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ON THE VOLUME OF TUBES

BY

ALLEN GORIN

The relationship between the volume of a tubular neighborhood of a
submanifold and metric invariants of that submanifold has long been of
interest. Steiner examined this problem as long ago as 1840 [12]. The prob-
lem was discussed for curves by Hoteling [8], in relation to a statistical
problem which motivated H. Weyl [12] to solve the problem for any sub-
manifold of a space of constant curvature. (Actually, he states his results
only for Euclidian space and spheres.)
When the ambient manifold is fiat, Weyl obtained the surprising result

that the volume, as a function of the radius, is a polynomial. Secondly, the
coefficients of the polynomial are products of universal constants, depend-
ing on dimensions, and intrinsic integral metric invariants of the subman-
ifold. Specifically, these are the integrals of the pth mean curvatures of the
submanifold.
Many questions concerning submanifolds can be discussed by restricting

one’s attention to its tubular neighborhood. Weyl’s result suggests restrict-
ing one’s attention still further to the formula, V(r), for the volume of the
tube, and examining the coefficients of its power series expansion. This
was done in 1848 for geodesic circles on surfaces by Bertrand and Digret
[21.
When the ambient space is symmetric, N. Grossman [7] has obtained

order of magnitude estimates for the growth of tubes of large radius, which
depend on the rank of the ambient symmetric space. He uses this estimate
along with results of Bott to gain information on the Betti numbers of path
spaces from the submanifold to a point off it.

In the case of a complex submanifold of complex projective space, Fla-
hetty [6] has given formuli analogous to Weyl’s.
When a lower bound is given on the sectional curvatures of the ambient

space, V. Dekster [5] has obtained comparison theorems for the volume
of tubes which generalize the Rauch Comparison Theorem for the volume
of spheres.
The general problem may be stated as follows: Let M(m) and N(m+k) be

compact smooth Riemanian manifolds. Letf:M N be a smooth isometric
imbedding. Consider the tubular neighborhood of radius r about f(M) in
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N. This may be identified with the normal disc bundle of M induced by
f. Let V(r) be the volume of the tube as a function of r. This volume in
general depends on M, N, r and f. The formalisms for solving this problem
can be set up by considering the Jacobi fields induced in the normal bundle
by variation of the normal geodesics. See Grossman [7] for an exposition
of this. Little has been said about the general case, except that the first
approximation to V(r) is

V(r) Vkrk vol(M) + O(rk+l),
where Vk is the volume of the unit k-disc. When M is flat, Weyl’s results
apply, and V(r) is a polynomial. The integral invariants which appear in
the coefficients are of much interest. The first coefficient is a multiple of
the volume, as mentioned above. The last coefficient is the integral of the
Lipschitz-Killing curvature of M, and is thus a multiple of the Euler char-
acteristic. The intermediate coefficients are the integrals of Allendoerfer’s
[1] pth mean curvatures. Thorpe [14] discusses the relation between the
constancy of these curvatures and the vanishing of certain Pontryagin
classes. These integral curvatures also appear in Chern’s kinematic formula
[4].
For an arbitrary ambient manifold, to the author’s knowledge, the in-

tegration for the volume of a tube has not yet been carried out. The purpose
of this paper is to make some contributions in this direction for a more
general ambient manifold.

Consider a submanifold Mm) of Rm+k, and take E to be a subbundle of
its normal bundle, NM. We discuss the volume of the tubular neighborhood
of M in E and prove some theorems about it. The first states that the
volume is a polynomial if E is totally geodesic, and gives a non-polynomial
counterexample in case it is not. The second considers E to be the first
osculating space of M, and shows that if the volume agrees with the Weyl
polynomial to second order, then it must in fact be that polynomial and
M must lie in some lower dimensional subspace of Rm+k. We then consider
one sided tubes, i.e., exponentiating only a quadrant of the normal bundle.
The integral of the mean curvature of M appears in this volume formula.
These theorems will now be stated in detail.

