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THE HELMHOLTZ EQUATION AND THE

HEAT EQUATION
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ADAM KORNYI AND J. C. TAYLOR2

Introduction

Consider, for a > 0 fixed, the Helmholtz equation Au 2au 0 on
Rn. It is not hard to see that the corresponding Martin boundary is a sphere,
and that every positive solution has an integral representation

u(x) fs.-, eX(X’b)I(db

where h (2ct) 1/2 and/x is a positive measure on the sphere. The rotationally
invariant function given by this formula where /x is equal to Lebesque
measure tr will be denoted by h.

O. Linden [12] proved a Fatou-type theorem recovering the values of
d/x/dtr a.e. as limits at infinity of u/h along tubes of constant diameter.
The present article proves a stronger result. It gives convergence through
parabolic regions, which are in many ways more natural than tubes, and
it does not require u to be globally defined. In other words this is an
analogue of the well-known result of Privalov-Calder6n-Carleson [2], [3]
about harmonic functions in a half space of Rn.
The method of proof is essentially that of Brelot and Doob [1], also used

in [10]; it consists in deriving a geometric convergence result from fine
convergence at the Martin boundary, which is guaranteed in a very general
situation by the Fatou-Na’fm-Doob theorem. There is however an essential
difficulty to be surmounted" the natural version of the Harnack inequalities
for the associated potential theory is not strong enough to permit the direct
translation of the argument of Brelot and Doob to the Helmholtz equation
(see remark following definition 2.1). In order to bypass this difficulty it
is first useful to make a not entirely trivial reduction of the problem (Theo-
rem 1.2) and then to use a strengthened one-sided Harnack type inequality
(Proposition 2.4) which is obtained from the theory of the heat equation.

In Section 1 the reduction theorem is proved and section two gives the
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proof of the parabolic convergence result mentioned above (Theorem 2.9).
If one is interested only in global solutions then Theorem 2.9 can be

strengthened in two ways, each one corresponding to a different method
of proof. The first one, suggested by Doob, consists of a reduction via the
Appell transform to a parabolic convergence result for the heat equation
[6]. This gives parabolic convergence for quotients of arbitrary positive
solutions to the Helmholtz equation. The second proof is based on the
classical idea (cf. [20, Ch. XVII]) of using a Hardy-Littlewood type max-
imal function. This method was used by Linden [12] for tubes and is here
shown to extend to parabolic regions. It has the advantage of working for
all complex a that are not real negative and an appropriate class of solutions.
These results are obtained in section three.

Finally, Section 4 is devoted to a discussion of the following problem
which arises naturally in connection with the methods in earlier sections.
Can Doob’s parabolic Fatou-type theorem for the heat equation [6] be
deduced using the theory of fine convergence? For positive solutions it is
shown that this is easy to do, but for arbitrary quotients it appears more
awkward.
The authors wish to thank J. L. Doob for suggesting they use the Appell

transform to prove Theorem 3.1.
Let f(s) and g(s) be two functions defined for s near So. The notations

f(s) g(s) and f(s) g(s) indicate respectively that f(s)/g(s) has a non-
zero limit as s --> So and that there is a constant C with 1/C <
f(s)/g(s) < C for s close enough to So.

I. Fine Versus Admissible Convergence: Reduction to a Special Case

With each of the two equations under consideration there is an associated
potential theory on a state space X, the harmonic functions being the
solutions. Furthermore, the positive globally harmonic functions h have a
unique integral representation h(x) f Kb(X)tx(db) where b runs through
a boundary B of the state space (for additional details in each case see
Sections 2 and 4 respectively).

