RADICAL GROUPS OF FINITE ABELIAN SUBGROUP RANK

BY
REINHOLD BAER AND HERMANN HEINEKEN

Following Plotkin we term a group radical, if each of its non-trivial epimor-
phic images possesses a non-trivial locally nilpotent normal subgroup. A
group has been termed of finite abelian subgroup rank, if its elementary abelian
primary subgroups are finite and if its torsionfree abelian subgroups are of
finite rank. For the sake of brevity and for the moment we term 9R-group
every radical group of finite abelian subgroup rank. Subgroups and epi-
morphic images of R-groups are R-groups; and extensions of R-groups by
R-groups are R-groups [Discussion of Theorem 6.1, (A)]. R-groups are
countable; and every epimorphic image, not 1, of an fR-group possesses an
abelian characteristic subgroup, not 1, which is either finite, elementary and
primary or torsion-free of finite rank [Theorem 6.1, (a)]. The intersection
of all subgroups of finite index in an R-group is a nilpotent characteristic
subgroup without proper subgroups of finite index [Theorem 6.1, (b)].

If an R-group is a torsion group, then it is locally finite-soluble and its
Sylow subgroups of equal characteristic are conjugate; it is an extension of a
radicable abelian group by a residually finite group [Theorem 6.1, (¢) +
Proposition 4.5].

If 1 is the only normal torsion subgroup of an R-group, then it is soluble
of finite rank and its torsion subgroups are finite of bounded order; it is an
extension of a torsion free nilpotent group by a noetherian and almost abelian
group [Theorem 6.1, (d) + Proposition 5.5].

It is easy to construct abelian groups of finite abelian subgroup rank which
are not of finite rank [in the sense of Priifer]; and R-groups need not be soluble
[Discussion of Theorem 6.3, (A)].

The R-groups of finite rank are then characterized by the following equiv-
alent properties: A group is a radical group whose abelian subgroups are of
finite rank if, and only if, it is of finite rank and an extension of a hypercen-
tral torsion group whose primary components are artinian and almost abelian
by a soluble group [Theorem 6.3].

More especially we show that a group @ is soluble of finite rank and the
number of primes which are orders of elements in G is finite if, and only if,
@ is radical and its elementary abelian and torsion free abelian subgroups are
of finite rank [Theorem 7.1].

It is noteworthy that a group G possesses an R-subgroup of finite index if,
and only if, @ is of finite abelian subgroup rank and its infinite epimorphic
images possess normal subgroups, not 1, which are finite or radical [Theorem
8.1].
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Two remarks on method seem to be in order: we get very similar results
for primary groups and for torsionfree groups; in other words: it does not
make too much difference whether the characteristic is a prime or 0. Actually
it does not matter too much whether a group is torsionfree; what is really
important is the absence of non-trivial normal torsion subgroups; see in par-
ticular Proposition 5.5. -—As always it is important to have information on
the automorphism groups which are induced in normal subgroups of our
groups. But as our groups need not be soluble and as we only assume our
groups to be radical, such information as is available about the automorphism
groups of soluble groups—see e.g. Wehrfritz—can only be used with cir-
cumspection. This situation becomes aggravated by the fact that the auto-
morphism groups even of abelian groups of finite rank may be quite wild:
remember that the automorphism group of the abelian group of type p” is the
group of integral p-adic numbers prime to p and this group is uncountably in-
finite; likewise the group of automorphisms of the additive group of rational
numbers is the direct product of a cyclic group of order 2 and a free abelian
group of countably infinite rank.

Notations. zoy = & 'y vy = z 2.

eo A = set of all commutators eca with a e 4.

{z, y, 2, ---} = subgroup generated by z, y, 2, + - - .

AoB = {aoblaeA,beB}.

@ = Go @ = commutator subgroup of G.

G(O) = G, G(i'+l) = (G(i)),.

3X ={a|laeX, a0z = 1forall z ¢ X} = center of X.

X =13inX/3X = 5(X/3:X).

hypercenter of X = intersection of all normal subgroups Y of X with
#(X/Y) = 1.

hpX = Hirsch-Plotkin-radical of X = product of all locally nilpotent normal
subgroups of X; see Schenkman [p. 205].

aX = hyporesiduum of X = subgroup of X, generated by all subgroups of
X without proper subgroups of finite index in X.

re8 X = residuum of X = intersection of all subgroups of finite index in X.

socle of X = product of all minimal normal subgroups of X.

tX = product of all normal torsion subgroups of X.

e 8 = normalizer of the subgroup S of @ = {a|a™'Sa = S and a € G}.

¢x Y = centralizer of the subset Y in the subgroup X

= {alaeXandaoy = 1forallyeY}.

0o(X) = order of group X.

torsion element = element of finite (positive) order.

p-element = element of order a power of p.

p-Sylow subgroup = maximal p-subgroup.

p’-element = torsion element of order prime to p.

The subgroup C of @ is a complement of the normal subgroup N of G if
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G = NC and 1 = N n C; and @ splits over its normal subgroup N if such a
complement C exists.

Factor of the group G = epimorphic image of a subgroup of G.

The automorphism ¢ of G stabilizes the chain of subgroups S; of G with
So = 1, S; a normal subgroup of S;;; and S, = G, if ¢ fixes every element in
every Siy1/S;.

Hom(U, V) = group of homomorphisms of the abelian group U into the
abelian group V.

The group G is

nilpotent (of finite class), if G = 3; G for almost all 7;

hypercentral, if non-trivial epimorphic images of G possess non-trivial
centers;

soluble, if G° = 1 for almost all 4;

hyperabelian, if non-trivial epimorphic images of G possess non-trivial
abelian normal subgroups;

radical, if non-trivial epimorphic images of G possess non-trivial locally
nilpotent normal subgroups;

almost abelian, if there exists an abelian subgroup of finite index in G;

artinian, if the minimum condition (= descending chain condition) is
satisfied by the subgroups of G;

noetherian, if every subgroup is finitely generated

= ascending chain conditions for subgroups
= maximum condition for subgroups;

of rank r (in the sense of Priifer), if every finitely generated subgroup may
be generated by r or fewer elements;

of finite rank, if G is of rank r for almost all positive integers r;

radicable, if every element in @ is for every positive integer n the nth power
of an element in G,

elementary, if all its elements have squarefree order;

a p-group, if all its elements are p-elements;

primary, if G is a p-group for some prime p;

an w-group, if @ is a torsion group the order of whose elements are divisible
by primes in the set w only;

an n-group, if G is an w-group for w the set of primes dividing n;

a p’-group, if G is a torsion group all of whose elements are of order prime
to p;

an o’ -group, if G is a torsion group all of whose elements are of order prime
to every prime in w.

1. It is our aim in this section to investigate elementary abelian p-groups
T of automorphisms of abelian p-groups A. As usual in such a situation it
will prove convenient to denote the composition of the elements a, b of 4
by addition a + b, the effect of the automorphism ¢ on the element a by the
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product ao and the composition of automorphisms as multiplication and to
make use of the fact that T is part of the endomorphism ring of 4.

Lemma 1.1. Assume thal the automorphism o of the abelian p-group A
meets the following requirements:

(a) ¢ =1.

(b) pz = 0 implies xo = z.

(¢) p = 2and 4z = 0 imply xo = .
Then p(e — 1) = 0.

For related results see Robinson [1; p. 55, Lemma 2.36] and also Baer [4;
p. 525, Lemmal.

Proof. Denote by A(4) the totality of elements # in A with p'z = 0.
Then every A(7) is a fully invariant subgroup of 4 and

0 =A40)CA1) S - CAG) CAE+1) S - S Ui 4() = 4;
pA(T + 1) S A(7).
Condition (b) may be restated as
(b*) A(l)(e—1)=0
and condition (¢) as
(¢*) p =2 implies A(2)(¢ — 1) =0.
Because of (b*) we may make the inductive hypothesis
A()(e — 1) S A(Z — 1) for some positive <.
Then
PAG+ 1)(c — 1) S A@E) (e — 1) S AGE - 1)
8o that
PAG+ (e —1) SpTAGE~1) =0

and hence A(¢ + 1) (¢ — 1) € A (¢). Thus we have shown by complete
induction:

(1) A@)(e —1) S A(z — 1) for all positive <.
If p =2, then (c*) permits us to make the inductive hypothesis
A(@) (e — 1) S A — 2)
for some ¢ > 1. It follows then as before
240+ 1)(e—1) S A@E) (e — 1) S AGE - 2),
274+ 1) (o — 1) S 2741 — 2) = 0,
A+ 1D(e—1) S A —1);
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and we have shown by complete induction:
(2) Ifp =2, then A(z)(¢ — 1) € A(t — 2) forz > 1.
If our lemma were false, then p(¢ — 1) 5% 0. This is equivalent to
A(e —1) EA®).

Since every element in 4 is in some 4 (%), it follows that 4 (¢ — 1) & A(1)
is equivalent with the existence of some 4 such that A (%) (¢ — 1) ¢ A(1);
and among these there is a minimal one m. Consequently we have

(b**) A(i)(c — 1) S A(1) fors < m, A(m)(ec — 1) € A(1)
and especially
pA(m)(e — 1) S A(m — 1)(e — 1) S A(1),

pZA(m)(cr — 1) CpA(1) =0,
8o that

(b***)  A(m)(¢ — 1) S A(2);
and from (1), (2) and (c¢*) we deduce

(b A(m)(c — 1) =0
(¢*) A(m)(c — 1)* = 0forp = 2.

Application of (a) and the Binomial Theorem gives
(+) 0=32Cp, (e — 1)
Therefore
0= A(m)( 22 C(p, ) (e — 1)°) = A(m)(p(e — 1) + C(p, 2)(c — 1)?)
by (b*). As A(m)(¢c — 1) € A(2) by (b***), we have
A(m) (e — 1)" S A(1)

by (1). Since C(p, 2) = 0 mod p for p 2 and since we may use (c¢*) for
p = 2, we obtain

0=A(m)(p(c — 1) + C(p, 2)(¢ — 1)*)
= A(m)(p(e — 1))
= pA(m)(¢c — 1),
A(m)(e — 1) € A(1).
This contradicts (b**) and proves our Lemma.

CoroLLARY 1.2. If T s a group of automorphisms of the abelian p-group
A such that

(a) T" =1
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(b) px = 0 implies 2T' = x

(e) p = 2and4x = 0 imply 2T = x,
then

(A) the mapping ¢ — o — 1 induces an isomorphism of T into
Hom (A/pA, A) with A the socle of A;

(B) T is an elementary abelian p-group;

(C) i, in addition, A s of finite rank n, then T is of rank n’.

Terminological reminder. The socle A of the abelian p-group A is just the
totality of elements 2 in A with pa = 0; it is therefore identical with 4 (1)
as defined in the proof of Lemma 1.1.

Proof. Every element ¢ in I' meets the requirements (a), (b), (c¢) of
Lemma 1.1 so that p(¢ — 1) = 0. Hence p(4(s — 1)) = O so that ¢ — 1
is for every ¢ in T' ¢ homomorphism into the socle A of 4.

It is clear that the mapping ¢— o — 1 is one to one. If @, 8 are elements
in T, then every element in A is, by (b), a fixed element of (¢ and) 8. If a
is an element in A, then

a(af — 1) =a(lea—1)B+aB—1) =a(a—1) +a(B—1)
8o that
of —1=(a—1)+ (B —1);

and this completes the proof of (A); and (B) is an immediate consequence of
(A).

If finally A is of finite rank 7, then A has order p* with » < n. It follows
that A is the direct sum of h groups of rank 1 (cyclic or of type p®); see
Fuchs [p. 65]. The order of A/pA is therefore a divisor p™ of p". Since
every homomorphism of 4 into A maps pA onto 0, the group T is essentially
the same as a group of homomorphisms of 4/pA into A. The group of all
homomorphisms of the elementary abelian group A/pA of order p™ into the
elementary abelian group A of order p" is an elementary abelian group of
order p™, and this proves (C).

Remark 1.3. If A = pA, the homomorphisms of A/pA into A must be
trivial, so I' = 1; cp. Baer [4; p. 525, Lemma).—The indispensability of con-
dition (¢) in Lemma 1.1 and Corollary 1.2 may be seen from the example of
an abelian 2-group 4 and its automorphism ¢ — —a. This automorphism
is an involution fixing all elements of order 2. But selecting A properly,
none of the conclusions holds.

ProrosiTioNn 1.4. If A s an abelian p-group of finite rank n, then every
p-group of automorphisms of A <s finite of rank 3n(5n — 1).

Proof. Abelian p-groups are of finite rank if, and only if, they are ar-
tinian; see Fuchs [p. 65, Theorem 19.2 or p. 68, Exercise 19]. Application
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of Baer [4; p. 526, Corollary] shows the existence of a positive integer k& with
the following property:

(4+) If the order of the automorphism ¢ of A is finite and fixes every
element a € A with p*a = 0, then ¢ = 1.

Accordingly we denote by K the totality of elements a ¢ A with p’a = 0.
Property (+) shows then that every torsion group I' of automorphisms of A
induces in the characteristic subgroup K of A a group of automorphisms
T*=~=T.

Since the rank of A is n, the order of K is a divisor of p*”. Thus K is
finite so that I'* and hence I is likewise finite.

Now we make use of the hypothesis that T' is a p-group. Then we may
apply a result of Roseblade [p. 408, Lemma 5] on the p-group I'* of the finite
abelian p-group K of rank n. It follows that the rank of T'* and hence the
rank of T is n(5n — 1).

