,)( F, )
A, ( ) A,(dt, d)).

TEo. If X is a hoiomorphic submanifold of C, D a compact b-
domain ofXwith ooth boundary and ,(D). the tube of radius around D then

vols,(D) f -10 det(-

where vol is the hermitn meagre C’.
To compute Che volume element for a tube around a holohorpc submani-

fold X of P,(C), obsoe that a ticM point normM o X1 be of he form
o, (t, ) where (t D is a complex normal vector. Since the canocal
fibefing C"+ (0) P,(C) is an hermiian submersion, the follong dia-
gram commutes

C+1 (0) P(C)
where r(p) z.

Let e0 e be a unitary frame field on C+ dpted to P,C so that =,e,.., =,e ro tngent to X nd re0 z where z is local submnifold mp of
X. If follows from the grm bove that (w) exp,(t, ) whore

w eoto + et#2 +
Since the frame is adapted, the derivative of w is

dw eo dto + to d + d(, e, td2 + , , ,/2)
eo(alto + to ) + to(Co& + X. e. O + X. e )

in the ese of tube in C we my assume that r, nd -"r, vsh locally.
It follows then that

d ,o(dto + to ) + to(,o + X * o + )

The Kaehler form for P() in the Fubi-Study metric of Section 2 is

(-l/(w, )*)((v, )(dw, d) (dw, ) (w,
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where (u @ a, v @ fl) (u, v)a ^ is the pairing used for vector-valued
forms with u, v vectors and a, fl forms.
To compute on the tube, we normalize the t’s (homogeneous coordinates)

and substitute"

(v/-1)t( (0" + , 7 t,/to 2) n (0" + ,7 [dto 2)

Hence the volume element for the tube is

/n! ( 1)’t det (, E E, S) E, [, )

TEoaE. If X is a holomorphic submanifold g P(C), D is a compact
subdomain g X with smooth bndary th the volume of the tube (D) is

1 )(1+)+) A. (-1)0

Proof. Consider the substitution r, t,/to in the fiber coordinates and use
the fact that

t](1 + tD 1

where t[ t, t. Note that t0 is the distance from z to w.

Rerks. 1. We have assumed here that the (holomohic) curvature
of P,(C) is 1.

2. An analogous theorem holds in H,(C), the hyperbolic modal space.

The remainder of this section 11 deal th the evaluation of the volume
of the tubar neighborhood.

THEOREm. U X is a holomorphic submanifold of C" and D is a compact
subdomain of X with smooth boundary then the volume of the tube (D) around
D is given by

vo i()]
0 ( + ) ( + )

where n m is the codimsi of X, c is the volume of the unit sphere in
andK are cstants depending ly on the curvature of X.

Proof. For the sake of simpliciW the indices r, s, 11 va in the
codimension range that is, 1 r, s, k. Let

(t, ) (t, ..., t, , ..., )
and denote the average of (t, ) on the ut sphere 1 by ((t, ).
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Since the average value of a monomial

k k

plus its conjugate vanishes on S- unless $’ for all r, one need only com-
pute the average of monomials of the form

k bl k
Let t, i, where 1, further let t t,

11 h+ + and !...
the usual mtiindex notation for (1, ), and consider

which using the polar coordinates introduced sbove and Fubini’s theorem
may be written

SpSlfl+2-z dp -where is the volume dement of -z in C. One rosy slso spply Fubini’s
theorem directly to (.3) yielding

"’(,,)" ((-) , ,.
Using po]sr coordinstes in the (t,, ,) plsne this integrsl is equsl to

which in turn, from the deflation of the gamma function, may be written as

H, (1/2)(2)r(f, + 1).
In summary we have

e-PSpSll+2k-1 dp
-i lrk

Soling for the integral over S- one finds that

f d,,
[ r(I + )- 2 e-Spll+s- dp

If 0 then c /}r(k). For the average wlue of t on
S-1 we obtain

(t)
f dv

f,_ dv
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IOW

may be expanded in the form 1 -]- n2 n,. where

,.(, ) +,..,., A., t’.
Define the scalar invariants S on X by

It is easy to see then that

for the volume element of the tube

) /- dt ^ d,.1
_< (1 -- t’)’+ A 2

The notation is identical to that used in the last theorem.

And as a result

f v2 t, ) A dtr ^ d[,/-1 Ck,y
< 2 k(/ + 1)... ( + 1)"

dpp(>+)-I 2(TWk)

( + 1( ( + )

weletK f.s A,(- 1)0"If then

vol (,(D))
o ( + ) ( + )

where Ko 1.

THEOREm. If X is a holomorphic submanifold of P(C) and D is a compact
subdomain of X with smooth boundary th the volume of the tube ,(D), a the
radius of the tube around D, is given by the formula

vo (,(D)) c EoKJ(a)

where the K are as in the previous theorem and

J,(a) (sin b)+- (cos b)-’+ db

where tan a .
Proof. We proceed as in the previous theorem, using (4.2), the forma
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tan b p the integral becomes

.c_ (sin b)+- (cos b)+’+ db+ +
where tan a a. Let

f (sin b)v+- (cos b)-+
j a

Then the volume of the tube is

c g J a

The oy remaing detail at this stage is to determine the nature of the
scalar functions S. More precisely, we sh to show that the S are local
reprentations of globally defined scalar invariants on X.
Now S is a polynonal in Sa, Sath the propeies that S is invariant

under the unita groups U(m), U(k) in the sense that if Sa is traformed
into

where (U) e U(k) or if S is transformed into

where (U) e U(m), ,S does not change. In fact, is a sum of principal
minors of order from the matrix

and as a result S is a sum of averages of principal aors from the same
matrix. Thus by Weyl’s theo of vector invafians [12] the S are poly-
nomial in the hermitian fos

