L^P ESTIMATES FOR THE X-RAY TRANSFORM¹

BY

S. W. DRURY

Introduction

Let M_n denote the manifold of lines (1-dimensional affine subspaces) of *n*-dimensional Euclidean space E_n . In view of [5, Chapter 7, § 2, Theorème 3], one may construct on M_n a positive measure μ invariant under Euclidean motions. Aside from renormalizations, μ is unique with this property. We denote by λ the Lebesgue measure on E_n and for $l \in M_n$, we denote by λ_l the Lebesgue measure on the line l. For a function $f \in C_c(E_n)$, the Xray transform $Tf \in L^{\infty}(M_n)$ is defined by

$$Tf(l) = \int f(x) d\lambda_l(x).$$

The reader may consult [6] for a discussion of this transform and its practical applications.

The goal of this article is the following result.

THEOREM. Let p and q satisfy $1 \le q < n + 1$, $np^{-1} - (n - 1)q^{-1} = 1$ (so that $1 \le p < \frac{1}{2}(n + 1)$). Then T extends to a bounded operator

$$T: L^{p}(E_{n}, \lambda) \to L^{q}(M_{n}, \mu).$$

In an analogous way one can define the k-plane transform of f on the manifold of all k-dimensional affine subspaces of E_n . The reader may consult [3] for details. In [2], Stein and Oberlin establish L^p and mixed norm estimates in the case k = n - 1 of the so called Radon transform. When n = 2, the Radon transform (k = n - 1) coincides with the X-ray transform (k = 1) and their results contain ours. In fact they prove the above theorem in case n = 2, p = 3/2 and q = 3. The result is open for $p = \frac{1}{2}(n + 1)$, q = n + 1, $n \ge 3$. Neither our methods nor those of Stein and Oberlin seem to yield a good answer to the behaviour of the k-plane transform in case 1 < k < n - 1.

Note added in proof. The optimal L^p to L^q estimates for the k-plane transform have now been established in case $n \le 2k + 1$ and will be

© 1983 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received March 10, 1981.

¹ The research for this article was sponsored by the Natural Sciences and Engineering Research Council of Canada.

presented in a forthcoming article in this journal. In particular the case n = 3, p = 2, q = 4 for the X-ray transform has been settled affirmatively.

The k-plane transform is trivially bounded from L^1 to L^1 and can be bounded from L^p to L^q only if $np^{-1} - (n - k)q^{-1} = k$ and $q \le n + 1$. To see this, say in the case k = 1, we need a better description of μ . We may realize M_n as an affine space bundle in which each fibre is a collection of parallel lines. The base of the bundle is essentially projective space which carries a rotation invariant probability measure. It is easy to see that integrating out the ((n - 1)-dimensional) Lebesgue measure on each fibre with this probability yields a constant multiple of μ . Now let f be the indicator function of a ball of radius r and let A_r be the subset of M_n of all lines passing within $\frac{1}{2}r$ of the centre. Then $||f||_p \le C r^{np^{-1}}$ and Tf > r on the subset A_r . Our description of μ shows that $\mu(A_r) \sim r^{n-1}$. Then $||Tf||_q$ $\le C ||f||_p$ yields $r^{1+(n-1)q^{-1}} \le Cr^{np^{-1}}$ for all r > 0. Hence $np^{-1} - (n - 1)q^{-1}$ = 1. To obtain the other condition, let now f be the indicator function of a box having one side of unit length and the remaining sides of a shorter length δ . Let B_{δ} be the set of lines meeting both "ends" of the box. Then $||f||_p = \delta^{(n-1)p^{-1}}$, $Tf \ge 1$ on B_{δ} and $\mu(B_{\delta}) \sim \delta^{2(n-1)}$ ($0 < \delta \le 1$). Together with $||Tf||_q \le C ||f||_p$ this yields $q \le 2p$ which is equivalent to the stated condition.

Methods and Proofs

We denote by μ_x the probability measure on M_n carried by the set of lines passing through the point x and invariant under the stabilizer of x in the Euclidean motion group. One easily verifies the relation

(1)
$$d\mu_x(l)d\lambda(x) = d\lambda_l(x)d\mu(l)$$

(as measures on $E_n \times M_n$) for a particular normalization of the measure μ .