2. In the present section estimates are derived for the rank of G/A when-
ever A is an abelian normal subgroup of G and G/A is an elementary abelian
p-group. The general case will be discussed after we have treated several
special cases. Our first result will be stated and proved in a somewhat more
general setting.

(2.1) Assume that the group G and its normal subgroup N meet the follow-
g requirements:

(a) GY/N 1is an abelian torsion group.

(b) If the prime p is the order of an element in G/N , then p is not the order
of an element in N.

(e) If Sisa subgroup of Gand N n S = 1, then S is findle.

(d) N is locally finite.
Then

(A) G splits over N ;

(B) any two complements of N in G are conjugate in G;

(C) a subgroup S of G is a complement of N if, and only if, S is mazimal
with respect to the property Nn 8 = 1;

(D) G/N 4s finite and [G:N] is the order of a mazimal abelian [G:N]-sub-
group of G

(E) G is locally finite.

Proof. Abelian torsion groups are locally finite. Therefore the extension
G of the locally finite group N by the locally finite quotient group G/N is
locally finite (see for instance Kurosh [p. 153]); and we have shown (E).

Consider a finitely generated subgroup S of G. We deduce from (E) that
S is finite. Because of NS/N == S/(N n S) and (b) we may deduce from
Cauchy’s Theorem that the orders of N n S and the abelian group S/(N n 8)
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are relatively prime. Application of the Theorems of Schur-Zassenhaus
shows: there exist complements of N n S in S and any two complements are
conjugate in S; see Zassenhaus [p. 125, Satz 25 and p. 126, Satz 27]. Thus
we have shown:

(4+) If Sis a finitely generated subgroup of @, then 8 is finite and splits
over (its normal Hall subgroup) N n S; all the complements of N n S in
S are conjugate in S.

There exist subgroups X of G with N n X = 1 and among these there exists a
maximal one, say M (Maximum Principle of Set Theory). By (¢), M is
finite. If z is any element in @, then S = {M, z} is finitely generated.
Application of (+) shows the finiteness of S and the existence of a comple-
ment T of N n Sin 8. Then

TaMNaS))n(NanS)=Tn(NnS8)=1
and

[TaMNaS)I(NnS8) =T(NnS)nM(NnS)
SnM(NnS)

M(N n 8)

by Dedekind’s Modular Law so that T n M(N n 8) is a complement
of NnSin M(N nS8). Since M is likewise a complement of N n S in
M(N n S), and since M(N n 8) is finite, application of (+) shows
that M and T n M(N n 8) are conjugate in S. Hence there exists an ele-
ment ¢ in S with

M=[TaMNnS8)]"C T

Because of TC S and 1 =Tn(NnS) =TnN we have 1 = T*n N;
and from the maximality of M we deduce M = T®. It follows that M is a
complement of N n Sin S, asis T. Soxz belongsto S = (Nn S)M S NM;
and we have shown G = MN. Hence M is a complement of N in G,
proving (A) and (C) and the finiteness of G/N (since M = G/N is finite).
Noting that by (a), (b) a subgroup S of G satisfies N n § = 1 if, and only
if, S is abelian with S'"! = 1, we see that (D) too is true.

If U and V are complements of N in @, then they are both finite. Hence
S = {U, V} is finitely generated and U, V are both complements of N n S
in 8. Application of (4 ) shows that U and V are conjugate in S, proving
the validity of (B).

Remark 2.2. Denote by G = {a} ® {b} the direct product of the infinite
cyclic group {a} and the cyclic group {b} of order a prime p. Let N = G* =
{a®}. Then G/N is a finite elementary abelian p-group, N is free of elements
of order p, and our condition (c¢) likewise holds. But G does not split over N,
showing the indispensability of (d).



RADICAL GROUPS OF FINITE ABELIAN SUBGROUP RANK 541

(2.3) Assume that the hyperabelian group G and its normal abelian sub-
group A meet the following requirements:
(a) G/A is a torsion group.
(b) If the abelian normal subgroup S of G is a torsion group, then S = 1.
(e) The rank tA of A 1is finite.
Then G is soluble and of finite rank, and every p-subgroup of G/A s of rank

(p—1(p—2"tAforp#2 and 3tAforp = 2.

Proof. There exists a maximal abelian normal subgroup B of G which
contains A (Maximum Principle of Set Theory). The torsion subgroup
tB of the abelian group B is a characteristic subgroup of the normal subgroup
B and hence it is an abelian normal torsion subgroup of G. Application of
(b) shows tB = 1; and we have shown that B is torsionfree. Assume now
by way of contradiction that B £ c¢ B. Since @ is hyperabelian, there ex-
ists a normal subgroup C of G with ¢’ € B < C C ¢ B; and we note that
B C ;C. Since G/A is, by (a), a torsion group, its factor C/B is a torsion
group as well. If z and y are elements in C, then there exists a positive in-
teger k such that z* belongs to B; and z o y belongs to B too. From B C 3C
we deduce now that

1=2a"oy = (zoy)
Hence x o y belongs to tB = 1, proving the commutativity of C. This con-
tradicts the maximality of B; and thus we have shown that
(1) B = cq B is torsionfree.
Since B/A C G/A is, by (a), a torsion group, it follows from (1) that
(2) 4 = tB.

It is a consequence of (1) that G/B is essentially the same as the group of auto-
morphisms of B, induced by G'in B. It is a consequence of A € B and (a)
that G/B is a torsion group; and G/B is hyperabelian, since @ is hyperabelian.
Since B is torsionfree of finite rank [by (1), (2)], we may apply Baer [3; p.
167, Hauptsatz 2]. Hence

(3) G/B is finite.

Thus G is an extension of the abelian group B by the finite hyperabelian (and
hence soluble) group G/B, and we conclude:

(4) G is soluble.
Finally (2) and (3) yield
(5) @is of finite rank.

We will now determine an upper bound for the order of a p-Sylow subgroup
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S/B of G/B. Obviously S/B is essentially the same as some p-subgroup of
the automorphism group of B, and the order of the p-Sylow subgroups of this
automorphism group is bounded by p™?, where

M, < 2t p ™ (p — 1)7'vd = (p/(p — 1)*)14;

see Burnside [Note G, p. 484].

Hence M, < 2t4 and M, < (1/(p — 2))tA for p # 2. The rank of
any p-subgroup of the automorphism group of B is M, . Since the rank of
any p-subgroup of G/A cannot exceed M, + tA, we obtain the last statement
of (2.3).

(2.4) Assume that the group G and its normal subgroup A meet the following
requirements:
(a) G 1isa p-group.

(b) 4 =ced.
(e¢) A s of finite rank n.
Then

(A) G/A is finite;
(B) the rank of G is 3n(5n + 1).

Proof. It is an immediate consequence of our hypotheses that G/A is
essentially the same as a p-group of automorphisms of the abelian p-group 4
of rank n. Application of Proposition 1.4 shows that G/A is finite and its
rank is 3n(5n — 1). Since the rank of G is the sum of the ranks of A and
of G/A,itis in(5n + 1).

ProrosiTioN 2.5. Assume that the prime number p and the abelian normal
subgroup A of G meet the following requirements:

(a) G/A 1is a hypercentral p-group.

(b) The rank of every abelian p-subgroup of G is finite.

(e) The rank of every free abelian subgroup of A 1is finite.
Then there exist integers a and b with the following properties:

(A) A/tA and the torsionfree abelian subgroups of G are of finite rank b.

(B) There exists an elementary abelian p-subgroup of G whose rank is a;
and the p-subgroups of G are of finite rank 3a(5a + 1) 4+ 2b + ab.

(C) G/A is of finite rank 3a(5a + 1) + 3b + ab.

Proof. We recall a group is a that p’-group if it is a torsion group the
orders of whose elements are prime to p. The totality of elements of (finite)
order prime to p in the abelian group A is a characteristic p’-subgroup @
of A. The torsion elements of G of order prime to p belong, by (a), to A
and hence to Q. Thus we have shown:

(1) The totality @ of torsion elements in G of order prime to p is a charac-
teristic p’-subgroup of G with Q < 4.

Consider next a subgroup S of G with @ £ S and S/Q an elementary abelian
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p-group. If U is a subgroup of S with @ n U = 1, then U == UQ/Q < S/Q
g0 that U is an elementary abelian p-group. Application of (b) shows the
finiteness of U. Hence we may apply (2.1) on the pair Q, S so that in par-
ticular S splits over @ and S/Q is a finite group, isomorphic to a subgroup
of S. Thus we have shown:

(2) Every elementary abelian p-subgroup of G/Q is finite and isomorphic
to a subgroup of G.

It is an immediate consequence of (2) that
(3) the rank of every abelian p-subgroup of G/Q is finite.

The rank of the torsionfree abelian group A/t4 is equal to the rank of a
free abelian subgroup of A/tA; and every free abelian subgroup of 4/tA4 is
isomorphic to a free abelian subgroup of A whose rank is finite by (¢). It
follows that the rank b of 4/tA is finite. Every free abelian subgroup of A
is isomorphic to a subgroup of A/tA so that its rank is likewise b. Thus it
follows:

(4) The rank b of A/tA is finite and the rank of every torsionfree abelian
subgroup of A is b.

If F is a subgroup of G with @ C F and free abelian F/Q, then Q & Fn 4
by (1) and

F/QI/I(FnA)/Q=F/(FnA)=FA/A S G/A

is by (a) a p-group. Since the subgroup (F n 4)/Q of the free abelian group
F/Q is by Fuchs [p. 46, Theorem 12.2] a free abelian group, F/Q and
(F n A)/Q are free abelian groups of equal rank. By construction,

Q=Fntd = (Fnd)ntd
8o that
(Fnd)/Q = (FnA)/((FnA)ntA) = (FnA)}tA/tA C A/tA;
and this implies by (4) that
(5) torsionfree abelian subgroups of G/Q are of rank b.

If we let G* = G/Q and A* = A/Q, then G*/A* = (/A and it follows
from (a), (2), (3) and (5) that

(6) @*/A* is a hypercentral p-group; abelian p-subgroups of G* are of
finite rank a [and a is the rank of some elementary abelian p-subgroup of GJ;
and every torsionfree abelian subgroup of G* is of finite rank b.

Among the abelian normal subgroups of G* which contain A* there exists a
maximal one, say B* (Maximum Principle of Set Theory). G*/B* is an
epimorphic image of G*/A* and as such G*/B* is a hypercentral p-group.



544 REINHOLD BAER AND HERMANN HEINEKEN

Hence every normal subgroup, not 1, of G*/B* contains a center element,
not 1. Since B* is a maximal abelian normal subgroup of G* it follows
therefore that

(7) B* = ¢ B*.
It is a consequence of (1) that
(8) 1 is the only p’-element in G*.

The totality T* of all torsion elements in the abelian group B* is a charac-
teristic subgroup of B” which is a p-group by (8) and which is a normal sub-
group of G*, since B* is a normal subgroup of G*. Furthermore B*/T* is
torsionfree. The rank of B*/T* is equal to the rank of a free abelian sub-
group of B*/T* which is isomorphic to a subgroup of B*. Thus application
of (6) shows:

(9) The rank a of the abelian p-group T'* is finite and the rank of an
elementary abelian p-subgroup of G; and the rank of the torsionfree abelian
group B*/T*is b.

It is a consequence of (7) that G*/B* is essentially the same as the group T
of automorphisms, induced by G* in B*. Since G*/B* is a hypercentral
p-group, as we remarked before, I' is a hypercentral p-group of automorphisms
of B*. Since T* is a characteristic subgroup of B¥, it is transformed into
itself by every element of I'. It follows that the totality A of automorphisms
in I, fixing every element in T*, is a normal subgroup of I' with I'/A essen-
tially identical with the group of automorphisms, induced in B* by I'. The
rank o of the abelian p-group T* is finite by (9). We may apply Proposition
1.4 to show that

(10.a) T/A i8 a finite p-group of rank 3a(5a — 1).

The totality A of the automorphisms in I' fixing every element in B*/T*
is a normal subgroup of I' with I'/A essentially the same as the group of
automorphisms, induced by I' in B*/T*. Since T is a hypercentral p-group,
g0 is T'/A; and we deduce from (9) that B*/T* is a torsionfree abelian group
of rank b. Application of Burnside [p. 484, Note G] shows that

(10.b) T/A is a finite p-group of order p* with

M<lpp—1)"1<2 forp=2
< b for2 < p.

Combining (10.a) and (10.b) one obtains
(10) T/(A n A) is a finite p-group of rank 3a(5¢ — 1) + 2b.

The automorphisms in A n A fix every element in T* and every element in
B*/T*, They belong therefore to the stabilizer of the subgroup 7'* of the
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abelian group B*. But the stabilizer is well known and easily seen to be iso-
morphic to Hom(B*/T*, T*), the group of homomorphisms of B*/T* into
T*. Noting (9), it follows that

(11) A n Ais an abelian p-group of rank ab.
Combination of (10), (11) and T = G*/B* shows that
(12) @*/B* is a hypercentral p-group of rank 3a(5a¢ — 1) + 2b + ab.

Since the sum of the ranks of B*/T* and of T* is the rank of B*, we deduce
from (9) that B* is of rank a¢ 4+ b and that G* is by (12) of rank

3a(5a + 1) + 3b + ab;

and noting that G/A is an epimorphic image of G* = G/Q with Q C A, we
derive (C) from this estimate for the rank of G*. It is clear furthermore
that (A) is a consequence of (4).