Thus,

is a constant multiple of

where

nd

is the generalized ronecker symbol’ equl to the sign of the permutation if
B, is rearrangement of a, ..., a or equl to ero others,. The
summation extends over II 4uples selected from I, 2, ..., m.
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For a submanifold of Cn, S is easily seen to be the hermitian curvature
tensor. It follows from (3.4) that for a submanifold of Pn(C)

where/, is the hermitian curvature of the induced structure: namely if
/ is the curvature operator then by (3.4),

The constant in question may be determined by specializing the formula to
a simple geometric figure of codimension 1 and with SB . As a result"

S,o) 2,,!k(k -t- 1) (k -i- / 1)

fl dt

Rewriting the formula for the volume of the tube and calling the integral of
the expression inside the summation W we obtain

(C’) vol ((O)) c 2+ k( -I- 1 (k -I- ’)om
1 W,J,(a)

5. Topology of compact holomorphic submanlfolds of P.(C)
Let X be a compact holomorphic submanifold of P(C) and let p be a point

not in X. Denote the space of paths from p to X with the compact-open
topology by 2(p, X); denote the jth Betti number of 2(p, X) by b[2(p, X)].
It follows from the Morse inequalities that the number of geodesics normal to
X initially and terminating at p of index at most k is greater than or equal to

b[2(p, X)], 0 _< j _< k. A brief summary of the relevant Morse Theory
may be found in [5].

Following the same plan as in Proposition of Section 3 of [5] we now esti-
mate the location of focal points in a Kaehler manifold. The Kaehlerian
sectional curvature of a Kaehler manifold is defined at any tangent plane to be
the riemannian sectional curvature of the tangent plane divided by
1/4 (1 W 3 cos a) where a is the angle between the tangent plane and its cor-
responding holomorphic tangent plane. Denote the Kaehler curvature by K.
Note that the Kaehler curvature of P(C) is the holomorphic curvature and
hence constant.

PROPOSITION. Let Y be a Kaehler manifold with Kaehler curvature re-
stricted to [h, 1], h > O. Let X be a Kaehler submanifold of Y and suppose
that the proper values of all of the second fundamental forms of X lie in the



636 F.J. FLAHERTY

interval I-b, b], b > O. Then a normal geodesic to X with length at least

(2//h) arc cot 25/
has a focal point. Moreover, if the length of the geodesic is at least

hr -t- (2/v’h) arc cot 25//h
then there are at least 2h focal points.

Proof. Consider gacobi fields on P.(C) with holomorphic curvature h
given by

( sin /h--t+ycos U(t)

where U is a parallel vector field along the geodesic with initial vector a unit
proper vector of the proper value a and where y 0 and ay -y. This
Jacobi field vanishes for

(2//h) arc cot A-2a//h).
Using the canonical complex structure there is another Jacobi field vanishing
for

(2//h) arc cot 2a//h).

Thus it follows from the Morse index theorem that for

> (2//h) arc cot (2b//h)

there are at least two focal points, that is, the focal points occur in pairs.
The latter part of the proposition is clear.

PaOrOSTON. Let X be a compact holomorphic submanifold of P,(C) with
proper values of all second fundamental forms in the interval [-b, b]. Let

cx b[(p,X)], 0 <j< 2),, and a hr-4-2arccot- 2b;

then
cx

_
vol (X)/vol P(C).

Proof. By the above proposition each normal geodesic to X of length at
least 2 arc cot 2b has index at least 2h 2. Thus any geodesic index of
most 2 has length at most a. By a similar argument as in Proposition 3.4
of [7] our proposition follows.

THEOREM. If X is a compact holomorphic submanifold of P(C) with
proper values of the second fundamental forms restricted to I-b, b], b > 0 then
the sum of the first 2 Betti numbers of (p, X) is no larger than

(k + 2 arc cot (--25))c vol (X) Axbn! 0<x<_

where the A are constants.
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Since we are interested in estimating

CS f0 p2+-(5.1)
k(k + 1) :: + 1) (1 + p)n+l

dp

/ (- i)o

le us first estimate t integral from 0 to . ow

where o,(, k) denoges ghe max of ghe inegrand.
eeN1 ghag ghe (N0) are ghe eoeeiens of ghe second fundamenN forms

in ghe normal direegions, ghag is,- r)S, (Doe
where D is the associated covariant derivative and e...e. is an adapted
frame field. If L(w, w) is the complex second fundamental form and S(u, u)
is the real second fundamental form then an elementa calcation reveals
that

L(Pu, Pu) (1/V2)(S(u, u) + (- 1)S,(u, u))

where P is the type (1, O) projection.
Hence

Le(Pu, Pu) S(u, u) .
As a result

where C is a constant.
Since the volume of P,(C), in the Fubini-Study metric is v’/n !, the integral

(5.1) is bounded above by

(k + 2 arc cot (-25))’c vol (X) Ab
where A incoorates all of the constants.

In other words, the sum of the first 2X Betti numbers of (p, X) grows like
a first degree polynominM in .
Added in proof. A similar formula for the volume of a tube in P,(C) has

been found, using derent techniques, by R. A. Wolf in his Berkdey thesis,
1968.
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