In both cases the potential theory is coupled with a Hunt process (ex-
ponentially killed Brownian motion in the case of one, and the heat process
in the case of the other). Doob’s results in [4] on conditional Brownian
motion apply to both processes (this is explicitly worked out for processes
in duality by F6llmer in [8] and stated by Doob in [5] for the heat process).
As a result, for u, v any two harmonic functions the theorem of Fatou-
Na’m-Doob is valid: the quotient u/v has fine limit at ,-a.e. (minimal)
boundary point b equal to (dlx/dv)(b) where/x and v are the measures that
represent u and v respectively.
The reader unfamiliar with either the probabilistic proof of this theorem

[4], [8] or the potential theoretic proof of [14], [15] may find it useful to
consult [17] for an elementary exposition of [15]. Here X is a measurable
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space and a cone 5e of "superharmonic" functions is given on X for which
certain hypotheses are verified. In particular each s S has a Riesz De-
composition s p + h with p a "potential" and h "harmonic". Further
there is a measurable boundary space such that each "harmonic" function
h 5e has a unique integral representation as

h(x) f Kb(X)Ix(db ),

a positive measure on B and gb a minimal "harmonic" function for each
bB.
Assume that ." X tO B is a topological space.

DEFINITION 1.1. An admissible system A is a function on ’\X B
with A(b) C X and b a limit point of A(b), for all b B. A function f
converges A-admissibly to h at b if for all e > 0 there exists a neighbourhood
U of b such that If(x) hi < e, for all x U fq A(b). This will be indicated
by writing

h (A-lim f)(b).

THEOREM 1.2. Let A be an admissible system and let h be a positive
harmonic function with representing measure I. Assume that for any pos-
itive harmonic function u,

[(fine limit u/h)(b) O] [(A-lim u/h)(b) O]

(where the exceptional set depends on u and A).
Then,

Proof.

/z-a.e.,

A-lim u/h
dtz /x-a.e. if v represents u.

Let denote the set of positive measures/x on (B, ) such that

f Kb(X)lx(db) < for all x X.

Then is a convex subcone of the set of positive Borel measures on (B, )
which is closed under the lattice operations /and/. These operations are
defined as follows"

/x /v 1/2(/x + v + I/x- ul} and

where lal denotes the total variation of a signed measure a. The following
lemma is easily established (cf. [17]).

LEMMA. Let I > O. Then

d
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Hence,

v ’’)= V and -d-(q A v) A

Let u be a positive harmonic function with representing measure u. Since
u/h converges finely to dv/dtz/z-a.e, it suffices to consider what happens
for b {dv/dlx > 0}. Let q, p be positive rationals and r p + q. It
follows from the lemma that the function u (fine limit u/h)(b) preserves
the lattice operations A, V in the cone of positive harmonic functions (cf.
(B) in [17] for the definitions of/, V).
Assume that q < (dv/dp,)(b) < r. Then [qh u /X (qh)]/h and

[rh u V (rh)]/h converge finely to 0 at b.
By hypothesis this implies

(A-lim[u/X (qh )]/h )(b ) q and (A-lim[u V (rh )]/h )(b r

except for b Eq,, where [Jb(Eq,r) Oo
Since for u, v, w any three harmonic functions

min{u, u + w} < min{u, u} + min{u, w}

it follows that u/ (v + w) < u/ v + u/ w (cf. (3) in [17]). Consequently,

0 < [u/ (rh) u/ (qh)]/h < p.

Combining this with the identity u u V (rh) + u/X (qh) + {u /X (rh
u/X (qh)} rh it follows from (*) that

q < (A-lim u/h)(b) < (A-lim u/h)(b) < r

(where these limits are defined in the obvious way) unless b Eq,.
It therefore follows, for any positive rational number p, that there is a

set Ep with/x(Ep) 0 such that, for all b q Ep,

I(dv/dlz)(b) (A-F-- u/h)(b)l < P and

I(dv/dlz)(b) (a-lim u/h)(b)l < P.

An obvious countability argument completes the proof.