Let Mtm) be a compact smooth submanifold of Rm+k. Choose an l-
dimensional subbundle, E, of the normal bundle NM. We will discuss the
tubular neighborhood of radius r of M in E. Its volume form will be con-
structed and given in local coordinates, which in certain situations lends
itself to interesting invariant formulations. In the case k, we have
E NM, the full tube. This situation was examined in detail by H. Weyl,
and was the occasion of the first substantial insight into the general problem.

THEOREM (Weyl [16]). The tubular neighborhood of radius r ofM in
Rm+k has volume

l+ee (1 + 2)(/ +rV(r) VI 4)...(1 + e) he (e even, o < e < m),
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where Vt is the volume of the unit l-disc and the he are integral metric
invariants intrinsic to M. Specifically, he is the integral of the pth mean
curvature of M, with ho the volume. (When m is even, observe that hm is
a multiple of the Euler characteristic.)

We will denote this volume by W(r), calling it the /-dimensional Weyl
polynomial of M. It is independent of the isometric imbedding for a fixed
codimension. Where the number is clear, we will merely call it the Weyl
polynomial of M.
The volume formula is not a polynomial for all subbundles E of NM. We

will show:

THEOREM 2. If E is a totally geodesic subbundle of NM, then V(r) is
a polynomial. It is of the same form as the Weyl polynomial, although the
coefficients are not necessarily intrinsic.

We will then show the following theorems:

THEOREM 3. Let E contain the image of the vector-valued second fun-
damental form of M. The volume of the tube of radius r about M in E is

V(r) rlVl vol(M)

r1+22[ f+
/

V hEdM

/ O(rl+4).

dS l- dS dM

where the integral is over UTM UE, with e UE, w UTM, and
He. denotes projection into E-.

This formula reduces to Weyl’s formula (Theorem 1) when E is the full
tube, (since E+/- 0). The integral of IIl-le- Veil2 is a measurement of the
"twisting" of E. In particular:

COROLLARY. Consider a non-degenerate curve y in Rl+k. Let E be the
subbundle of the normal bundle generated by the first normal vector. (E
is also called the first osculating space of),.) The volume of the tube about
T in E is

V(r) 2rL + (r3/6) J z ds + O(rS),

where L is the length of the curve and z is the torsion of the curve.

Next consider a generalization of "1-sided" tubes. The integral of the
mean curvature appears in the volume formula.



ON THE VOLUME OF TUBES 161

THEOREM 4. Let n(1) n(l) be a frame field along M. Consider the
region spanned by m + ,lp= tpn(p)m, for tp > o and EtEp < rE. This is a
generalization of a 1-sided tubular neighborhood in case 1. The volume
of the ’l-sided’ tube is

V+(r) rl2-lv vol(m) + rl+2-lVl_ I H.n dM + O(rl/Z),

where VI is the volume of the unit l-disc, 21 is the number of quadrants in
Rt, n Et n(i), and H is the mean curvature vector of M.i=l

COROLLARY. Let y be a non-degenerate curve in R+k with normal vector
n. Let E be the subbundle of Ny generated by n. The volume of the 1-
sided tube about y in E is

V+(r) rL + 1/2rZ+ ds + O(r3),

where is the curvature of the curve y, and L is its length.

We remark that Theorems 1-4 also hold when M is a submanifold of
any flat space.
The next theorem concerns nicely curved submanifolds, which are a

generalization of the concept of a non-degenerate curve.

THEOREM 5. Let Mm) be a nicely curved submanifold of Rn+k. In such
a manifold, the range of the second fundamental form has constant di-
mension I. Denote this subbundle of the normal bundle by Et). Let V(r)
denote the volume of the tube in E. The following are equivalent:

(1) M is contained in an (m + l)-dimensional linear subspace ofRn+k.
(2) E is a totally geodesic subbundle of NM.
(3) V(r) is the l-dimensional Weyl polynomial of M.
(4) The coefficient of r1+2 in the power series expansion for V(r) agrees

with the corresponding term in the Weyl polynomial.

Section 1 will develop the volume form for the tube, and in the process
we will demonstrate Theorem 2. Section 2 will discuss the integration of
this form over the tube and quadrant-tube, which will yield Theorems 3
and 4. Section 3 will prove the equivalences stated in Theorem 5.