Our strategy is to write, in case $q \ge 2$,

$$\int (Tf(l))^q d\mu(l) = \int f(x_1)f(x_2)(Tf(l))^{q-2} d\lambda_l(x_1) d\lambda_l(x_2) d\mu(l).$$

Using (1) this expression can further be rewritten as

$$c_n \int f(x_1) f(x_2) (Tf(l(x_1, x_2)))^{q-2} |x_1 - x_2|^{-(n-1)} d\lambda(x_1) d\lambda(x_2)$$

where $l(x_1, x_2)$ denotes the line joining x_1 and x_2 . Roughly speaking the idea is now to consider the function

$$(Tf(l(x_1, x_2)))^{q-2}|x_1 - x_2|^{-(n-1)}$$

as a kernel. We shall need the following weak-type estimate. Let us define

$$S_{a}g(x) = \left\{ \int \left| Tg(l) \right|^{a} d\mu_{x}(l) \right\}^{1/a}$$

LEMMA 1. Let $1 \le a < n$ and let $g \in L^{a}(E_{n})$. Then

$$\lambda-\max\{x; S_ag(x) > \tau\} \le c_{n,a}(\tau^{-1}||g||_a)^b$$

where $b^{-1} = a^{-1} - n^{-1}$.

Proof. For $g \ge 0$, $S_1g = T^*Tg$ and Solmon [3] has shown that T^*T is the Riesz potential of order 1. It is therefore natural to adopt the usual method for controlling Riesz potentials. Clearly

(2)
$$S_{a}g(x) \sim \left\{ \int \left| \int_{0}^{\infty} g(x + ry) dr \right|^{a} d\sigma(y) \right\}^{1/2}$$

where σ is the rotation invariant probability measure on the unit sphere. For R > 0 let us define two quantities $S^{(1)}$ and $S^{(2)}$ to be the right hand side of (2) with the range of integration of the inner integral replaced by [O, R) and $[R, \infty)$ respectively. Clearly

(3)
$$S_a g(x) \sim S^{(1)} + S^{(2)}$$

Both $S^{(1)}$ and $S^{(2)}$ are dominated by applying Hölder's inequality to the inner integral. Then for $x \in E_n$ fixed,

$$S^{(1)} \leq \left\{ \int_{0}^{R} dr \right\}^{1/a'} \left\{ \int_{0}^{R} |g(x + ry)|^{a} dr \, d\sigma(y) \right\}^{1/a} = R^{1/a'} \left\{ |g|^{a} * \theta_{R}(x) \right\}^{1/a}$$

where $\theta_{R}(z) = c_{n} |z|^{-(n-1)}$ if $|z| < R$ and $\theta_{R}(z) = 0$ if $|z| \ge R$;
 $S^{(2)} \leq \left\{ \int_{R}^{\infty} r^{-(n-1)a'/a} dr \right\}^{1/a'} \left\{ \iint_{R}^{\infty} |g(x + ry)|^{a} r^{n-1} dr \, d\sigma(y) \right\}^{1/a}$
 $\sim R^{-(n-a)/a} ||g||_{a}.$

We choose R such that $R^{-(n-a)/a} ||g||_a$ is a small multiple of τ . Then, by (3),

 $S_a g(x) > \tau \Rightarrow S^{(1)} > \frac{1}{2}\tau.$

We now use the estimate $||g|^a * \theta_R||_1 \le ||g||_a^a ||\theta_R||_1 \le C_n R ||g||_a^a$ and Tchebychev's inequality to verify the statement of the lemma.

PROPOSITION. Let $0 < \alpha < 1$ and let K be a symmetric kernel on a measure space (X, ν) such that

(4)
$$\underset{x_1}{\mathrm{ess sup}} \int_{|K(x_1, x_2)| > t} |K(x_1, x_2)| d\nu(x_2) \leq A t^{1 - 1/(1 - \alpha)} \quad (t > 0)$$

and

c

(5)
$$\underset{x_{1}}{\operatorname{ess}} \sup \int_{|K(x_{1},x_{2})| \leq t} |K(x_{1},x_{2})|^{s} d\nu(x_{2})$$
$$\leq c_{s}A \ t^{s-1/(1-\alpha)} \quad (t > 0, \ (1-\alpha)s > 1)$$

Then K is the kernel of a smoothing operator of order α . That is, K is bounded as an operator

$$K: L^{b}(X, \nu) \to L^{c}(X, \nu) \quad (b^{-1} - \alpha = c^{-1}, b > 1, c < \infty)$$

and the operator norm of K is bounded by $c_b A^{1-\alpha}$.

The proof of the proposition again follows the usual strategy for Riesz potentials—see [4]. Note that (5) asserts that the "lower part of K" is bounded from $L^{s'}$ to L^{∞} whereas (4) together with the symmetry condition asserts that the 'upper part of K' is bounded both from L^1 to L^1 and from L^{∞} to L^{∞} and hence by convexity from $L^{s'}$ to $L^{s'}$. We leave the details of the proof of the proposition to the reader.