Consider finally a p-subgroup P of G. Then P n Q = 1, since Q is a
P'-subgroup. Hence P = QP/Q = P* C G*; and P* is an extension of

P*nB*=P*nT*C T*

by P*/(P* n B*) =% B*P*/B* C G*/B*. Since T* has rank a by (9),
and since G*/B* is by (12) a p-group of rank

2a(5¢ — 1) + 2b + ab,
it follows that P = P*is of rank $a(5¢ 4 1) + 2b 4 ab, and this proves (B).
3. In this section we discuss normal subgroups 4 of groups G with free

abelian G/A. We begin by exploring a general situation we will have to face
later.

(8.1) If ¢ is an automorphism of the group G, if N is a product of o-admis-
stble, normal, finite subgroups of G, if g is an element in G with

g =¢g modN,
then the set of elements 9" is finite.

Proof. The element ¢°g " is, by hypothesis, an element in N and belongs
consequently to a product P & N of finitely many o-admissible, normal,
finite subgroups of G. It follows that ¢ induces an automorphism in G/P
and Py is fixed by o. Hence

Pg = (Pg)" for every integer 1,

80 that the finite set Pg contains all the elements g"‘ and the set of elements
g°' is finite too.

(8.2) If A s an abelian normal subgroup of G with abelian G/A, if e s
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an element in G, then the set e o A of all commutators e o a for a in A s a normal
subgroup of G with ec A C A. If A/leo A] is a product of finite normal
subgroups of G/[eo A], then G/Acge is a torsion group.

Proof. Mapping @ in the abelian normal subgroup A onto the commu-
tator ¢ o @ is an endomorphism of A, since

eo(ab) = (eob)(eoa)’ = (eob)(eoa).

Hence e o A is a subgroup of A. Since G/A and A are abelian, the elements
e and ¢’ = e(eog) for g in G induce the same automorphism in A. Hence
(ec0a) =€ oa’ =¢eoa’ so that (eocA)’ = ¢o A, proving that ¢o A is a
normal subgroup of G.

Assume now that A/eoc A = A* is a product of finite normal subgroups of
G/ec A = G*. 1If g is an element in G, then g* = (eo A)g is an element
in G*. If s is an element in G, then s* induces an automorphism in G* with

*
e* = ¢* mod A%,

since G*/A*'g G/A is abelian. Application of (3.1) shows that the set of
elements e*" with integral ¢ is finite. Consequently there exists a positive

integer n = n(s) such that
e* = ¥,

The element ¢ ¢”" belongs therefore to e o A. This implies the existence of
an element ¢ in A with

Hence

8o that s belongs to cq e and s” belongs to Acge. Thus G/Ace e is a torsion
group.

(38.3) Assume that the normal subgroup A of G meets the following require-
ments:

(a) A is torsionfree abelian.

(b) G/A is abelian.

(¢) If X is a normal subgroup of Gwith 1 C X C A, then A/X s a prod-
uct of finite normal subgroups of G/X.

(d) 4 €36
Then there exists an abelian subgroup S of G with An S = 1 and G/AS a
torsion group.

Proof. Because of (d) there exists an element ¢ in G which does not cen-
tralize A. The set ¢o A is, by (3.2), a normal subgroup of G with

1Ceod C A. It is a consequence of (¢) that A/[eo A] is a product of
finite normal subgroups of G/[e o A]. Application of (3.2) proves that

(1) G/Acqe is a torsion group.
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Let V.= A ncese = cue. Every element ¢’ induces in A the same auto-
morphism as e, since A and G/A are abelian. The automorphisms, induced
by e and ¢’ in 4, have consequently the same fixed elements so that ¢, e =
ca€® = (cae)’. Thus V is a normal subgroup of G. If 1 C V, then A/V
would be, by (¢), a product of finite normal subgroups of G/V; and A/V
would in particular be a torsion group. The mapping which maps every
element @ in A onto the commutator e a is an endomorphism of A with
kernel V. We obtain A/V =2 e o A, a contradiction because A/V is a torsion
group while 1 C eo A C A is, by (a), torsionfree. Hencel = V = A ncge;
and from the commutativity of G/A we deduce the commutativity of
tee. Now it follows from (1) that cge is the desired subgroup S.

Remark 34. If G = {a, b, ¢} with aob = ce3G and {¢] = A, then
there does not exist an abelian subgroup S of G with 1 = A n S and torsion
group G/AS. Thus condition (d) is indispensable.

Remark 3.5. M. F. Newman [p. 357, Theorem 3.3] has shown that (3.3)
remains valid if conditions (a) and (¢) are replaced by the condition: 4 is
an abelian minimal normal subgroup of G.

Lemma 3.6. Assume that the group G and its normal subgroup N meet the
Sfollowing requirements:

(a) If K is a normal subgroup of G with K C N, then there exists a normal
subgroup L of G with K € L € N and finite L/K.

(b) Every free abelian subgroup of G is of finite rank.
Then every free abelian subgroup of G/N s isomorphic to a subgroup of G and
hence in particular of finite rank.

Proof. Consider a free abelian subgroup F/N of G/N. There exist tor-
sionfree abelian subgroups of F and among these there exists a maximal one,
say A (Maximum Principle of Set Theory). It is a consequence of (a) that
N is a torsion group. Hence A nN = 1 so that

A = A/(AnN) = AN/N C F/N.

Since F/N is free abelian, so is A =2 AN/N; see Fuchs [p. 45, Theorem 12.1].
Furthermore A is of finite rank by (b).

Consider an element f in F and form the set & of all the normal subgroups
X of @ with X C N and X{A4, f'}/X non-abelian for every positive integer 7.
Consider a non-vacuous subget T of & which is linearly ordered by inclusion.
Form T = Ug.x X. Thisis a normal subgroup of G with TC N. If T
were not in &, then there would exist a positive integer k such that T{4, f*}/T
is abelian. This is equivalent to 4 of* C T. Since A is free abelian of
finite rank, A is finitely generated. The normal subgroup K of G which is
generated by A o f* is consequently spanned by finitely many classes of ele-
ments, conjugate in G; and K € T = Ug.x X. Since ¥ is linearly ordered
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by inclusion, there exists a normal subgroup H in T with K & H. Then
H{A, f*}/H # 1 is both abelian and non-abelian, a contradiction proving
that T belongs to &.

Assume now by way of contradiction that & is not vacuous. Then we
may apply the Maximum Principle of Set Theory on & and there exists a
maximal M in &. Since N{A4, f}/N C F/N is abelian, N does not belong to
&. Hence M C N. Since M is a normal subgroup of G, there exists, by
(a), a normal subgroup W of G with M € W C N and finite W/M. From
the maximality of M we deduce the existence of a positive integer h such
that W{A, f*}/W is abelian. This is equivalent to 4 o f* C W, and f* nor-
malizes WA. Since W/M is finite and M, W are normal subgroups of G,
there exists a positive integer 7 such that f° induces the 1-automorphism in
W/M. The element f* induces consequently in AW/M an automorphism
which fixes every element in W/M and every element in (AW/M)/(W/M)
80 that AW o f* C W and Wof® C M. It follows that

afm =a(aof™* mod M

for every positive ¢ and every a ¢ A. Since W/M is finite, there exists a
positive integer e such that (W/M)° = 1. It follows that (aof™) e M
and hence

fiho
d =a modM

for every a € A. Hence AM/M is centralized by ™ so that M{4, f™}/M
is abelian. But M belongs to &, a contradiction showing that & is vacuous.
Thus 1 does not belong to & so that {4, f7 is abelian for some positive 4.
Remember that A is a maximal torsionfree abelian subgroup of F. Hence
there exists a positive integer n with f™ ¢ A. We conclude that
(F/N)/(AN/N) is an abelian torsion group. Since F/N is a free abelian
group, we conclude that F/N and AN/N = A are free abelian groups of the
same finite rank. Thus they are isomorphic, which completes the proof of
Lemma 3.6.

Remark 3.7. Let F be the free group on the two free generators a, b; and

let
G = F/F"(F').

If we let ¢ = oF"(F')* and y = bF"(F'), then @ = {x, y}. Furthermore
@ is a countably infinite, elementary abelian 3-group and G/G’ is a free
abelian group of exact rank 2 which is essentially identical with the group
T' of automorphisms, induced in @' by G. Denote by X and Y the automor-
phisms, induced in & by z and y respectively. Then the ring of endomor-
phisms of the elementary abelian 3-group G’, spanned by T, is a ring of poly-
nomials in X, X, ¥, Y™ with coefficients in the prime field of characteristic
3; and it is a subring of the field of rational functions in the independent
variables X, Y with coefficients in the prime field of characteristic 3.



RADICAL GROUPS OF FINITE ABELIAN SUBGROUP RANK 549

Assume by way of contradiction the existence of a non-cyclic torsionfree
abelian subgroup U of G. Then Un @' = 1 so that U is isomorphic to a
subgroup of G/@’. Hence U is free abelian of rank 2 so that [¢/G')/[UG’/G']
is a finite group. Consequently there exists a positive integer k& with
G* C UQ@. Naturally [¢/G'f = G*G’/@ is likewise free abelian of rank 2.
Application of Dedekind’s Modular Law shows G'G* = G'(G* n U) so that

GnU=(Fal))(@nUnG)=GG6/G
is free abelian of rank 2. It follows that
UnG* = {a%,4*d} withe, dinG'.
From the commutativity of U and G we deduce
1= (a') e (3 d) = (@' od) (" ey (corf).

Since ¢, d € @', there exist endomorphisms C and D of T with ¢ = (zoy)°
and d = (zoy)®. If we denote by X and Y the automorphisms of @,
induced by « and y respectively, then the preceding equation leads to the
following equation, relating endomorphisms of G’ in the endomorphism ring
of @'

0=(1—-XD+ WX XY + (¥ - 1)C.

As noted before the ring of endomorphisms of G, spanned by T, is a subring
of a field and hence free of zero divisors. Since two of the summands of the
above equation are divisible by > %=t X*, and since X and ¥ are independent,

it follows that
C = 25 X'Cx
with suitable C* in our ring of endomorphisms; and similarly we have
D = 2L Y'D*
But then our equation reduces to
0=(1-X)D*¥+ 14 (Y — 1)C*

because of the absence of zero divisors; and this is a contradiction, since 1 is
not contained in the ideal spanned by 1 — X and 1 — Y.

Thus we have shown that every torsionfree abelian subgroup of G is eyclic
although G/@’ is a free abelian group of exact rank 2. Hence condition (a)
in Lemma 3.6 is indispensable; and we cannot substitute for (a) the require-
ment that N be locally finite.

4. We have defined elsewhere that the group G is of fintte abelian subgroup
rank, if all its primary abelian subgroups and all its torsionfree abelian sub-
groups are of finite rank; for a detailed discussion of this concept see Baer
[6; p. 94/95]. We mention that G is of finite abelian subgroup rank if, and
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only if, every elementary abelian p-subgroup of G is finite and every free
abelian subgroup of G is of finite rank.

Lemma 4.1. If A is an abelian normal subgroup of the group G of finite
abelian subgroup rank, then G/A too is of finite abelian subgroup rank.

Proof. Assume first that A is a torsion group. Then 4 is the product of
finite characteristic subgroups; see Fuchs [p. 65, Theorem 19.2 and p. 68, (19)].
Consider a subgroup S of G such that 8 € A < 8. If firstly S/A is an ele-
mentary abelian p-group, then the finiteness of S/A is a consequence of Prop-
osition 2.5; and if S/A is a free abelian group, then the finiteness of the rank
of S/A is contained in Lemma 3.6.

We turn next to the general case. The totality tA of the torsion elements
of A is a characteristic torsion subgroup of A and hence a normal subgroup
of G. It is a consequence of what has been shown in the first part of the
proof that G* = G/tA is of finite abelian subgroup rank. By construction
A* = A/tA is a torsionfree abelian normal subgroup of G*. Consider a sub-
group S of G* such that ' € A* < 8. If firstly S/A* is an elementary
abelian p-group, then the finiteness of S/A* is contained in Proposition 2.5;
and if S/A*is free abelian, then the finiteness of the rank of the torsionfree
group S is a consequence of a theorem by Carin [2; Theorem 6, p. 910].
Hence G*/A* =2 G/A is of finite abelian subgroup rank.

We shall say that the group @ is of bounded abelian subgroup rank, if there
exist positive integers r(0), r(p) for p a prime such that

(I) every abelian p-subgroup has rank r(p) and
(II) every torsionfree abelian subgroup of G has rank r(0).

Clearly (cp. Fuchs [p. 68, Exercise 18, (a)]) condition (I) is equivalent to
the following requirement:

(I') every elementary abelian p-subgroup of G has order dividing p"®.

Every group of bounded abelian subgroup rank is obviously of finite abelian
subgroup rank. The converse is false as may be seen from the following ex-
ample: Let E(7) be an elementary abelian p-group of order p* and G the free
product of all the E(¢). Then every torsionfree abelian subgroup of G is
cyclic, every abelian g-subgroup with p # ¢ is trivial, and every abelian p-sub-
group is isomorphic to a subgroup of some E(z). This is a consequence of the
Kurosh Subgroup Theorem; see Specht [p. 189, Satz 8]. Hence G is of finite
abelian subgroup rank, but not of bounded abelian subgroup rank.

The group @ is of bounded abelian factor rank, if there exist positive integers
r(p) (for every prime p) such that

(I) every abelian p-factor of @ has rank 7(p).
Clearly (I) is equivalent to the requirement:
(I') every elementary abelian p-factor of G has order dividing p™®.
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Assume that U is a free abelian factor of @. Then U/U” is a p-factor of G
and the ranks of U and U/U” are the same. Thus we obtain from (I):

(II) Every torsionfree abelian factor of G has rank 7(0) = Min(r(p)).