I. The Volume Form

We are given m(m) a submanifold of Rn+k and E(l) a subbundle of NM.
Let (U, x) be a coordinate patch on M. A coordination of the tube in E
can be constructed as follows:
Choose {n(1) n(l)} an orthonormal basis section for Elt:. Define, for
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t R,
(1.1) Y(u, t) x(u) + , tn(p).

p=l

The tube of radius r is defined by the restriction 2tp < r2. We will give
the volume form of this coordinatization. Calculations will be done locally.
Since local results will be invariant, the global versions will follow immediately.

It will be convenient to use indices in the following ranges"

<i,j,p<l,

Let {w} be an orthonormal basis for TMlv. Let Y and Yp denote dif-
ferentiation of Y with respect to w and 0/Ot respectively. It follows from
1.1 that

(1.2) Yp n(p),

(1.3) Y X + tpn(p).
p

We express n(p) as a linear combination of the orthonormal vectors x
and n(q), where fl m and q k. Extend the basis {n(p)}p=,l
of E to an orthonormal basis {n(p)}p= , of NM. We can then write

k

(1.4) n(p) G(p)X + Lq(p)n(q),

where G(p) are the coefficients of the second fundamental form in direction
n(p), and Lq(p) n(q) n(p). We have G symmetric in a and fl, and L
skew-symmetric in p and q. Combining (1.3) and (1.4), we obtain

Thus, we can write the volume form of E as

(1.6) det
0

with m, m, 1 q l, anddt dt dh. Note that
the matrix is m + by m + k. The interpretation of det is to consider the
row vectors as in the m + dimensional subspace which they span.
Weyl considered the case k, when E is the full normal bundle of M

in R+. In this situation, I fills the lower right hand block of 1.6, thus the
volume form becomes, in Weyl’s case,
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This can be evaluated, and expressed as a polynomial in the tp. The
coefficients of the polynomial are invariant polynomials of the matrices
G(p). The volume of the tube of radius r is found by integrating the poly-

2 r2"nomial over M and the region X tp < Weyl does this using classical
invariant theory, and obtains the formula given in Theorem 1.
The block matrix 1.6 can be evaluated by the same technique if Lq(p)
0 for q > + 1, p < and for all a. In this case, the subspace of

definition of the determinant is clear, and the volume form is again the form
of 1.7. The volume will hence again be a polynomial in r. The condition
Lq(p) 0 can be restated as n,,(p) n(q) 0, or that IIeVwe 0 for
all w TM and e E. We call such a subbundle E totally geodesic. Recall:

DEFINITION. Let E be a subbundle of a vector bundle over M with
connection V. Then E is a totally geodesic subbundle if Vwe E for all e
Eandw E TM.

Theorem 2 is now proven.

Remark. Although when E is totally geodesic, we obtain a polynomial
V(r), the coefficients will only be intrinsic to M if E contains the range of
the second fundamental form of M. This follows from Weyl’s original proof.
When E is not totally geodesic, we can still obtain an approximation to
r). We do this by using the standard definition of the volume form as
det g du dt, where g is the metric tensor expressed in local coordinates.

Since we are using an orthonormal frame as a basis for TM, rather than
the basis associated to a coordinatization of M,.the volume form is actually
/det g dM dt. This form will be integrated over M and over the sphere
(or quadrant) of radius r in each fiber.

Referring to equations 1.2 and 1.5, and recalling that the Xi are ortho-
normal, we obtain the components of g:
For 1 < a, r/ < m,

,g Y. Y + 2 tpG(p)
_p=l

,1.8, + [,. tiG,i,]" [ tjGn,j,]
+ q=l [i tiLde(i)] [j tjLnq(J)]

For < a < m and 1 < a < I,

(1.9) ga,(a+m) Y" n(a) ’ tiLa(i).