Remark. The above argument holds with "fine limit" replaced by some
other limit notion providing that for this limit notion u/h --> d,/dtx/x-a.e.
For example, when considering classical harmonic functions on R x R+

that are Poisson integrals of positive functions in LP(Rn), 1 < p < oo it is
relatively easy to establish the existence of normal limits (cf. [16]). The
above arguement shows that in order to establish the existence of non-
tangential limits it suffices to verify that a.e. the non-tangential limit is zero
if the normal limit is zero. As will be remarked later this is an immediate
consequence of the Harnack inequalities.
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2. A Local Fatou Theorem for the Helmholtz Equation

Let a > 0. Consider the Helmholtz equation Au 2au on R. All
potential-theoretic concepts in this section are to be understood as being
relative to the potential theory_ associated with the operator Lu (1/2)Au
au. For convenience let V2a be denoted by h.
The Martin compactification " of X R is obtained by adjoining S

at infinity. To show this one considers the Green function G(x) with pole
at 0. Then

G(x) Jo e-t(2rt)-/2e-11ll/2tdt

/2-r-/2(X[lxll)-K(Xl[x[[) (where v n/2 1)

IIxll<-)/e -"" ([18] 6.22 (15) and 7.23 (1)).

Let G(x, y) denote the Green function with pole at y. Then G(x, y)
G(x y). Consequently, G(x, y)/G(y) has a limit for all x as Ilyll if
and only if lx yll [lyll has a limit. This is the case precisely when
y/llyll has a limit b on S- which shows that B X can be identified
with S . A basic neighbourhood U of b S is

{xlllxll > , <x’, b> > l/m} U {c S-l<c, b) > l/m},

where x’ x/llxll, The minimal harmonic functions, normalized to take the
value 1 at 0, are the functions Kb(X) ex<’b>, b S-. Let

K(x) f Kb(X)g(db), Kf(x) Kf(x)

where is normalised Lebesgue measure and denote Kl(x) by h(x) (the
rotationally invariant solution of Au 2au with u(O) 1).

DEFINITION 2.1. For all b S and B > 0 define the admissible region
A(b;B) to be

{x llllx Ilxllbll < Bllxll /2}
and the truncated admissible region AS(b;B) to be A(b;B) {xl[Ixll N},
A function f is said to converge admissibly at b if for all B > 0 f(x) has

a limit as IIxll , x A(b;B).

Remarks. 1. For admissible convergence the paraboloids

{tb + ylt > 0, (y, b) 0, IlYll < Bt}

could be used instead of the regions A(b;B).
2. When n > 4 it is not hard to show that a tube of constant width

about the ray determined by b Sn- is thin at b. A set E is thin at b if
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there is a potential p that dominates Kb on E ([14, Th6or6me 5 p, 205],
also [17]). In probabilistic terms this is equivalent to saying that for any
x with probability 1 the paths of the Kb.process starting from x fail to meet
E sufficiently near to b ([4, p. 455], [5, p. 4], and [8, lemma p. 140]).
Consequently, such tubes cannot be used as admissible regions if one hopes
to relate fine and admissible convergence. (See the proof of Theorem 2.9.)

This thinness comes from the fact that if Bt B(tb;r) then R,Kb(O) t
for t > t(r) where 2k n (where for any set E and superharmonic
function u, Reu(x) inf{v(x)lv > u on E, v superharmonic}). Hence, it is
not hard to construct a potential (as the sum of a series) dominating
eKb(eu is the lower semicontinuous regularization of Reu and is super-
harmonic), if E is a tube of constant width "at" b. Another consequence
of this estimate is that the standard "bubble" set used by Brelot and Doob
[1] and also used in [10] is thin at the appropriate minimal point. From this
fact comes the difficulty alluded to in the introduction.

PROPOSITIOr 2.2. Let b Sn-1 and let E [-Jm Em, Em A(b;B) fq

{x Ilxll Rm} with R d- o. Then E is not thin at b (i.e., if v > 0 is
superharmonic and v > Kb on E then v > Kb, which is equivalent to saying
that no potential dominates Kb on E (cf., G) [17]).

Proof. For x A(b;B), Kb(X) exllxll since

Ilxll{1 <x’, b>} 211xllllx’ bllz 1, where x [Ixllx’.

Further, the value at the origin of the harmonic function hm on {x Ilxll < Rm}
with boundary value 1Era is hm(O) tr((1/Rm)Em)/h(Rm) where h K1 is
the positive radial solution corresponding to o-.
Now

h(x) f eX<x’b>o’(db) ellxll/llxll"-)/ [18, 6.15 (2) and 7.25 (1)].