Note that the set of integers 7(p) need not be bounded.

It is evident that groups of finite rank are of bounded abelian factor rank
and that every factor of a group of bounded abelian factor rank is likewise of
bounded abelian factor rank.

(4.2) If the group @ possesses a normal subgroup N such that G/N and N
are of bounded abelian factor rank, then so is G.

Proof. Let T be a normal subgroup of the subgroup S of G. Then cer-
tainly S/T is an extension of (TN n S)/T by S/(TN n S). However,
TN n 8 = T(N n 8S) by Dedekind’s Modular Law because T C S and
TN = NT; and by the Second Isomorphism Theorem

(TNn 8)/T = T(NnS8)/T=(NnS)/[Tn(NnS)]=(NnS)/(NnaT),
S/(TN n 8) = STN/TN = SN/TN = (SN/N)/(TN/N).

If S/T is an elementary abelian p-group, its rank is exactly the sum of the
ranks of

S/(TNnS8)=(SN/N)/(TN/N) and (TNn S8)/T= (SnN)/(TnN),

which are both bounded by hypothesis. If S/T is torsionfree and abelian,
then its rank is the sum of the rank of (Sn N)/(T n N) and the rank of the
quotient group of (SN/N)/(TN/N) modulo its torsion subgroup. Both of
these ranks are bounded by hypothesis, and so is their sum; and (4.2) is proved
completely.

Abelian groups of finite abelian subgroup rank are of bounded abelian fac-
tor rank. We will generalize this statement and Lemma 4.1 in the following

LemMA 4.3. If N is a locally hypercentral normal subgroup of the group G of
finite abelian subgroup rank, then G/N is of finite abelian subgroup rank and N
18 hypercentral and of bounded abelian factor rank.

Terminological reminder. A group is locally hypercentral, if every finitely
generated subgroup of it is hypercentral. But a group is hypercentral and
finitely generated if, and only if, it is noetherian and nilpotent (of finite class);
see Baer [2; p. 203, Theorem]. Thus local hypercentrality and local nilpotency
are equivalent requirements.

Proof. Tt is an immediate consequence of our hypothesis and Baer [6; p. 98,
Theorem and p. 96, Lemma) that

(1) N is hypercentral,

(2) primary subgroups of N are artinian,

(3) torsionfree epimorphic images of N are of finite rank and nilpotent of
finite class.
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It is a consequence of (1) that

(4) the set T of all torsion elements in N is a characteristic subgroup of
N and T is the direct product of its primary components T, (see Specht [p. 382,
Satz 12 and p. 380, Satz 11]).

Application of (1), (2), and Baer [5; p. 21, Satz 4.1 and p. 7/8, Satz 2.1]
shows the existence of an abelian characteristic subgroup 4, of T, with finite
T,/Ap (and A, = (4,)"). As a characteristic subgroup of the characteristic
subgroup T, of the characteristic subgroup T of the normal subgroup N of G
each A, is a normal subgroup of G.

It is a consequence of (2), (3), Baer [5; p. 21, Satz 4.1 and p. 7/8, Satz 2.1]
and (4.2) that N is of bounded abelian factor rank.

Consider a subgroup S of G such that ' € T < S and S/T is torsionfree.
By (1) and (2) the requirements of Lemma 3.6 are satisfied for S and T';
hence every free abelian subgroup of S/T is isomorphic to a subgroup of S
itself. Thus all free abelian subgroups of the torsionfree abelian group S/T
are of finite rank and S/T is of finite rank.

Consider next a subgroup S of G such that 8 € T < S and S/T is an
elementary abelian p-group. Denote by T, the direct product of all T, with
q # p. Clearly S/T, is an extension of the p-group T/T, = T, by the
p-group S/T so that S/T, is a p-group. Assume that R is a subgroup of S
such that R’ C T,» € R and R/ T, is elementary abelian. It is easily checked
that R and T, satisfy all the conditions of (2.1); and we may conclude—see
(2.1, D)—that R/T, is finite. Hence S/T, (being a p-group) is of finite
abelian subgroup rank, and the same is true for

(S/Tp')/(Apr’/Tp') = S/Apr'

by Lemma 4.1. The quotient group S/A4,T, is an extension of the finite
p-group T/A,T, = T,/A, by the elementary abelian p-group

S/T = (S/APTP')/(T/APTP’)'

Thus S/A,T, i8 of finite exponent and nilpotent of finite class. As S/4,T,
is of finite abelian subgroup rank, every abelian normal subgroup of S/A,T,
is of finite rank and of finite exponent, hence finite. Among these abelian
normal subgroups there exists a maximal one which (by the nilpotency of
S/A,T,) is self-centralizing. The quotient group of S/A4,T, modulo this
normal subgroup is essentially the same as the group of automorphisms in-
duced by S/4,T, in its finite normal subgroup, so it is finite. Thus S/A,T,
is finite and its quotient group (S/A4,T,)/(T/A,Ty) = S/T is finite too.
Hence we have shown

(6) G/T is of finite abelian subgroup rank.
By (3), the quotient group N/T is nilpotent of finite class. Thus there
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exists a series of normal subgroups of G
T=K,CK,C:.-CK,=N,

such that K;;/K; = 3(N/K;) for all i. Therefore K;,/K;is an abelian nor-
mal subgroup of G/K;. We will show by induction that G/K; is of finite
abelian subgroup rank. The initial step (¢ = 1) is the content of (5). As-
sume now that ¢ > 1 and G/K;_, is of finite abelian subgroup rank. Then,
by Lemma 4.1, (G/K:4)/(Ki/Ki1) = G/K, is of finite abelian subgroup
rank, which completes our induction. Hence, in particular, G/N = G/K, is
of finite abelian subgroup rank.

LevmA 4.4.  If every primary elementary abelian factor of the radical group G
18 finite, then every epimorphic tmage, not 1, of G possesses an abelian character-
istic subgroup, not 1 (which s either finite or torsionfree of finite rank).

Proof. If H £ 1 is an epimorphic image of G, then we deduce from the
radicality of G the existence of a locally nilpotent normal subgroup, not 1.
The Hirsch-Plotkin radical R of H is consequently different from 1. We re-
call that the Hirsch-Plotkin radical is the unique maximal locally nilpotent
normal subgroup and hence characteristic; see Schenkman [p. 205, VI.7.b.
Theorem]. The elementary abelian primary subgroups of R are finite by
hypothesis. If F is a free abelian subgroup of R, then F and F/F® (for p a
prime) are factors of G. By hypothesis F/F” is finite so that the rank of F
is finite too. It follows that R is of finite abelian subgroup rank. Apply
Baer [6; p. 98, Theorem] to see that R is hypercentral. Hence 3R 5~ 1. Since
R is a characteristic subgroup of H, sois 38. The existence of a characteristic
subgroup, not 1, of 3R, and hence of H, which is either finite or torsionfree of
finite rank is now readily verified.

Discussion of Lemma 4.4. (A) The first hypothesis of our lemma is cer-
tainly satisfied whenever @ is of bounded abelian factor rank.

(B) The property that every epimorphic image, not 1, possesses an abelian
characteristic subgroup, not 1, implies hypercommutativity. But it is a
stronger requirement, as is shown by a famous example, due to McLain, which
is characteristically-simple but the product of its abelian normal subgroups.

ProrposiTion 4.5. If the radical torsion group G is of finite abelian subgroup
rank, then

(a) @ 1is hyperabelian of bounded abelian factor rank;

(b) every epitmorphic tmage, not 1, of G possesses a finite abelian character-
wstic subgroup, not 1;

(e) @G s locally finite (and locally soluble);

(d) the subgroup a@G of G, generated by all the subgroups of G without proper
subgroups of finite index, is an abelian and radicable characteristic subgroup of G;
and G/aG is residually finite with finite Sylow subgroups and all p-Sylow sub-
groups of G/aG are conjugate in G/oG;
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(e) all p-Sylow subgroups of G are conjugate in G;
(f) @G s countable.
Proof. Since G is of finite abelian subgroup rank,

(1) every primary abelian subgroup of G is of finite rank and artinian.

Consider a primary subgroup P of G. Since @ is radical, P is radical. It
is a consequence of (1) that every abelian subgroup of P is artinian and of
finite rank. Thus condition (5) of Baer [7; p. 359/360, Hauptsatz 8.15, A]
is satisfied by P; and it follows that P is soluble and artinian. Since simple
soluble groups are cyclic of order a prime, every simple factor of P is finite.
Application of Baer [5; p. 7/8, Satz 2.1] shows the existence of an abelian sub-
group of finite index in P. Since P is artinian, this implies that the inter-
section of all the subgroups of finite index in P is a characteristic subgroup
P* of P such that P/P* is finite and P* is abelian and radicable. Since P*
is of finite rank, P too is of finite rank; and since P* and P/P* are both
locally finite p-groups, every finitely generated subgroup of P is a finite p-sub-
group and hence nilpotent. Since P is of finite abelian subgroup rank, we
deduce from Baer [6; p. 98, Theorem] that P is hypercentral. Thus we have
shown:

(2) Every primary subgroup P of G is artinian, soluble, hypercentral, of
finite rank; and there exists an abelian, radicable, characteristic subgroup P*
of P with finite P/P*,

Denote by A the subgroup aG of @, generated by all the subgroups of G
without proper subgroups of finite index. This is a well determined charac-
teristic subgroup of G (the hyporesiduum of G); and it is clear that A is free
of proper subgroups of finite index. As @ is radical and of finite abelian sub-
group rank, so is 4. Assume by way of contradiction that A is not abelian.
Then 34 < A. By radicality 4/34 £ 1 possesses a locally nilpotent normal
subgroup, not 1. So there exists a normal subgroup B of A with34 C BC A
and locally nilpotent B/34. But then B itself is locally nilpotent; and since
G is a torsion group, so is B. Application of Lemma 4.3 shows that B is hy-
percentral; and as a hypercentral torsion group B is the direct product of its
primary components B, ; see Specht [p. 380, Satz 11]. Asevery B, is a char-
acteristic subgroup of the normal subgroup B of A, every B, is a normal sub-
group of A. It is a consequence of (2) that B, is artinian, soluble, hyper-
central, of finite rank; and there exists an abelian radicable characteristic
subgroup B% of B, with finite B,/B%. As a characteristic subgroup of the
normal subgroup B, the subgroup B} is normal in A. Consequently torsion
groups of automorphisms are induced by A in B% and in B,/B}%. The first
of these is finite, since torsion groups of automorphisms of abelian artinian
groups are finite by Baer [4; p. 521, Theorem]. The second of these is finite
since B,/B% is finite. But 1 is the only finite epimorphic image of A. Hence
A induces only the 1-automorphism in B% and in B,/B% so that in particular
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B} C3A. Thegroup of automorphisms, induced by 4 in B, , is consequently
isomorphie to a subgroup of Hom (B,/B%, B%), the group of homomorphisms
of B,/B% into B%. But the abelian artinian group B% contains only a finite
number of elements of an order not exceeding the (finite) order of B,/B%; see
Fuchs [p. 65, Theorem 19.2]. It follows that the group of automorphisms,
induced by 4 in B, , is finite; and since 1 is the only finite epimorphic image
of A, we conclude that A induces only the l-automorphism in B,. Hence
B, C 3A for every prime p; and this implies the contradiction that
B =[], B, € 34 © B. Thus we have shown:

(3) The subgroup A = a@G of G which is generated by all the subgroups
without proper subgroups of finite index is an abelian, radicable, characteristic
subgroup of G.

Consider a subgroup X of G with A © X such that X/A is free of proper
subgroups of finite index. If ¥ is a subgroup of X with finite index [X:Y],
then [X:A47Y] is likewise finite, implying X = AY. Hence

[X:Y] = [AY:Y] = [A:A n Y] is finite.

But A is free of proper subgroups of finite index sothat A = AnY C Y
and X = AY = Y: we have shown that X too is free of proper subgroups of
finite index. This implies X = A; and we have shown:

(4) 1 is the only subgroup of G/A without proper subgroups of finite
index.

Since A is by (3) an abelian characteristic subgroup of the radical group G
of finite abelian subgroup rank, we deduce from Lemma 4.1 that G/A is of
finite abelian subgroup rank. Hence G/A is a radical torsion group of finite
abelian subgroup rank so that (2) may be applied to G/A. It follows that
every primary subgroup of G/A (is artinian, soluble, hypercentral and) pos-
sesses a subgroup of finite index without proper subgroups of finite index.
Application of (4) shows that every primary subgroup of G/A is finite. Hence
we have shown:

(5) G/A is of finite abelian subgroup rank; every primary subgroup of
G/A is finite.

Every finitely generated hypercentral torsion group is finite and nilpotent;
see Baer [9; p. 207, Corollary]. This implies that locally hypercentral torsion
groups are locally finite. Since @ is radical, it follows from Specht [p. 141,
Satz 40*] that

(6) @ is locally finite and locally soluble.

By (5), every p-Sylow subgroup of G/A is finite. Denote by S, T two
p-Sylow subgroups of G/A. The quotient group G/A of G is locally finite by
(6); so {8, T} is a finite group and the p-Sylow subgroups S, T of G/A are
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p-Sylow subgroups of the finite subgroup {8, T’} as well; thus they are conju-
gate in {8, T}. We have shown:

(7) Every Sylow subgroup of G/A is finite and all p-Sylow subgroups of
G/A are conjugate in G/A.

It is a consequence of (6) and (7) that G/A is locally finite and locally
soluble with finite Sylow subgroups. Hence it follows from Baer [9; p. 129,
Satz 6.1, (b)] that G/A is residually finite: we have verified (¢) and (d).