For 1 < a, b < l,

(1.1 O) g(a + m),(b + m) ab"
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Thus, the matrix g is a second degree polynomial in the variables {ti}:

(1.11) g(t) I + Ai + titiBij,
ij

where

(2G(i) L(i))(1.12) Ai \Lp(i)tr < , . < m, 1 < p < l,

(1 13) B G(i)G(j) + Lq(i)Lq(j) 0

0 0

To find the volume form, we need to calculate /det g(t). We will first
approximate det g(t) with a Taylor series, then its square root. It will not
be necessary for this application to calculate the coefficients of mixed terms,
ttj, because if : j, then f ttj dS vanishes.
Let f(t) det g(t). Note f(O) 1.

LEMMA. The first few derivatives off, at o (t t2 tl
0), are expressed in terms of the Ai and the Bij as follows"

(1.14) f(O) trAi,
(1.15) f,.(O) 2[tr Bii + o’2Ai],

where tr is the trace and 0"2 is the classical second order orthogonally
invariant polynomial in the coefficients of a matrix.

Proof. To evaluate the above derivatives it suffices to restrict f to {tlta
ofora # i}.

f(t) det [I + t.4i + tBii]

det [I + ti(Ai + tinii)]

+ ti tr(Ai + tiBii) + t20"2(Ai + tiBii) + O(t)

+ ti tr Ai + t(tr Bii + o-2Ai) + O(t),

which proves the lemma.

LEMMA.

(1.16)
(1.17)
(.8)

For h(t) fN/ /det g(t),

h(O) 1,
hi(O) 1/2 tr A,
hi(O) tr Bi + r2 Ai 1/4(tr A)2.

Proof. This follows from the previous lemma by the chain rule.
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Letting /ig be the coefficient of titj in the Taylor series for h(t), we have
shown that the coefficient of dM dt in the volume is

(1.19) 1 "+- 1/2 Ei ti trAi + 1/2 i t2i[trBii + 0.2Ai

1/4 tr2AiJ+ ij qijtitj + O(t3).

By O(t3), we mean O(Ztitjtk).
We will now calculate the coefficients in terms of the G(p) and the

Lp(q).

LEMMA. The coefficients in equation 1.19 are given by

(1.20) tr Ai 2 EG(i),
(1.21) tr Bii Z, G(i)2 + Z Eq= Lq(i)2,
(1.22) 0.2Ai 40.2[G(i)] Etq= Lq(i)2,
(1.23) 1/4tr2Ai , G(i).

Proof. (1.20) and (1.21) follow immediately from equations (1.12) and
(1.13); (1.23) follows from (1.20). To show (1.22), we must recall a few
facts about the invarient function 0.2.
The first is that for an arbitrary square matrix, M

0.2M Z miimjj mijmji.
i<j

If the sum is over all and j, a factor of 1/2 is introduced.
When the matrix M is symmetric and has the special form

M Htr
it follows directly from the formula for 0. that 0.M 0.N Ei. h..
Noting that A indeed has this special form, (see 1.12), and that o’(2N)

40.N, (1.22) then follows. The lemma is proven.
The coefficient of t in (1.19) is thus

k

1/2 G(i)2 + 1/2 ] Laq(i) 1/2 G:(i)G(i)
o, fl q

+ 20.2[G(i)1- 1/2 ] taq(i)2,
q=l

which simplified to (recalling the definition of 0"2)

(1.24) 0"2[G(i)1 + 1/2 ] L,q(i)2.
q>l

We have now shown, combining this lemma and (1.19), that the coefficient
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of dM dt in the volume form is

(1.25) i, i<j

Note that the summation of the Lq(i) is only for q + 1 to k, which
represents the orthogonal complement of the subbundle E in NM.

2. The Volume

We will now discuss the integration of the volume form over the tube
and quadrant of radius r. First, note that when the volume form, (1.25),
is integrated over the fiber (the variable), we obtain certain integrals as
follows.

LEMMA. Let B be the ball in t-space (the,fiber), of radius r. Let Q be
the quadrant described by {t B ti > o for all i}. The integrals of ti and
titj over B and Q are independent of and j by symmetry and are given by
the following formuli:

(2.1) f, t2i dt r+2V1/(l + 2),
(2.2) f, titj dt O for : j,
(2.3) f, ti dt O,
(2.4) fe ti dt rt+V_2-.