Hence, hm(O) e -xm and so for some constant c, c < km(O) 1/C where
km is the solution on/(0;Rm) of the Dirichlet problem with boundary value
Kblem. The Perron-Wiener-Brelot method of solving the Dirichlet problem
shows that km ReKb on/(0;Rm). Therefore, if k is the limit on R of
some subsequence (km) (which will exist by virtue of Harnack’s inequal-
ities) it follows that k < ReKb. Since k > 0, no potential dominates Kb on
E; i.e., E is not thin at b.

DEFINITION 2.3. For every u satisfying Au 2au in some domain of
R let Du be defined (for all > 0 and x R such that the formula is
meaningful) by

Du(x, t) (27rt )-n/Ee-Ilxl12/Etu(x /t )e-a/t.
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Remark. For any solution v(x, t) of the heat equation Ov/Ot 1/2 Av on
a domain where t :/: 0, the Appell transform [19]

av(x, t) (2,rt)-"/Ze-11ll:/2tv(x/t, l/t)

determines another solution. If v(x, t) u(x)et then v is a solution of the
heat equation and Du Av.

PROPOSITION 2.4. Let u > 0 be a solution of Au 2cu defined on a
neighbourhood of a set AN(b;B) and let h K1. If O < B < B there exists
a constant C, independent of u, such that

u(p)
> Cu(q)

h(p) h(q)

for all p, q A2N(b;B1) such that 211pll Ilqll.

Proof. If W is the domain of Du then there exist constants M0 and to
such that

W 23 {(x, t) R R+ IIx Xbll < /Mo, 0 < < to}

(for example, for sufficiently large to and B0 < B take BoMoh/2 2).
Since Du satisfies the heat equation, Harnack’s inequalities [13] imply

that if M > M0 there is a constant C such that for all < to/2,

(*) Du(x, 2t) > C Du(y, t)

provided IIx hbll < k//M,, IIY hbll < /-tMl.
Assume Ilxll IlYll h and let p x/Zt, q y/t. Then 211pll Ilqll

and substitution in the inequality (*) of these values gives u(p)e -1111 >
C u(q)e -xllqll. The result follows from the asymptotic behaviour of the radial
function h (see the proof of 2.2).

Remark. For global positive solutions u this can be proved directly
without using Harnack’s inequality for the heat equation by considering the
behaviour of the functions Kb(x)/h(x).

LEMMA 2.5.
the set

Let E C S . Assume that to each b E there is associated

A(b; B) N {x[ Ilxll > N AN(b; B)

(where N and B vary with b) and let U t.Jbe AN(b; B).
Let e > O. Then for any given Bo there exists a compact set D and No

such that

(1) t.Jbo AN(b; Bo) C U
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and

(2) r*(E\D) < e,

where o’* is the outer measure determined by o’.

Proof. An obvious adaptation of Calder6n’s argument [2] using the re-
gions A(b; B) instead of cones proves the result. It is also possible to trans-
form R" into the interior of the unit ball by the map x ---> Ilxll(1 / IlxllZ)-x.
This map transforms the region A(b; B) into a region which is essentially
a cone and Calder6n’s agument then applies.

COROLLARY 2.6. For each B > 0, for almost all b E there exists
N N(b, B) such that AS(b; B) C U.

PROPOSITION 2.7. Let E C Sn-1 and assume that for each b E a
truncated parabolic region Ate(b; B) is given. Let U be the union of these
regions. Then U is thin at almost every point of E.

Proof. The argument of Constantinescu-Cornea used to prove Th6orme
8 in [1] applies once the following result is established.
Note that if D(x; B) denotes the complement of the union of all those

A(b; B) that do not contain x then the intersection of D(x; B) with the
Martin boundary S"- is C(x) {cl IIc x’ll < B/I}, where x Ilxllx’,

LEMMA 2.8. For all x Rn, X 0, there is a constant A A(B) > 0
such that (Klcx))(x) > Ah(x).