Consider a prime p. By (7), all p-Sylow subgroups of G/A are finite and
have the same order p*® = ¢. It follows that every p-subgroup of G/A is
finite of order a divisor of ¢. Consider subgroups U, V of G/A such that
U CVcUandU/Visap-group. If Land K are p-Sylow subgroups of U,
then L and K are both finite of order a divisor of ¢. Since G is locally finite,
80 i8 G/A; and this implies the finiteness of {L, K}. Since L and K are p-
Sylow subgroups of U, they are p-Sylow subgroups of the finite group {L, K}
and hence they are conjugate in {L, K}. Since U/V is abelian, and since
LV/V and KV/V are conjugate subgroups of the abelian group U/V, they
are equal; and this implies LV = KV. Since G and G/A and hence U are
torsion groups, every element in the p-group U/V is represented by a p-
element in U; and every p-element in U is contained in a p-Sylow subgroup X
of U. Butall XV for X a p-Sylow subgroup of U are equal. Hence U = XV
for every p-Sylow subgroup X of U. Since such an X is of order a divisor of
g, it follows that U/V is finite of order a divisor of ¢, and we have shown:

(8) If ¢ = p°® is the common order of all the p-Sylow subgroups of G/A
and if the factor P of G/A is an abelian p-group, then P is finite of order a
divisor of q.

From (8) we conclude in particular that G/A is of bounded abelian factor
rank. The abelian torsion group 4 of finite abelian subgroup rank is by (1)
likewise of bounded abelian factor rank. Apply (4.2) to show that G is of
bounded abelian factor rank. Since G is radical, application of Lemma 4.3
shows the validity of (b). This implies that @ is in particular hyperabelian,
proving the validity of (a).

The simple proof that (e) is a consequence of (d) may be left to the reader.

Every primary component of the abelian torsion group A is of finite rank,
since G is of finite abelian subgroup rank. It follows from Fuchs [p. 66,
Theorem 19.2 and p. 68, Exercise 19] that every primary component of 4 is a
direct product of finitely many abelian groups of rank 1. Hence the primary
components of A are countable so that A itself is countable. Every finitely
generated subgroup of G/A is finite and soluble by (c); and the Sylow sub-
groups of G/A are finite by (d). Since G and hence G/A is radical by hy-
pothesis, we may apply Baer [9; p. 123, Folgerung 4.6] to G/A, showing the
countability of G/A. Since G/A and A are countable, so is G; and we have
shown (f).
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6. The group @ is said to be of uniformly bounded abelian subgroup rank,
if there exists a positive integer r such that

(I) every abelian primary subgroup of G has rank r and
(IT) every torsionfree abelian subgroup of G has rank r.

Clearly condition (I) is equivalent to the following requirement:
(I’) every elementary abelian p-subgroup of G has order dividing p".

It is easily seen that @ has uniformly bounded abelian subgroup rank if, and
only if, G has bounded abelian subgroup rank and there exists a positive integer
r such that for almost all primes p every elementary abelian p-subgroup of G
has order dividing p".

Finally we note the almost evident fact that groups of finite rank have uni-
formly bounded abelian subgroup rank.

Similarly we say that the group G is of uniformly bounded abelian factor rank,
if there exists a positive integer r such that

(I) every abelian primary factor of G has rank .

From this we deduce (proceeding as in section 4)
(IT) every torsionfree abelian factor of G has rank r.

(5.1) If, for some normal subgroup N of G, the groups N and G/N are of
uniformly bounded abelian factor rank, then G is of uniformly bounded abelian
factor rank.

We leave the proof to the reader, since it is quite analogous to the proof of
(4.2).

If G is of uniformly bounded abelian factor rank, then G is of uniformly
bounded abelian subgroup rank. We will prove the equivalence of these two
properties now for locally finite and for radical groups.

Lemma 5.2.  If G s locally finite and of uniformly bounded abelian subgroup
rank, then G is of uniformly bounded abelian factor rank.

Proof. Assume that all primary abelian subgroups of G have rank ». If
S/T is a finite elementary abelian p-factor of G, there is a finite subgroup U of
the locally finite group @ such that UT = 8; and if P is a p-Sylow subgroup of
U,then U = P(Un T) and PT = Sso that S/T=P/(PnT). If Nisany
maximal abelian normal subgroup of the finite p-group P, then P/N is es-
sentially the same as the group of automorphisms induced by P in N; and as
N has rank r, we deduce from (2.4) that P has rank r (5» + 1). So
S/T = P/(P n T) has rank $r(5r 4+ 1), proving Lemma 5.2.

Before we come to our next result we want to give a generalization of Zassen-
haus’ celebrated theorem which will be needed in the sequel. To make the
argument more transparent we begin with a remark which is probably well
known. We add a proof for the convenience of the reader.
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(5.3) If G is a locally radical group, if n is a positive integer with 8™ = 1
for every soluble subgroup S of G, then G™ = 1.

Proof. Tt is well known that a group T satisfies T™ = 1 if, and only if,

X™ = 1 for all subgroups X of T which are generated by at most 2" elements.
Thus

(1) locally soluble subgroups of G are soluble.

Consider a radical subgroup 4 of G. If the set & of soluble normal subgroups
of A is [linearly] ordered by inclusion, the set-theoretical union of all members
of & is a locally soluble normal subgroup of 4, hence soluble by (1). Thus we
may apply the Maximum Principle of Set Theory: There exists a maximal
soluble normal subgroup T'of A. If T C A, then A/T # 1 and there exists a
locally nilpotent normal subgroup K/T s 1 of A/T. If U is a finitely gen-
erated subgroup of K, then UT/T = U/ (U n T) is finitely generated and as a
subgroup of K/T nilpotent (and soluble), and U n T is soluble, since T is
goluble. Thus U is soluble; and this shows that K is locally soluble. Then,
by (1), K is soluble, contrary to the maximality of 7. Hence A = T. This
implies that

(2) radical subgroups of G are soluble.

Thus local radicality of G implies local solubility and, by (1), solubility of
@; and the soluble group G satisfies G™ = 1 by hypothesis.

ProrosiTioN 5.4. To every positive inieger n there exists a posttive integer
N (n) with the following property:

If T s a locally radical group of linear transformations of an at most n-dimen-
stonal vector space over a commutative field, then,

™ = 1,

Note that this result may be applied to automorphism groups of primary ele-
mentary abelian groups and of torsionfree abelian groups of finite rank, since
the former may be considered as groups of linear transformations over the
p-adic numbers, the latter over the rational numbers. According to Huppert
[p. 494, Satz 9] one may choose A (n) = 2n.

Proof. It is the content of Zassenhaus’ Theorem that there exists to every
positive integer n a positive integer A (n) with the following property:

(+) 1If 6 is a soluble group of linear transformations of an at most n-
dimensional vector space over a commutative field, then 6*™ = 1.

For this see Suprunenko [p. 32, Theorem 11].

Now Proposition 5.4 is an immediate consequence of (4 ) and (5.3).

The Hirsch-Plotkin-radical of a group X is the product hpX of all locally hy-
percentral normal subgroups of X. This is a well determined characteristic
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subgroup of X; and it is well known that hpX is locally nilpotent; see Schenk-
man [p. 205, VI.7.b. Theorem].

ProrosiTioN 5.5. Every radical group G with tG = 1 whose torsionfree
abelian subgroups are of finite rank has the following properties:

(a) @ 7s soluble of finite rank.

(b) Torsion subgroups of G are finite and their orders are bounded.

(¢) bHpG s nilpotent and every HpG/3; hpG is torsionfree.

(d) G/Hp@ is an extension of a free abelian group of finite rank by a finite
group [is noetherian and almost abelian].

(e) If n s the [finite] rank of Y9G and N(n) the function, introduced in

Proposition 5.4, then
G()\(n)-f*n) = 1.

(f) The compositum oG of all the subgroups of G without proper subgroups of
Sfinite index is torsionfree and nilpotent; and G/aG is residually finite.

Proof. We may assume without loss of generality that G = 1; and this
implies the infinity of @ because of tG = 1. The Hirsch-Plotkin radical
H = H@G of G is a locally nilpotent characteristic subgroup of G' which con-
tains every locally nilpotent normal subgroup of G; see Schenkman [p. 205,
VL.7.b. Theorem]. Since @ is radical, there exists a locally nilpotent normal
subgroup, not 1, of G which naturally is part of H so that H = 1. The set of
all torsion elements of H is exactly tH, since H is locally nilpotent; see Specht
[p. 382, Satz 12]. Since H is characteristic, so istH. HencetH C tG = 180
that H is torsionfree.

Thus every abelian subgroup of H is torsionfree and as such of finite rank so
that we may apply Baer [6; p. 98, Theorem and p. 96, Lemma] on H. It fol-
lows that

(1) H is torsionfree, nilpotent and of finite positive rank n, and H contains
every locally nilpotent normal subgroup of G.

Since H is torsionfree and nilpotent, we may use Baer [2; p. 200, Corollary 1]
to show that

(1’) H/3 H is torsionfree for every 7.

By Plotkin [p. 513, Lemma 4] the Hirsch-Plotkin radical of a radical group
contains its centralizer. Thus

(2) ¢ H = 3H.

Denote by I' the group of automorphisms, induced in H by G. Thenitisa
consequence of (2) that

(3) T is essentially the same as G/3H.

Suppose that the finitely many normal subgroups X; of G meet the following



560 REINHOLD BAER AND HERMANN HEINEKEN

requirements:

(a) Xy = 1,H°X,’+1 cX;C X,;.H,Xs = H.
(b) Every X;;1/X, is torsionfree (abelian).

Then we shall term this series X = [- -+, X, - - -] for the purposes of this proof
an admzssible chain of H.

It is a consequence of (1) that H = 3; H for almost all 7; and we deduce from
(1") that every 3,11 H/3: H is torsionfree. Since H = hpG is a characteristic
subgroup of G and every 3; H is a characteristic subgroup of H, every 3; H is a
characteristic subgroup of G. It follows that the set of the 3; H is an admissible
chain of H; and we have shown that

(4) the ascending central chain of H is admissible.

Since H is, by (1), of finite rank n, admissible chains contain at most n + 1
terms. Consequently there exists among the admissible chains, containing
the ascending central chain of H, one I = [M; ;0 < ¢ < m] of maximal length.
Because of the maximality of the admissible chain I we have:

(5) If Y is a normal subgroup of G with M; € Y & M., then M /Y
is a torsion group.

It is clear that every M, is a I'-admissible subgroup of H. Denote by 8 the
set of all those automorphisms in I' which induce the 1-automorphism in every
Miy/M;. It is clear that 6 is a normal subgroup of T'.

Denote by T the set of all elements in G which induce in H an automorphism
belonging to 6. Since H o M1 © M for all < by construction, we find that
H C T. On the other hand, since every automorphism in 6 induces the
1-automorphism in every M/ M; ,we obtain T o M,,; & M ; for all .—Define
inductively T'; by the rules:

T,=T, Tigr=ToT;.
Then we are going to prove by complete induction that
(+) TioM; < M;_;for every j and ¢ < j.
This is certainly true for ¢ = 1, since
TioeM;=TeM; € M;, forl<j.

Thus we may assume that (+) has been verified for every j and every k < ¢
with1 < 2 <j. Then

T.:OM,' = (TO T,'_l) °Mj
CTo (Ticxo My))[Tiao (T o M;)]
by Zassenhaus [p. 120]
C[ToMiinl[Tiro Mj]
C Mji;
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and this completes the inductive proof of (4 ). It follows in particular that
TmoH = TwoMs & My = 1.
Hence T, C ¢¢ H = 3H C H = M, ; and now one verifies by a simple com-
plete induction that
Twyi © Mum for every ¢ < m.

In particular we have
Tom © Mo = 1,

proving that T is nilpotent of class 2m. Since H is the Hirsch-Plotkin radical
of G, it contains all locally nilpotent normal subgroups of G so that 7' € H
and hence

6) T =Hand6=H/iH.
We noted before that T\ € 3H. This implies by (6)
(6*) H, C 8H and Hm+1 = 1.

Denote by 6; for 0 < 7 < m the set of automorphisms in I' which induce the
l-automorphism in M, 1/M; = A;. It is clear that 6; is a normal subgroup of
T, and that

(7) T; = T'/0; is essentially the same as the group of automorphisms, in-
duced in A; by I'; and that

®) 6= Nz 6.

Because of (1) and the definition of an admissible chain A4, is a torsionfree
abelian group of finite rank n. Since I'; is an epimorphic image of T, it is by
(3) an epimorphic image of the, by hypothesis, radical group G. Hence I'; is
a radical group. Thus we may apply the generalized Theorem of Zassenhaus
(Proposition 5.4) to show

(9) P?‘(n)) = 1.

This is equivalent to T'*™ C ¢; for every ¢ by (7); and this implies by (8)
that

(10) PQ(n)) co.
Combine this with (6) to see that
(11) G(X(n)) C H.

It is a consequence of (6*) that Hmyy = 1 and this implies H™ = 1. But
m < n 8o that

(12) H™ = 1;
and combining (11) and (12) we obtain
(13) @ is soluble with G*™* = 1,
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It is a consequence of (9), (1) and the definition of admissible chains that
A; = M1/M ;s a torsionfree abelian group of finite rank » and that the group
T'; of automorphisms, induced in 4; by G, is by (13) soluble. Application of
(5) shows furthermore:

If ¥ 5 1is a I';-admissible subgroup of A4;, then 4;/Y is a torsion group.