Proof. Equations (2.1) through (2.3) are immediate consequences of
formula 12 in Weyl’s paper. Equation (2.4) follows by straightforward
integration.
We can now integrate the volume form, 1.25, over the fiber.

PROPOSITION 2.5.
space E is

The volume of the tube, of radius r, about M in the

V(r) rtVt dM

ri+2Vl f(i 0-2[G(i)] +1/2Lq(i)2}dM+
(I + 2) q>

+ O(r +4).

Proof. Integrate (1.25) over the fiber using Fubini’s Theorem and equa-
tions (2.1) through (2.3). Note rtV fn dt. Also, fn O(t3) dt O(rl+4).
It is this rather than O(r+3) because fn ttjt dt O.
We now discuss the geometric significance of the integrands in (2.5).

First, we show that the function Z. Zq> Lq(i) is actually invariant and
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measures the torsion of the subbundle E. We can call this torsion because
if it vanishes, then Lq(i) 0 for all i, q and a, which was seen in section
1 to be the definition of E being a totally geodesic subbundle of the normal
bundle.

PROPOSITION 2.6. We can express the above function in invariant notation:

(2.6) E t2iLaq(i)2 dt IIe Vwe dSl-’ dSm-l
i, q> Vm(l - 2)

where the integration is over (w, e) UTMUE.

Proof. Let n nl be the already chosen orthonormal basis section for
E, and f, ..., fm be a local orthonormal frame on M. We proceed via a
sequence of lemmas.

LEMMA 2.7.

fB E E t2iLaq(i)2 dt rl+2/(l + 2) f ai E t2iLaq(i) dSl-I
,i q>l q>i

Proof.
quadratic.

Change to spherical coordinates and note that the integrand is

LEMMA 2.8.

f Ea, q>lE t2itaq(i)2 dSl-1 f aq, i" tina(i) n(q) dSl-’

Proof. The integrands are equal modulo a function which is a linear
combination of terms tit, for 4: J. This function vanishes when integrated
over St- .
LEMMA 2.9.

f,q[tin(i)’n(q)] dSt-= IIee dS1-1

Proof. Set e E tin(i) and then note that the summation is for q
+ 1 to k. Then note that {n(q)}q>l is an orthonormal basis for E.
LEMMA 2.10.

dS1-1 IIe Vw e dSt- dS
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Proof.
for TM. Let w Z s, UTM. Note that

IIVwe sIIee
(2.10a)

Let {f} be the orthonormal basis section we have been using

+ m(s),

where m(s) is a linear combination of mixed terms, sisj, which vanish when
integrated over S . When the right hand side of (2.10a) is integrated over

2 -1Sm-, a factor of f si dS is introduced. This is equal to Vm, the volume
of the unit m-disc. That is a consequence of formula 12 in Weyl’s paper.

Proposition 2.6 follows immediately from the above lemmas.
The other integrand in the volume formula, 2.5, is E o-2[G(i)]. In the

situation where E contains the image of the second fundamental form, it
follows directly from Weyl’s discussion (Section 4), that E; o’2 [G(i)] is
actually intrinsic to M. Using the fact that the ambient space is Euclidian,
he shows that this object is an invariant polynomial in the curvature tensor
of M. Specifically, upon examination, it turns out to be scaler curvature.
We use his notation and call it h2.
We are now in position to prove Theorem 3. Combine proposition 2.5

with 2.6 and the above discussion. It follows that the volume of the tubular
neighborhood, radius r, about M in E is given locally, and thus globally,
by

V(r) rtVt vol(M)

rl+2[f+ + 2 Vt hzdM

+ O(r + 4).

I-IE+/- w e

Theorem 3 is now proven.

Remark. The deviation of this formula, in the coefficient of r1+2, from
Weyl’s formula is the square of the L2 norm of the torsion of E, which
measures the non-geodecity of E as a subbundle of NM.
We now prove Theorem 4, which is concerned with the volume of a

quadrant tube about M in E. As before, let n(1), ..., n(l) be a local or-
thonormal partial frame field of NM. This time, we consider the region,
Q, parameterized by rn + E= tin(i), for ti > o and E t2 < r2. Referring
to formula (1.25), we can approximate the volume form by

(2.11) [1+ Ei, tG,(i) + O(t2)] dM dt.