Proof. It is clear that it suffices to consider x with Ilxll large. If c
C(x) then K(x) e<’x> and so K(x)e -’llxll e -llxllt-<’x’>. Now for large

1 (c, x’> IIc x’ll/2- 1/llxll if c C(x).

Since the measure of C(x) Ilxll -n-)/2 and h(x) (llxll) -<-)/z ellxll this
proves the lemma.

THEOREM 2.9. Let E C Sn-l and assume that for each b E there is
associated a region Ate(b; B). Let u be a solution of the Heltnholtz equation
on U [-JbE Ate(b; B). On each set Ate(b; B) assume that u/h is either
bounded above or below.

Then u/h converges admissibly at almost every point of E.

Proof. As usual (cf. [1]) it suffices to consider the case of u > 0 and
U connected. Since the operator 1/2Au au is strictly elliptic the points of
S (where S is viewed as the Martin boundary of R) at which U is
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thin can be identified with a Borel subset of the minimal points A(U) of
Martin boundary of U (see the appendix of [10]). Denote this subset by S’.
Let S be the subset of S’ obtained by removing the exceptional sets of
corollary 2.6 for an increasing unbounded sequence (Bn).
Let B > 0. Define an admissible system by setting, for each point d of

the Martin boundary of U, A(d) AlV(d;B) for N suitably large if d S
(see Corollary 2.6) and the intersection with U of a neighbourhood of d
in the Martin compactification of U otherwise.
By Theorem A.6 of [10], by the Fatou-Na’/m-Doob theorem and by Theo-

rem 1.2 it will suffice to prove that if u/h has fine limit zero at b S then
it has A-admissible limit zero at b.
Assume this to be false. Then there exists an e > 0 and a sequence (Xm) C

A(b;B) such that IlXmll and (u/h)(xm) e for all m. Let 0 < B < B.
Then by Proposition 2.4, (u/h) > Ce on the union E of the sets

E (x A(b;n)lllxll IlXmll/2}.

By Proposition 2.2, E is not thin at b which contradicts the fact that the
fine limit of u/h is zero at b.

Remark. The thinness of a tube of constant width about a half ray
referred to earlier shows that the above argument cannot be applied when
parabolic regions are replaced by such tubes.

3. The Fatou Theorem for Global Solutions of the Helmholtz Equation

For global solutions Theorem 2.9 can be strengthened in two ways. The
first of these is stated as

THEOREM 3.1. Let u and v be positive solutions of the equation Au
2au, t > O, defined on all ofR and let I, v be the representing measures
of u, v on the Martin boundary Sn-1. Then u/v converges admissibly v-a.e.
to dl/dv.

Proof. Let Du and Do be as in Definition 2.3. They are solutions of the
heat equation on the upper half space R R/ and with respect to the
Gaussian kernel

(x, t) (27rt)-n/2e -IIx-cll2/2t

have the representing measures /z’, v’ that correspond to /z and , when
S- is identified with the sphere of radius h -d in the boundary
R {0} (this follows from the fact that DKb Kxb).
By a theorem of Doob (Theorem 5.2 in [6] and for n 1, Theorem 3.1

in [5]) Du/Dv has a parabolic limit dtx’/dv’ v’-a.e. Since (Du/Dv)(x, t)
(u/v)(x/t) this implies the result.
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THEOREM 3.2. Let h be a complex number with Re h > 0. Consider
solutions to Au h2u of the form

fs eX<x’b}tx(dbu(x)

a positive measure. Let h(x) fs.-, eX<X’b>o’(db), cr normalized Lebesgue
measure. Then, u/h converges admissibly to d/do" (r-a.e.

Proof. By standard arguments [20, Ch. XVII] it suffices to prove the
following estimate.

Let f L(S"-1) L(o-) and define

f*(c) sup I_
0<r,2 o-(B(c;r)) .to(c;r)

If(b )io’(db ).

Then there are constants C C(B) and L(B) (independent off) such that

sup f If(b)l I(x, b)lcr(db) < cf*(c) when Ilxll L(B),
xA(c;B)

and where

(x, b) eX<x’b>/h(x), h(x) f eX<x’b>o’(db).