It follows that I'; is a primitive group of automorphisms of 4;, according to
Baer [3; p. 142, Definition 1]; and a fortiori a semiprimitive group of auto-
morphisms of 4;, according to Baer [3; p. 144, Definition 2]. Thus we may
apply Baer [3; p. 164, Hauptsatz 1] on the pair I';, 4; ; and it follows that

(14) every torsion subgroup of I'; is finite and every maximal abelian
normal subgroup of T'; has finite index in T';.

It is a consequence of the Maximum Principle of Set Theory that every
group possesses a maximal abelian normal subgroup. Application of (14)
shows therefore the existence of an abelian normal subgroup A of I'; with finite
T'i/A. The torsion subgroup tA of the abelian group A is finite by (14) and
therefore it is a direct factor of A; see Fuchs [p. 187, Theorem 50.3].

Consequently there exists a torsionfree subgroup A* of A with finite A/A*.
Since I';/A is finite, the index [T'; : A*] is likewise finite. It is well known that
every subgroup of finite index contains a normal subgroup of finite index.
Thus we have shown that

(15) T, contains a torsionfree abelian normal subgroup of finite index.

By combination of (7), (8) and (15) we conclude that I'/6 contains a torsion-
free abelian normal subgroup of finite index. Combination of this result with
(6) and (1) shows:

(16) There exists a torsionfree normal subgroup Z of I', containing 6, with
finite I'/Z and Z/6 abelian and torsionfree.

Denote by S the set of all elements in G which induce in H an automorphism
belonging to =. Then = =< 8/3H and we have shown:

(17) 'There exists a torsionfree normal subgroup S of G, containing H, with
finite G/8 and torsionfree abelian S/H.

Since S is torsionfree and all torsionfree abelian subgroups of G are by hy-
pothesis of finite rank, S is of finite abelian subgroup rank. Since H is nil-
potent, application of Lemma 4.3 shows that S/H is of finite abelian subgroup
rank. Since S/H is torsionfree abelian by (17), we conclude that S/H is of
finite rank. H is of finite rank by (1); thus

(18) 8 is of finite rank.

We consider now finite chains of subgroups X; of H with the following
properties:

(A) Every member of I is an X;.
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(B) Every X, is a normal subgroup of S [or equivalent: every X; is
Z-admissible].

(C) 1 = Xy, X; € Xoa, Xs = H and every Xi1y/X: is torsionfree
abelian.

We note that ¢ itself is such a chain and that s < n = rank of H; note that
the rank of H is finite by (1). This implies the existence of such a chain
M = [M;;0 < ¢ <L ] of maximal length 7. If Y is a Z-admissible subgroup
of H with M; € Y C M,;, then we deduce from the commutativity of
My /M; and the maximality of 7 that M;y/Y is a torsion group. If =
is the group of automorphisms, induced in M;,1/M; by Z, then Z; is an epi-
morphic image of S/H, since M is part of Nt and since therefore

Hoy C ;.

But S/H is abelian by (17) so that Z; is abelian. Since (M:.1/M;)/Y is a
torsion group for every Z-admissible ¥ > 1, and since M,1/M is torsionfree
abelian of finite rank [by (C) and (18)], we may apply Baer [3; p. 143,
Folgerung 2 + p. 141, Hilfssatz 2]. Hence

(D) the ring of endomorphisms of M;,,/M;, spanned by Z;, is a subring
of a finite algebraic number field [= field of finite degree over the rationals].

The multiplicative group of a finite algebraic number field is the direct
product of a finite cyclic group and a free abelian group; see Fuchs [p. 297,
Theorem 76.2]. Subgroups of free abelian groups are free abelian; see Fuchs
[p. 45, Theorem 12.1]. Hence it follows from (D) that =;is the direct product
of a finite cyclic group and a free abelian group. Since Z; is an epimorphic
image of S, and since S is of finite rank, Z; is of finite rank, and we have shown:

(E) The group =; of automorphisms of M1/, induced by 8 [or 2],
is the direct product of a finite cyclic group and a free abelian group of finite
rank. In particular Z; is finitely generated.

_If we denote by A; the totality of automorphisms in Z which induce in
M /M; the l-automorphism, then A; is a normal subgroup of Z with
/A =3, Ifwelet

m-—-1
A = [l A4,

then A is likewise a normal subgroup of £ and Z/A is isomorphic to a subgroup
of the direct product of the groups =;. Since the =; are finitely generated
abelian groups by (E), it follows that

(F) Z/A is a finitely generated abelian group.

Denote by L the totality of elements in S which induce in H automorphisms
from A. Since A is a normal subgroup of 2, [and since 2 is the group of auto-
morphisms of H, induced by elements in 8], L is a normal subgroup of S.
Since H o M3 & M; [as we noted before], H & L. Since Lo My S M,
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for every 7 by our definition of L, it follows that H = M is part of the hyper-
center of L; and since L/H C S/H and the latter group is abelian by (17),
and since H is nilpotent by (1), it follows that L is a nilpotent normal sub-
group of S. Hence

L C pps.

As a characteristic subgroup of the normal subgroup S, the Hirsch-Plotkin-
radical of S is a normal subgroup of G. Hence

G = H C L C hpS S hp@
80 that in particular H = L. Hence
S/H = §/L=Z/A
is by (F) and (17) a finitely generated torsionfree abelian group, proving that
(19) 8/H is a free abelian group of finite rank.

Since H = HpG and G/S is finite by (17), this completes the proof of (d).

Since S is torsionfree and G/S finite by (17), every torsion subgroup of @ is
isomorphic to a subgroup of G/8 and hence finite of an order dividing [G': S].
This proves (b). That G is of finite rank, is contained in (17), (18); and that
@ is soluble, is contained in (1), (17). This proves (a). The properties
(c) and (e) are contained in (1), (1’) and (13).

Since oG is a characteristic subgroup of G, so is taG. As a characteristic
torsion subgroup taG € tG = 1. It follows that a@G is a radical group of finite
abelian subgroup rank with taG@ = 1. Thus we may apply (c¢) and (d).
Hence YpaG is torsionfree and nilpotent; and aG/HpaG is an extension of a
free abelian group of finite rank by a finite group and as such it is residually
finite. But aG@ and hence aG/hpaG are free of proper subgroups of finite
index. Consequently aG/bpaG = 1 so that aG@ = Hhpa@ is torsionfree and nil-
potent.

It is a consequence of (a) that G/a@ is soluble of finite rank; and it is an
immediate consequence of the definition of aG that 1 is the only subgroup of
G/aG which is free of proper subgroups of finite index. Thus we may apply
Robinson [3; p. 496, Theorem A] to show the residual finiteness of G/aG,
completing the proof of (f).

6. The residuum of a group X is the intersection re8 X of all the subgroups
Y of X with finite index [X:Y]. It is clear that re8 X is a well determined
characteristic subgroup of X with residually finite X/re8 X.

The hyporesiduum of a group X is the compositum aX of all the subgroups of
X without proper subgroups of finite index. This is a well determined
characteristic subgroup of X without any proper subgroup of finite index. It
is clear that

Y C X implies aY C aX.
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It is likewise clear that
oX C res X.

It follows that aX is the terminal member of the descending sequence of
transfinitely iterated residua of X. One derives either from this fact or
deduces directly that

a[X/aX] = 1.
Finally it is easily seen that

a[G/re8 G] = 1;
and that

[K te8 GI/K < re8 (G/K) for every normal subgroup K of G.

Tueorem 6.1. If G is a radical group, if tG s of finite abelian subgroup
rank, and if every torsionfree abelian subgroup of G s of finite rank, then G
has the following properties:

(a) (1) @ s countable and of bounded abelian factor rank.
(2) Every epimorphic image, not 1, of G possesses an abelian charac-
teristic subgroup, not 1, which s either finite, elementary and primary or
torsionfree of finite rank.

(b) aG = re8 G s nilpotent.

(¢) () 1@ s locally finite-soluble.
(2) ot@G s abelian and radicable.
B) tG/at@ is residually finite; its Sylow subgroups are finite and s
Sylow subgroups of equal characteristic are conjugate in tG/atG.

(d) (@) G/tQ is soluble of finite rank and its torsion subgroups are finite of
bounded order.
(2) W[G/1G] is nilpotent and every Hp[G/tG]/3: hp[G/LG] s torsionfree.
3) [G/1G)/H0[G/tG] is an extension of a free abelian group of finite
rank by a finite group [is noetherian and almost abelian).

Proof. Since tG is radical of finite abelian subgroup rank, application of
Proposition 4.5 shows the validity of (¢) and of the following facts:

(a’) Every epimorphic image, not 1, of {G possesses an elementary abelian,
primary, finite characteristic subgroup, not 1; tG is countable and of bounded
abelian factor rank.

Because of (¢) and (a’) and the fact that characteristic subgroups of normal
subgroups are normal subgroups, we may apply Lemma 3.6 on G and its
characteristic subgroup tG. It follows that G/tG is a radical group with
t(G/t@) = 1 whose torsionfree abelian subgroups are of finite rank. Conse-
quently we may apply Proposition 5.5 to G/tG, proving the validity of (d).
Thus G/tG is countable as is tG by (a’), proving the countability of G. Since
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G/tG and tG are of bounded abelian factor rank, application of (4.2) shows
that G itself is of bounded abelian factor rank. Since G/tG is soluble of
finite rank, the same is true of every epimorphic image of G/tG. It follows
that every epimorphic image, not 1, of G/tG' possesses an abelian charac-
teristic subgroup, not 1, of finite rank. Combining this with the corre-
sponding fact about tG—see (a’)—one derives easily the validity of (a).
Thus we have shown the validity of (a), (¢) and (d). But by (a) every
factor of G is a radical group of bounded abelian factor rank; and thus it fol-
lows that

(1) every factor of G has properties (a), (¢) and (d).

Consider a factor A of G with A = aA. Then we deduce from (1), (d)
that hp[A /tA] is nilpotent and torsionfree; and that [A/tA]/Hp[A/tA] is an
extension of a free abelian group of finite rank by a finite group and so
in particular residually finite. But every epimorphic image of A = a4 is
free of proper subgroups of finite index so that [4/tA]/hp[4/tA] = 1. Hence
A/tA = Bp[A/tA]l; and we have shown:

A/tA is torsionfree and nilpotent.

Assume by way of contradiction that t4 &€ 3A. Then t4 n 34 C td.
These groups are characteristic subgroups of 4; and application of (1), (a)
to the factor tA of A and G shows the existence of a characteristic subgroup
C of A with

tA n3A < C C tA and finite abelian C/[tA n 34].

Clearly A induces a finite group of automorphisms in C/[tA n 34]. But
A = a@ does not possess proper subgroups of finite index. Hence A induces
the l-automorphism in C/[tA n 34]. Naturally A induces the 1-automorphism
intd n34. It follows that the group = of automorphisms, induced by 4 in C,
stabilizes tA n 34. It follows consequently from Schlette [p. 406, Proposition
2.1] that = is isomorphic to a subgroup of

Hom (C/[tA n 34],tAn3A).

We recall that C/ (A n 34) is of finite order and consequently of finite ex-
ponent e. Sincet4A n 34 is an abelian torsion group of finite abelian sub-
group rank, there exists only a finite number of solutions of the equation
2° = 1 in tA n 34. But there exists only a finite number of homomor-
phisms of a finite group into a finite group so that in particular = is finite.
Recall that Z is an epimorphic image of A = aG and that the latter group
is free of proper subgroups of finite index. Hence = = 1 and 4 induces in
C only the l-automorphism. Consequently C € 34 so that

tAn3d CcC Ctdnid,
a contradiction proving that t4 € 3A. But we have shown already that
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A/tA i8 torsionfree and nilpotent. Hence A itself is nilpotent; and we have
shown:

(2) If A is a factor of G with A = aAd, then A is nilpotent and A/t4 is
torsionfree.

Consider a factor F of G of finite exponent e [so that F° = 1]. Application
of (1), (c) shows that aF = 1 and that F is locally finite-soluble with finite
Sylow subgroups. Since only the divisors of e can be orders of elements in F,
we may apply Baer [9; p. 112, Lemma 1.2] to show the finiteness of F. This
we note:

(8) A factor F of G is finite if [and only if] F is of finite exponent.

Consider next a factor F of G with aF = 1. Suppose that S is a subgroup
of tF with finite index [tF:S]. Then there exists a normal subgroup T of tF
with T C 8 and finite tF/T. There exists a positive integer e with

tF/T) = 1;

and this is equivalent to E = {({F)?} € T. Clearly E is a characteristic
subgroup of tF and F; and tF/E is a factor of G whose exponent is finite. It
follows from (3) that tF/E is finite. On the factor F/E of G we may apply
(1). We note first that

t(F/E) = tF/E is finite and soluble

by (1), (¢); and it is a consequence of (1), (d) that F/tF is soluble of finite
rank and is an extension of a torsionfree nilpotent group whose central factors
are torsionfree too by a noetherian almost abelian group. Since tF/E is
finite and soluble, there exists a finite series of normal subgroups of F/E
whose factors are either finite abelian or torsionfree abelian. Thus we may
apply Robinson [3; p. 501, Lemma 2.31] on the finite normal subgroup tF/E
of F/E. Consequently there exists a subgroup L of F with finite index [F': L]
and E = L ntF. It follows that

1 FntFC LntF=ECTCS
for every subgroup S of tF with finite index [tF:S]. Hence

re8 F ntF C re§ (tF).
Next we note that
afFf C aF = 1.