LEMMA 2. Let $2 \le q < n + 1$. Let $Y \subset E_n$ be a set of finite measure m. Then there is a subset X of Y of measure at least $\frac{1}{2}m$ such that $||T\mathbf{1}_X||_q \le c_{n,q}m^{(q+n-1)/nq}$.

Proof. Let $g = \mathbf{1}_{Y}$ and let us define

$$L(x_1, x_2) = (Tg(l(x_1, x_2)))^{q-2} |x_1 - x_2|^{-(n-1)},$$

a symmetric kernel. Routine calculations show that

(6)
$$\int_{L>t} L(x_1, x_2) d\lambda(x_2) = c_n A(x_1) t^{1-(1-\alpha)^{-1}} \quad (t > 0),$$

(7)
$$\int_{L \leq t} (L(x_1, x_2))^s d\lambda(x_2) = c_{n,s} A(x_1) t^{s - (1 - \alpha)^{-1}} \quad (t > 0, (1 - \alpha)s > 1)$$

for $\alpha = n^{-1}$ and where

$$A(x) = \int (Tg(l))^a d\mu_x(l)$$
 for $a = (q - 2)n/(n - 1)$.

Since q < n + 1, a < n and we may apply Lemma 1 with $\tau = c_{n,a}m^{1/n}$ where $c_{n,a}$ is sufficiently large to ensure that the measure of the exceptional set

$$Z = \{x; S_a g(x) > \tau\}$$

is less than $\frac{1}{2}m$. Let $X = Y \setminus Z$. Then we have

$$A(x) \leq c_{n,a}m^{a/n}$$
 a.a. $x \in X$.

Let ν be the restriction of Lebesgue measure λ to X and let K be the restriction of L to $X \times X$. Then (4) and (5) follow from (6) and (7) respectively with $A = c_{n,a}m^{a/n}$. The proposition now yields

$$\int (T \mathbf{1}_{X}(l))^{2} (T \mathbf{1}_{Y}(l))^{q-2} d\mu(l) \sim \langle K \mathbf{1}_{X}, \mathbf{1}_{X} \rangle \leq c_{n,q} m^{(q+n-1)/n}.$$

The conclusion of the lemma follows since $T \mathbf{1}_X \leq T \mathbf{1}_Y$.

Proof of the theorem. For the range $2 \le q < n + 1$ we show that T^* is weak type (q', p'). Let $h \in L^{q'}(M_n)$ be an element of unit norm. Let

t > 0 and let $Y_1 = \{x; T^* | h | (x) > t\}$. Let Y be an arbitrary subset of Y_1 of finite measure m. Let X be as in Lemma 2. Then we have

$$\frac{1}{2}mt \leq \langle \mathbf{1}_X, T^*|h| \rangle = \langle T \mathbf{1}_X, |h| \rangle \leq ||T \mathbf{1}_X||_q \leq c_{n,q} m^{(q+n-1)/nq}$$

so that $m \leq c_{n,q}t^{-nq/(n-1)(q-1)}$. Since $|T^*h| \leq T^*|h|$ we have the required weak type estimate with p' = nq/(n-1)(q-1). Now T^* is clearly a bounded operator from $L^{\infty}(M_n)$ to $L^{\infty}(E_n)$. (It suffices to observe that μ_x is a bounded measure for each x.) The general statement of the theorem now follows from the Marcinkiewicz Interpolation Theorem and a duality argument.

I should like to thank D. M. Oberlin for bringing this question to my notice and for stimulating discussions.

REFERENCES

- 1. D. M. OBERLIN, $L^p L^q$ mapping properties of the Radon Transform, Proceedings of the Special Year in Harmonic Analysis, University of Connecticut, 1980–1981, Springer Lecture Notes in Mathematics, to appear.
- 2. D. M. OBERLIN and E. M. STEIN, *Mapping properties of the Radon Transform*, Indiana J. Math., to appear.
- D. C. SOLMON, A note on k-plane integral transforms, J. Math. Anal. Appl., vol. 71 (1979), pp. 351-358.
- 4. E. M. STEIN, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970.
- 5. N. BOURBAKI, Intégration, Livre VI, Hermann, Paris, 1963.
- K. T. SMITH, D. C. SOLMON and S. L. WAGNER, Practical and mathematical aspects of the problem of reconstructing objects from their radiographs, Bull. Amer. Math. Soc., vol. 83 (1977), pp. 1227–1270.

McGill University Montreal, Quebec, Canada