Leta Re h > 0.
Let x c + y A(c;B) with (c, y) 0. Then IlYll < B/. Further,
< Ilxll < 2t if Ilxll > L for some constant L L(B). Assume from now

on that Ilxll > L,
Since [h(x)l I[xll-n-)/Zea"x" there is a constant C such that

-(x, b) < C (n- l)/2e-atea(x’b).

Now (x, b) t(c, b) + (y, b c) < t(c, b) + Btllb cll implies

(x, b) <<- C (n- l)/2e-at(l-(c’b))eBX/-illb-cll

C (n- 1)/2e-atllb-cl[2/2

C (n- l)/2e-a[ttlb-cllE/2-BX/-illb-cll].

Fix 0 < r/ < (say rt 1). Then

k k+l k
C t(’-’)/ze -":/-(+ TM if 7--. < lib cll < and <

K(x, b) < Vt Vt
C t"-V2e-att’:/2-2vT for < lib cll.
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Hence,

sup fx.A(c;B)
Ilxll>L

If(b)l I(x, b)lo-(db)

=0 /vllo-cll+ )/7
If(b)ll(x, b)lcr(db)

+ I. If(b)l I(x, b)lo-(db)
Ib

C t-/Ee-at/2-n+ [f(b)l(db)
k=0 lc-bll(k + 1)/

+ C

Now ({b IIc bll r}) r for small r and so the above expression
is dominated by

[’]
C’ ( + 1)’-’e

C’ (k + 1)-e-/-(+ + C" f*(c)
k=O

Cf*(c).

4. The Case of the Heat Equation

Let X R (0, + ). The heat equation Au 2(Ou/Ot) 0 determines
a potential theory on X with the property that every positive solution u has
the form

U(X) f (2"a’t)-n/2e-IIx-bll2/2t(db),

where/x is a positive measure on Rn. If ." R" x R+ then the boundary
B ’\X is identified with Rn. An admissible system A is given by setting

A(b;B) A(b) {(x, t) IIx bll < nt ’/2}
for each b R", where B B(b) > 0 is arbitrary. A function f
converges admissibly at b if for all B > 0 the limit of f(x, t) exists as
t - O, (x, t) A(b;B).
Doob [6] proved that if u, v are any two positive solutions of the heat

equation, then u/v converges admissibly v-a.e, on B to dlx/dv where/x, v
are the respective representing measures. This proof uses direct estimates
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on the Gaussian kernel and is independent of the theory of fine convergence.
An earlier proof of this result (when n 1) is given in [5] where in addition
Doob states that u/v converges finely to dtz/d, and indicates how to relate
path-convergence to fine convergence. In this section it will be shown for
the case v (and hence dv dx) that Doob’s fine convergence result
implies his admissible (i.e., parabolic) result. The argument used breaks
down for o - 1 because the nature of the Harnack inequality for a heat
equation does not permit one to control the nearby values of a quotient
by the value at one point (as is possible for a second order strictly elliptic
equation).

For the potential theory on X associated with the heat equation a lower
semicontinuous function u is superharmonic if (a) u(x, t) > - for all
(x, t) and (b) for any (x, t) and cylinder {(y, s) a < Yi < bi, to < s < t}

C with ai < x < b the value u(x, t) > f udlx,t) where x,t) is the
"parabolic measure" on OC(R {t}) that reproduces solutions of the
heat equation defined on a neighbourhood of C. See Doob [7] for details
(where such a function is said to be "superparabolic").

Let 6e denote the convex cone of non-negative superharmonic functions
on X which are finite on a dense set. Denote by the convex subcone
of positive solutions of the heat equation and by the convex subcone
of functions u S which have the following property: h and h < u
implies h 0. Then it is well known that , and 5e satisfy the hypotheses
(1)-(11) inclusive of 17] (cf. [7]) with

e 1/2t)llx 0112"

The parabolic admissible regions are related to thinness as shown in the
next result.

PROPOSITION 4.1. Let b B and E -Jm Era, where Em {(x, tm)
IIx bll < Bm} and tm O. Then E is not thin at b (i.e., if v > 0 is
superharmonic and v > Kb on E then v > Kb, which is equivalent to saying
that no potential dominates Kb on E (cf. (G) [17])).