Hence atF = 1; and we deduce from (1), (c) that tF is residually finite.
Consequently te8 (tF) = 1; and we have shown:

(4) 1re8 F ntF = 1 for every factor F of G with aF = 1.
Consider next a factor F of G with finite re8 F. Since clearly aF C t1e8 F,
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we deduce aF' = 1 from the finiteness of 1t¢8 F. Combine this with (4) to
see that

te8F =18 FntF = 1;
and thus we have shown:

(5) If F is a factor with finite ve3 F, then t¢8 F = 1 and F is residually
finite.

Consider again a factor F of G with aF = 1. Application of (1), (d)
shows that

bp[F /tF] is nilpotent and torsionfree and
[F/tF)/9p[F /tF] is noetherian and almost abelian.

Denote by H the uniquely determined characteristic subgroup of F with
tF C H and H/tF = YW[F/tF]. Then

F/H = [F /tF]/bp[F /tF]
is noetherian and almost abelian and consequently residually finite so that

rw$F C H.
Application of (4) shows now that

ve§ F = {F ve8 F/tF C H/tF = H[F/tF)
is nilpotent and torsionfree. From

a8 F CaF =1
we deduce that
ared F = 1,

Thus res F is torsionfree, nilpotent with a r¢8 F = 1; and because of (1), (a)
we may apply Proposition 5.5, (f) to the factor res F of G, proving that

red F is residually finite.

Consider a subgroup S of re8 F with finite index [re8 F:S]. Then there exists
a normal subgroup 7' of re8 F with T & 8 and finite [te§ F]/T. If e is the
exponent of this finite group and E = { (re8 F)°}, then F is a characteristic
subgroup of ve8 F and F. Furthermore £ C T and [re8 F]/E is of finite
exponent. But factors of finite exponent are finite by (3). Hence

re§ (F/E) = [re8 F]/E is finite;

and it follows from (5) that
[ves F]/E = 1.
Hence
W F=ECTCSCres8F,

proving S = re8 F. Thus we have shown that re8 F is a residually finite
group without proper subgroups of finite index. Consequently re8 F = 1;
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and we have shown:
(6) If Fis a factor with aF = 1, then ve8 F = 1 and F is residually finite.

If F = G/aG, then oF = 1. It follows from (6) that ve8 F = 1 and that
F is residually finite. Hence

18 G C aG C re8 G,
[the second inequality being obvious]. Hence
re8 G = a( is nilpotent
by (2), completing the proof of (b) and of Theorem 6.1.

Discussion of Theorem 6.1. (A) Denote by R the class of all radical groups
of finite abelian subgroup rank. It is well known and easily verified that
factors of radical groups are radical and that extensions of radical groups by
radical groups are radical; see Plotkin. Combine this with Theorem 6.1, (a)
and (5.1) to show that

factors of R-groups are R-groups and
extensions of R-groups by R-groups are R-groups.

(B) In the Discussion of Theorem 6.3, (A) we shall construct an example
of an JR-group which is not soluble. The class of &Sq-groups, introduced by
Robinson [1; p. 148], is exactly the class of soluble groups of bounded abelian
quotient rank: it follows that &, is a proper subclass of R.

(C) Our proof of property (b) of Theorem 6.1 depended heavily on
Robinson [3; p. 496, Theorem A and p. 501, Lemma 2.31]. But our property
(b) is not a special case of Robinson’s results, since—as mentioned ad (B)—
the class & is a proper subclass of R.

(D) It is a consequence of Theorem 6.1, (b) that the residuum of an
R-group @ is nilpotent and free of proper subgroups of finite index. If0 <2
and

z €311 0G, 2° € 3; 0@ for some prime p,

then 23,1 0G is centralized by (0G/3:210G)" = aG/3:i—10G so0 that z e3:aG.
Consequently

3:0G/3:i1 a0 G is radicable for 0 < <
3i410G/3:0@G is torsionfree and radicable for 0 < 4.

Consequently
taG = 130G = atjaG@ S oG € oG n G C 1aG;

and this implies
ta@ = at@ = tG n oG C 30G;

see also Kurosh [p. 234-239].
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LemMA 6.2. Assume that the torsion group G has the following properties:

(A) Primary subgroups of G are artinian.

B) If p is a prime and S a subgroup of G, then any two p-Sylow subgroups
of 8 are conjugate in S.

Then G has the following properties:

(1) If X is a normal subgroup of the subgroup Y of G, and #f S s a p-Sylow
subgroup of X, then ¥ = XnyS.

(2) If X is a normal subgroup of the subgroup Y of G, if Y /X is an abelian
p-group, and if 8 is a p-Sylow subgroup of Y, then ¥ = X8.

(8) If S is a subgroup of G, then there exists a direct product D of primary
groups with S = DS'.

Proof. 1If X is a normal subgroup of the subgroup Y of G, if 8 is a p-Sylow
subgroup of X, and if y is an element in Y, then y induces an automorphism
in X so that SY too is a p-Sylow subgroup of X. Apply (B) to show the
existence of an element z in X with §° = S’. Hence S = §* ' so that ya ™
belongs to ny S and y = (yz ') belongs to ny SX = Xny S, proving (1).

Suppose next that X is a normal subgroup of the subgroup Y of G, that
Y /X is an abelian p-group and that 8 is a p-Sylow subgroup of Y. If Cis an
element in Y /X, then C is a p-element in Y/X. Since furthermore G and
hence Y is a torsion group, there exists a p-element ¢ with C = X¢. Naturally
¢ is contained in a p-Sylow subgroup T of Y. It is a consequence of (B) that
there exists an element i in ¥ with 7% = S. From the commutativity of ¥/X
we deduce

C =C"= X

Hence ¢’ belongs to C n S so that every coset of ¥ modulo X contains an
element in S, proving ¥ = X8.
Consider a subgroup S of G' and some enumeration

P1, P2y *°°  Piy Digr, *°°

of the prime numbers. We are going to define by complete induction a
descending chain of subgroups S(¢) of S as follows:

Let 8 = S(0). If S(z) is already defined, then choose a p;1-Sylow sub-
group Py of S(¢) and let

S(@ + 1) = Ng@) P,'+1.
It is clear that
8@+ 1)ES8E) S - ©80) =8
Clearly
S = 8(0) = S(0)S".

Assume that we have shown already the validity of S = S(Z)S’. Clearly
S (2)/[8 () n 8] is abelian so that [S (2) n S']P;1 is a normal subgroup of S (2).
Since P;,; is a pip1-Sylow subgroup of S(7), it is a fortiori a p;1-Sylow sub-
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group of [S(Z) n S'|P;y1. Application of (1) shows that

S8(#) = [SE) n 8'Piyans Piya.
Consequently

S = S(z)S’ = S/[S (’L) n S']Pi.u Ns(i) P,'+1 = S’n,g(.-> P¢+1 = S'S(’L + 1),
completing the inductive proof of
(a) S = 88@).

Every subgroup is a normal subgroup of its normalizer. Hence P; is a
normal subgroup of S (¢) so that S(j) n P, is a normal subgroup of S (j) € S (¢)
whenever ¢ < j. As the S(j) form a descending sequence of subgroups, so
do the S(j) n P; [for fixed 7 and 7 < j]. Since P; is artinian by (A), this
descending chain of subgroups of P; terminates after a finite number of steps.
If T; is this terminal member, then

(b) T; = S8(j) n P; for almost all  ;
and since almost all j exceed <, if follows that
(¢) T;is a normal subgroup of S(j) for almost all j.
If 0 < 7, then P; is a p;-Sylow subgroup of S(z — 1). From
P, C8G@) S8F—-1)

it follows that P; is likewise a p;-Sylow subgroup of S(¢). Since P; is a
normal subgroup of S(z), it follows from (B) that P; is the totality of p;-ele-
ments of S (2); and this implies that S(j) n P;is for 2 < j the totality of p;-ele-
ments of S(j) and hence the one and only one p;-Sylow subgroup of S(j).
Combine this with (b) and (¢) to see that

(d) T;is the totality of pi-elements of S(j) for almost all j and hence the
one and only p;-Sylow subgroup of S(j) for almost all j.

S/S’ is an abelian torsion group and hence the direct product of its primary
components. The p;-component of S/8’ has the form C;/8’. Select 7 large
enough so that T'; is the totality of p;-elements in S (7); this is possible by (d).
Since

§CSC: 8 =288(3)
by (a), we deduce
C; = 8'[8(5) n C4).

Since every p;-element in S belongs to C;, it follows that
T: S 8@G)nC;.

Thus T is the totality of pi-elements in S(j) n C;, its one and only p;-Sylow
subgroup. From S = S§'S(j) we deduce that every p;-element in S/8’ is
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represented by an element in S (5) and hence by a ps-element in S(j); and this
implies that every p;-element in S/S’ is represented by an element in T;.
Thus C; = 8'T; ; and we have shown that

(e) S'T;/S is the totality of p;-elements in S/S’.

If h and % are positive integers, then we deduce from (d) the existence of a
positive integer » such that

T} is the totality of ps-elements in S(n) and
T} is the totality of pi-elements in S (n).

Thus T and Ty, are characteristic subgroups of S (n); and h # k implies
ThOTk g Thn Tk =1

so that T, and T commute elementwise. It follows that the compositum
D of the T; is their direct product. In particular D is the direct product of
primary subgroups. From (e) we deduce that S'D/S’ contains all p,-ele-
ments in S/8’ for every 7. But the abelian torsion group S/8’ is the direct
product of its primary components, proving S/S’ = §'D/S’ and 8 = §'D.

Note that hypothesis (A) is used only in the proof of (3) ; and that (2) re-
mains valid, if we substitute ‘soluble” for ‘“abelian’.

TuroreM 6.3. The following properties of the group G are equivalent:

i) (a) @ 1s of finite rank.
(b) bY@ 7s a hypercentral torsion group with artinian, soluble, almost
abelian primary components.
(c) G/Hpt@G s soluble.

(i) @G 7s a radical group of uniformly bounded abelian subgroup rank.

(iii) @ 7s a radical group; and the abelian subgroups of tG as well as the torsion-

free abelian subgroups of G are of finite rank.

Proof. Extensions of hypercentral groups by soluble groups are certainly
radical; and since @ is of finite rank =, every abelian subgroup of G is of finite
rank n. Hence (ii) is a consequence of (i).

If G is a radical group of uniformly bounded abelian subgroup rank, then
there exists a positive integer r such that every primary abelian subgroup and
every torsionfree abelian subgroup of G has rank r. This implies firstly that
every abelian torsion subgroup [as a direct product of primary subgroups] has
rank r. If secondly 4 is a torsionfree abelian subgroup of G, then A contains
a free abelian subgroup F with A/F a torsion group; and this implies that A
and F have the same finite rank . Thus we have shown that (iii) is a con-
sequence of (ii).

Assume finally the validity of (ili). Then G is in particular a radical group
such that tG is of finite abelian subgroup rank and such that every torsionfree
abelian subgroup of G is of finite rank. Hence we may apply Theorem 5.6 to
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prove that

(1) G is of bounded abelian factor rank;
(2) G/tG is soluble of finite rank.

Every subgroup S of {G is radical of finite abelian subgroup rank. Thus we
may apply Proposition 4.5 to show:

(3) Every subgroup S of tG has the following properties:

(a) The p-Sylow subgroups of S are conjugate in S.

(b) 8 is locally finite and locally soluble.

(¢) Every epimorphic image, not 1, of S possesses a finite, primary,
elementary abelian characteristic subgroup, not 1.

Consider a locally hypercentral subgroup H of 1G. Since tG is of finite
abelian subgroup rank, so is H. Application of Baer [6; p. 98, Theorem)]
shows the hypercentrality of H. Apply Specht [p. 380, Satz 11] to show that
H is the direct product of its primary components H,. Every H, possesses a
maximal abelian normal subgroup 4, [Maximum Principle of Set Theory].
The compositum A of the 4, is their direct product; and it is easily seen that
4 is a maximal abelian normal subgroup of H. By hypothesis A is of finite
rank n. From the hypercentrality of H and hence H, and from the maxi-
mality of A, one deduces readily that A, = ¢z, 4,. Thus we may apply
(2.4) to show that [H,/A, is finite and] H, is of rank in (5n + 1), since A and
A, areof rank n. Since H is the direct product of its primary components H, ,
and since direct products of cyclic groups of relatively prime order are of rank
1, the rank of H is likewise $n(5n + 1). Thus we have shown:

(4) Locally hypercentral subgroups of tG' are hypercentral of finite rank.

If P is a primary subgroup of tG, then P is by (3.b) locally nilpotent; and
P ig hypercentral of finite rank by (4). There exists a maximal abelian nor-
mal subgroup A of P [maximum Principle of Set Theory]. Since P is hyper-
central, A = ¢ A. Since P and 4 are of finite rank, we may apply (2.4) to
show the finiteness of P/A. Since A is a primary abelian group of finite rank,
A is artinian; see Fuchs [p. 65, Theorem 19.2]. It follows that

(5) primary subgroups of tG are hypercentral, artinian and almost abelian.

Let T = tG@ and H = BhptG. Since the Hirsch-Plotkin-radical is locally
hypercentral, we may apply (4) to show that

(4*) H is hypercentral of finite rank m.