Integrating over the fiber (the variable), and referring to (2.4) for fe t
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dt, we obtain

yl2-1VI dM + r + 12- Vl_ f G(i) dM + O(r1+2).
i,

Since Y G(i) Z G n(i) H. n(i), where H tr G is the mean
curvature vector, the volume is

This proves Theorem 4.

3. A Theorem for Nicely Curved Submanifolds

We now discuss and prove Theorem 5. To define the concept of a nicely
curved submanifold, we must first define the osculating spaces of the sub-
manifold. We follow the exposition of Spivak, volume 4, Chapter 7.
Let M(m) be a submanifold of Rm+k, and V the covariant deviative on

Rm+k. If x and x2 are vector fields on M, vNy is the normal component
of VxY, known as the vector valued second fundamental form. The range
of the second fundamental form, together with TM, comprises the span of
Vx,X2 for x, X2 TM.
Let Ep be the range of the second fundamental form at Mp.
We introduce some notation: V(x, Y) VY, V(x, Y, Z) Vx(VyZ), etc.

DEFINITION 3.1. The kth ,osculating space of M at a point p is the span,
at p, of

x, V(Xl, x2), V(Xl, x2, Xk) for all xi TM.

Denote this by Osc(k, Mp).

Note that Osc(1, Mp) TMp and Osc(2, Mp) TMp Ep. We sometimes
suppress the M and write Osc(k)p.

DEFINITION 3.2.
all points p M.

M is called nicely curved if dim Osc(k)p is the same at

We now consider only nicely curved submanifolds, and we then have
a nested sequence of vector bundles Osc(k), with Osc(k) C_ Osc(k + 1).

Since Osc(k) C_ NM for all k, the sequence must stabilize. We note that
if Osc(k) Osc(k + 1), then Osc(k + 1) Osc(k + 2) Therefore,
there exists a minimum such that Osc(/) Osc(/ + 1). The number, dim
Osc(/, M), is denoted #(M), and is called the formal imbedding number
of M. Spivak supplies the following proposition"

PROPOSITION 3.3. Let M be a nicely curved submanifold ofRm+k
M is contained in a #(M)-dimensional linear subspace of Rm+k.

Then,
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We now prove Theorem 5. We restate it:

THEOREM 5. Let E(l) be the range of the second fundamental form of
a nicely curved submanifold M(m) of Rm+k. Let V(r) denote the volume of
the tubular neighborhood of radius r about M in E. The following are
equivalent:

(1)
(2)
(3)
(4)

V(r) is the Weyl polynomial of M;
V(r) agrees with the Weyl polynomial to order rt+2;
E is a totally geodesic subbundle of NM;
E is contained in a rn + dimensional linear subspace of Rm=k.

Proof. We remember that E is totally geodesic if E is closed under the
induced connection on the normal bundle of M. In other x:vords, if A +/- is
the induced connection on NM then E is totally geodesic if V e E for
all e E and v TM. A restatement of this is that He; V e 0 for all
e and v. Since this is the torsion of M, whose integral is the difference
between the Weyl coefficient of rl+2 and the coefficient of the volume
formula (by Theorem 3), we see that (2) and (3) are equivalent. We then
recall that Osc(1, M) E TM, and that Osc(2, M) is {VxY x TM,
Y Osc(1, M)}, where V is the connection on gm+k. Assume E to be
totally geodesic. Then Vx e E Osc(1) for all e E. Also, VxY E ()
TM for all Y TM since the normal component of Vx Y is the vector valued
second fundamental form II(x, Y) which is contained in E. Therefore, we
have shown that if E is totally geodesic, then Osc(1, M) Osc(2, M). By
Proposition 3.3, M is contained in a linear subspace of Rn+k of dimension
#(M) dim Osc(1, M) dim(E TM) m 4- I. Thus we have shown
that (3) implies (4). By Weyl’s Theorem, (4) implies (1). Trivially, (1) implies
(2). We have then shown the chain of implications (1) --> (2) <--) (3) --> (4)
--> (1), which proves Theorem 5.
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