Proof.
cylinder

Let Jc0 (a, s) X and let Am be the complement of the bounded

Um /(b;m) (tin, m).

Then, for sufficiently large m, +/-0 Am.
Assume E is thin at b. This is equivalent to the existence of a potential

p with p > Kb on E. Let Pm be the function on X obtained by replacing
p on U by the solution of the Dirichlet problem with boundary value p
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on 0U,,, i.e., if +/- (x, t) Um,

pm(JO f dP (x,t)

where/x",t is the parabolic measure of, p > p,, > Pm+l and lim,_. Pm 0 as it is in
It is clear that Pm Kb on Em+l. Hence, ReKb (: Kb implies

lim REmKb(JO) O.
m----o

Consequently, to prove the proposition it suffices to show that there exists
a constant C(+/-0) > 0 with ReKb(+/-O) > C(ko) for sufficiently large m. Let
t tm < S where .to (a, s). Then,

REmKb(20)
[y_bll<B/7 [47r2(s t)t]"/2

( ll[Y-all2 IlY- bl[2})+ dyexp l. -since the probability (for the heat process associated with 1/2Au Ou/t)
of starting from 5c0 and hitting A C R {t} is the probability for Brownian
motion of being in A at time s after having started from a at time zero.
Now

IlY all 2 IlY bll 2+
s-t

t{lly bll / 2(b y, a b) + Ila bll 2} / (s t)llY bll
t(s t)

slly-bll 2 {2(b-y,a-b)+ Ila-bll 2}
t(s t) s

Assume 0 < t < s/2. Then IlY bll < B/ implies

Ila bll z {2(b y, a b) + Ila bll z} 311a bll
2s s s

as long as 4B- < Ila bll.
Consequently, in computing a lower bound for ReKb(kO) one can forget

the corresponding term in the exponential.
Consider, for t tm,

I(m)= (t)n/2

fllyll<Bwrie-sllyll2/[2t(s-t)]dy
for 0 < < min{s/2, Ila bl12/16B2}.
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Then

I(m) >
lYlI<BV

e IlYll2/t dy c

This non-thinness result is the key to proving Doob’s theorem for u/v
when v 1.

THEOREM 4.2. Let u > 0 be a solution of the heat euqation on R
(0, +). Then, for all b Rn,

[(fine limit u)(b) 0] => [(A-lim u)(b) 0].

Hence, u converges admissibly to dl/dx a.e. on Rn, where i is the rep-
resenting measure for u.

Proof. Assume (Ym, tm) A(b) with U(Ym, tm) > )k > 0 and lm $ O. Then
by Harnack’s inequality [10], for some c > 0, u > hc on

E Era, E {(x, 2tm) lllx bll < nV/m}.

Since E is not thin at b by Proposition 3.1, the fact that u converges finely
to 0 implies h 0. The last statement is a consequence of Theorem 1.2.

Remark. This is the same argument as the one used to prove Theorem
2.9. Further, for classical harmonic functions u on R R/ that are positive
this argument shows that the nontangential limit is zero if the radial limit
is zero. This is because by Harnack’s inequality there is a constant c with
u(x, y) < C U(Xo, y) for all y > 0 if IIx x011 -< ay, a > 0 (cf. (3.17) on
p. 63 of [15]).
These techniques can also be applied to the heat equation on

R+ R ((x, t) lx > 0}.

In this case the boundary R {0} R B together with B2 (0, +c]
parametrizes the minimal functions Kb, where

gb(X, t)= {(01/-)
X -x2/2(t- b)

b3/2e if > b B(t
ift<bCBl,

and
b2t

Kb(X, t) sinh (bx)e-

Kb(X, t) X

if0<b< +B2

ifb +B2.

The positive solutions are all of the form f gb(X, t)lz(db) [9], and in [9]
Kaufmann and Wu show that quotients of positive solutions converge ad-
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missibly in the usual way, where the admissible regions A(b) at b
(0, b) B1 are of the form

A(b) ((x, t) O < Bx2 b BEX2}.
These regions are "canonical" in view of the following result.