Denote by \ the Zassenhaus function, appearing in Proposition 5.4. Since
H and T*™ are characteristic subgroups of T, so is HT*™. Consider an

epimorphism o of T onto S with H” 1. Since H is hypercentral by (4*),
3H’ % 1. Thus 3H’ contains elements of prime number order, say p. Denote
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by P the totality of all elements z in 3H” with #° = 1. This is a characteristic
elementary abelian p-subgroup of 3H°. Since H is by (4*) of finite rank m,
sois P. Hence P is a characteristic subgroup, not 1, of H’ of finite order divid-
ing p™. As a characteristic subgroup of the normal subgroup H’ of S the sub-
group P is a normal subgroup of 8. From P C 3H" we deduce H* C ¢sP.
Application of Proposition 5.4 shows that the group of automorphisms, in-
duced in P by S, is an at most \ (m)-step soluble group. Hence S*™ C ¢s P ;
and we have shown that

[HT()\(m))lf = Has()\(m)) cC Cs P.
Recall that 1 < P C H°. It follows therefore that
(6) H is part of the hypercenter of HT*™,

Assume by way of contradiction that H < HT*™, Then we deduce from
(3.c) the existence of an elementary abelian, finite, primary, characteristic
subgroup, not 1, of HT*™/H. Consequently there exists a normal subgroup
N of T with

N/ g HCcN __C_ HTO‘(m)).

From the commutativity of N/H and (6) it follows that N is a hypercentral
normal subgroup of 7, implying the contradiction

T = HcC N C T.
Thus we have shown that H = HT®™ ; and this is equivalent to
(7) ¢ < hotG.

Consider a normal subgroup X of a subgroup Y of tG with abelian Y/X.
Because of (3.a) and (5) we may apply Lemma 6.2, (3) to the subgroup Y of
tG. Consequently there exists a direct product D of primary groups with
Y = DY’. Itisa consequence of (5) that primary subgroups of {G are hyper-
central. Hence D is hypercentral; and it follows from (4) that D is of finite
rank. The epimorphic image Y/X of Y/Y’ = DY'/Y' = D/(Dn Y’) is
therefore an epimorphic image of D and hence of finite rank. Thus we have
shown that

(8) every abelian factor of tG is of finite rank.

It is a consequence of (4*) that hptG = H is hypercentral of finite rank.
It is a consequence of (7) that tG/hpt@ is soluble. Hence it follows from (8)
that tG/hnt@ is soluble of finite rank. Combine this with (2) to show that
G/HptQ is soluble of finite rank. Combination with (4*) shows that G is of
finite rank; and combination of (4*) and (5) shows that hitG is a hypercentral
group whose primary components are artinian, soluble and almost abelian.
Thus we have derived (i) from (iii) and shown the equivalence of (i)-(iii).

Discussion of Theorem 6.3. (A) For every odd prime p there exists a finite
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p-group P, with the following properties:
P 5 1 and the abelian subgroups of P, have rank 3 ;

see Baer [8; p. 27, Bemerkung 4.5]. Denote by @ the [restricted] direct product
of these groups P,. This group is a hypercentral torsion group with G = 3, G
and all abelian subgroups of rank 3. But @ is not soluble.

Thus the class of radical groups whose abelian subgroups are of finite rank
contains non-soluble groups; and it is impossible to prove solubility of the
groups in the classes, discussed in Theorem 6.3 and a fortiori in Theorem 6.1.

(B) The Theorem of Kargapolov [2] that a soluble group is of finite rank
if, and only if, its abelian subgroups are of finite rank is clearly a special case of
our Theorem 6.3 and ad (A) we have shown that it is a proper special case.

(C) Robinson [2 p. 244] has shown that locally soluble groups of finite
rank belong to the class of groups, discussed in Theorem 6.3.

7. Ttis customary to term the prime p relevant for the group X, if X contains
elements of order p; and the set of all primes relevant for X has often been
termed the characteristic ¢hX of X. We shall refine this concept.

If the prime p is the order of an element in tX, then we say that p ¢s essential
for X. 'The set of all primes essential for X shall be termed the essence eX of X.

Clearly essential primes are relevant; but it is easy to construct groups with
empty essence, possessing an infinity of relevant primes. Furthermore there
exist groups with empty essence, possessing subgroups and epimorphic images
with infinite essence.

TrEOREM 7.1. The following properties of the group G are equivalent:

(1) G is soluble of finite rank and of finite characteristic.

(il) G s radical of finite abelian subgroup rank and the essence of G s finite.

(i) (@) G s radical.

(b) Every elementary abelian subgroup of tG is fintte.
(c) Every torsionfree abelian subgroup of G is of finite rank.

Giv) (a) tGisan extension of an artinian, abelian group by a finite soluble group.
(b) G/tG is soluble of finite rank, possesses a torsionfree subgroup of finite
index whose commutator subgroup is nilpotent; and the torsion subgroups of
G/tG are finite of bounded order.

(v) (a) @ s radical.

(b) If A is an abelian subgroup of G, then tA is artinian and A/tA is of
Jinite rank.

Proof. Ttis clear that (i) implies (ii). —If (ii) is satisfied by G, then G is
radical and every torsionfree abelian subgroup of @ is of finite rank. Every
elementary abelian subgroup of tG is the direct product of only a finite number
of elementary abelian primary subgroups, since the essence of G is finite, so
that the characteristic of tG and its subgroups is finite too. But primary ele-
mentary abelian subgroups of G are finite, since @ is of finite abelian subgroup
rank. Hence (iii) is a consequence of (ii).
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Assume the validity of (ili). Consider an abelian subgroup 4 of tG. Its
elements of squarefree order form an elementary abelian subgroup of tG which
is finite by (iii.b). It follows that A is a torsion group with only a finite
number of elements of squarefree order: A is artinian by Fuchs [p. 68, (19)].
Since t@ is radical by (iii.a) and since the abelian subgroups of tG' are artinian,
tG is artinian and soluble by Baer [7; p. 359/360, Hauptsatz 8.15, A]. It is
well known that artinian soluble groups possess abelian characteristic sub-
groups of finite index; see Baer [5 ; p. 7/8, Satz 2.1]. Thus (iv.a) is satisfied
by G. It is a consequence of (iii) that the hypotheses of Theorem 6.1 are
satisfied by @. Thus (iv.b) is a consequence of Theorem 6.1, (e)-(g).

Assume the validity of (iv). Artinian abelian groups are of finite rank by
Fuchs [p. 66, Theorem 19.2]. It follows from (iv.a) that {@ is soluble and of
finite rank. Since G/tG is likewise soluble and of finite rank, we conclude that
G is soluble and of finite rank. Artinian abelian groups are of finite charac-
teristic by Fuchs [p. 66, Theorem 19.2]. It follows from (iv.a) that tG is of
finite characteristic. By (iv.b) there exists a positive integer m such that
every torsion subgroup of G/tG is finite of order a divisor of m. Denote by =
the set of primes which belong either to the characteristic of tG or else are
divisors of m. If T is a torsion subgroup of G, then Ti@ is likewise a torsion
subgroup of G and TtG/t@ is a torsion subgroup of G/tG, hence finite of order
a divisor of m. It follows that the characteristic of T is contained in #. Thus
the characteristic of G is part of the finite set = of primes; and we have derived
(i) from (iv), proving the equivalence of (i)-(@v).

The equivalence of conditions (v) and (iii) is a fairly immediate conse-
quence of Fuchs [p. 65, Theorem 19.2].

Remarks on Theorem 7.1 (A) Mal’cev has termed the group G of class A if
it possesses & finite normal chain with the following properties:

1=Ky, KiSKina, Ko =G,

K;.1/K; is abelian and an extension of an artinian group by a (torsionfree)
group of finite rank.

Carin [1; Theorem 4] has shown that a soluble group is of class 43 if, and
only if, it meets our requirement (v.b.). Thus the class of groups discussed in
Theorem 6.1 is identical with the Mal’cev class A; (which coincides with
Robinson’s class &, ; see Robinson [1; p. 159]), and Carin’s Theorem is con-
tained in ours.

(B) It is quite obvious that condition (i) is subgroup inherited. On the
other hand: the additive group of rationals belongs to our class whereas the
rationals mod 1 do not. This shows that our class is not epimorphism in-
herited and is a proper subclass of the class of soluble groups of finite rank.

(C) Suppose that G is a radical group of finite abelian subgroup rank. If
firstly @ is a primary group, then condition (i) of Theorem 6.1 is satisfied by
G. Tt follows that G is artinian and almost abelian; and one verifies easily that



RADICAL GROUPS OF FINITE ABELIAN SUBGROUP RANK 577

G is hypercentral. If secondly G = 1, then again condition (ii) of Theorem 6.1
is satisfied by G. It follows that @ is soluble of finite rank, that its torsion
subgroups are finite of bounded order, and that there exists a subgroup of
finite index whose commutator subgroup is nilpotent.

8. The group @ shall be termed a generalized radical group, if it meets the
following requirement:

Every epimorphic tmage, not 1, of G possesses a normal subgroup, not 1, which
18 radical or finite.

If X is a radical group, not 1, then the Hirsch-Plotkin radical of X is a locally
hypercentral [and hence locally nilpotent] characteristic subgroup of X which
is different from 1. Since characteristic subgroups of normal subgroups are
normal subgroups, it follows that the group G is a generalized radical group if,
and only if, every epimorphic image, not 1, of G possesses a normal subgroup,
not 1, which is finite or locally nilpotent.

TrEOREM 8.1. The following properties of the group G are equivalent:
1) @ 1s a generalized radical group of finite abelian subgroup rank.
(i) @ 7s of bounded abelian factor rank and possesses a radical characteristic
subgroup of finite index.
@iii) (a) @ s of bounded abelian factor rank.
(b) Every infinite epimorphic image of G possesses a non-trivial, abelian,
characteristic subgroup of finite rank.

Proof. We assume first that G is a generalized radical group of finite abelian
subgroup rank. Since every subgroup of G is likewise of finite abelian sub-
group rank, we deduce from Theorem 6.1 (a) that

(1) every radical subgroup S of @ is of bounded abelian factor rank.

Denote by R the product of all radical normal subgroups of G. This is a well
determined characteristic subgroup of G ; and it is well known and easily
verified—see e.g. Plotkin [p. 14-16]—that

(2) R is a radical characteristic subgroup of G and 1 is the only radical
normal subgroup of G/R.

We note that extensions of radical groups by radical groups are radical.
If A/R is an abelian subgroup of G/R, then this implies together with (2) that
A i8 a radical group. Application of (1) shows now that A is of bounded
abelian factor rank. This shows that

) GY/R is of finite abelian subgroup rank.

Let H = G/R. If N is a normal subgroup of H, then its center 3N is as
characteristic subgroup of a normal subgroup an abelian normal subgroup of
H ; and we deduce 3N = 1 from (2). Thus we have shown that

(4) 1 = 3N = N ncg N for every normal subgroup N of H = G/R.
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Assume by way of contradiction that H s infinite. If F is a finite normal
subgroup of H, then H/F is infinite. Since H/cx F is essentially the same as
the group of automorphisms, induced in F by H, it follows that H/cg F is finite;
and we deduce from (4) that 1 = Fncg F. If X is a subgroup of H with
1 =X ncgF, then

XEXCHF/CHFQH/CHF

so that X is finite of order a divisor of the finite order n of H/cx F. Among
the normal subgroup X of H with F C X and 1 = X n cx F there exists conse-
quently a maximal one V. It is clear that V is finite and that H/V is conse-
quently infinite. Since H/V is an infinite epimorphic image of the generalized
radical group G, there exists a normal subgroup W of H with V C W and radical
or finite W/V. Because of the maximality of V wehavel s Wnc¢g F. From
1 = V n cg F we deduce now that

1#WncegF= WnegF)/ VacgF)=xVWncaF)/VCW/V

so that W n c¢x F is a normal subgroup, not 1, of H which is either radical or
finite. But the first of these alternatives is ruled out by (2), proving the
finiteness of W n ¢g F. Furthermore

Fa(WnexF)=1
by (4). Thus we have shown:

(5) To every finite normal subgroup F of H there exists a finite normal
subgroup F* of H with F* # 1 = F n F*,

On the basis of (5) one constructs by complete induction an infinite sequence
of finite normal subgroups F (z) ¢ 1 of H with

1 =FG+1)n [Ii=m FG).

It follows in particular that the product of these normal subgroups F(z) is
their direct product. It is a consequence of (2) that none of the finite normal
subgroups F (z) # 1is soluble; and an application of the celebrated Theorem of
Feit-Thompson shows that every F (¢) is of even order. There exists therefore
a cyclic subgroup C (¢) of order 2 of F(¢). Since the product of the F (z) is
their direct product, the subgroup E, generated by the C(z), is the direct
product of the C'(¢). It follows that E is an infinite elementary abelian 2-
group; and this contradicts (3). Thus we have shown that

(6) G/R is finite.

It is a consequence of (2) and (6) that G is an extension of the radical char-
acteristic subgroup B by the finite group G/R; and we deduce from (1) that B
is of bounded abelian factor rank. Hence G too is of bounded abelian factor
rank: (i) is a consequence of (i).

Assume next that G is of bounded abelian factor rank and that C is a radical
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characteristic subgroup of G with finite G/C. Since C is of finite abelian sub-
group rank, it follows from Theorem 6.1, (a), (b), (¢) that C is hyperabelian
and that every epimorphic image, not 1, of C' possesses a non-trivial, abelian
characteristic subgroup of finite rank. Now it is clear how to derive (iii)
from (ii). —It is almost obvious that (i) is a consequence of (iii), proving
the equivalence of our properties (i)-(iii).

Remark 8.2. It is easy to construct generalized radical groups which are
infinite, though 1 is their only radical normal subgroup; any direct product of
infinitely many, simple, finite, nonabelian groups will do.

Remark 8.3. Combining condition (ii) and Theorem 6.1 further structural
properties of generalized radical groups of finite abelian subgroup rank may be
obtained. To mention only one of them: all these groups are countable. We
leave the enumeration of these properties to the reader.
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