PROPOSITION 4.3. Let 0 A and tm O. Set Em
1/Am] (tm}. Then E tm Em is not thin at(O, 0).

Proof. The argument of Proposition 4.1 can be imitated with Um taken
to be the rectangle [A/tm, m] [tm, m]. It will then be sufficient to verify
that

REmKo(Jo) c(J0) > 0,

is independent of m, for each point 5c0 (a, s) with s > 0.
The probability for the heat process on X R+ R of starting at 5c0

and being in A C R {t} at time < s is the probability for Brownian
motion on R killed at zero of starting from a at time zero and being in A
at time s t. Therefore,

//A -x2/2t{e (x-a)2/2(s-t) -(x +a)2/2(s-t)}RemK(J) 27r(s t)/2t3/2 ,JAV xe e dx

x/-i/a

> c(1/t) fA, e-(1/2)[x2/2t+(x-a)2/(s-t)]{1 e-2ax/(s-t)} dx
if 0 < < min{s/2, 1}.

Now

x2/t + (x a)2/(s t) sx2/t(s t) + {a 2xa}/(s t)

and for 0 < < s/2 and x < -/A the second term is essentially a constant
as long as 4-/A < lal a. Therefore a lower bound may be obtained
by estimating, for 0 < < min{s/2, 1},

X/7 A

(l/t) fax/7 e-SX2/2t(s t){1 e-2ax/(s -t)} dx

e _Y2{1 e- 2aN/-y/s} dy C(0).

Remarks. (1). Wu has pointed out to the authors that this result for X
proves a special case of Kemper’s "two-sided" parabolic convergence
result for positive solutions [11]. This states (in the case under consider-
ation) that if u > 0 is a solution of the heat equation on R+ x R
{(x, t) lx > 0} then, dt a.e. on {0} x R, u(x, t) has a limit as (x, t)
(0, b) with It bl < A(b)x2. It suffices to note that Moser’s theorem [13]
implies the following Harnack inequality for u > 0 a solution of the heat
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equation on R+ R: let B > 0; then there is a constant c > 0 such that,
for all > 0,

inf u(x’, 2t) > c sup u(x(t), s) where t 2BxZ(t).
x(t)<x’<2x(t)

If to > 0, scaling by (x, t) (Xx, Xzt) for X 1Ix(to) maps

[x(t0), 2X(to)] x {2to} onto [1, 2] x {2B}
and

{x(t0)} [-to, to] onto {1} x [-B, B].

If (y,, t,) (0, 0) with It.I < By2. and U(yn, tn) ) O(fn) then in view
of the Harnack inequality u cannot converge finely to 0 at (0, 0). This
observation and the argument used in Theorem 4.2 prove Kemper’s result
in the case of R+ x R.

(2) Assume that the part of the kernel representing positive solutions
to the heat equation on Rn-l R+ R X corresponding to OX (with

R) is given by

Kb(X, t) (-- 1)---0 W(x, t; (y’ 0), s)
OXn

where b (y’, 0, s) Rn-l {0} R.

The proof of the proposition carries over when the admissible regions A(b)
are of the form

{AE(t s) < IIx’ y’ll / Xn (1/AE)(t s), Xn > CIIx’ll},

where the generic point in X is denoted by (x’, xn, t).

BIBLIOGRAPHY

1. M. BRELOT and J. L. DooB, Limites angulaires et limites fines, Ann. Inst. Fourier, vol.
13(2) (1963), pp. 395-415.

2. A. P. CALDER(N, On the behaviour of harmonic functions at the boundary, Trans. Amer.
Math. Soc., vol. 68 (1950), pp. 47-54.

3. L. CARLESON, On the existence of boundary values for harmonic functions in several
variables, Ark. Mat., vol. 4 (1961), pp. 393-399.

4. J. L. DooB, Conditional Brownian motion and boundary limits of harmonic functions,
Bull. Soc. Math. France, vol. 85 (1957), pp. 431-458.

5. ,A relative limit theoremfor parabolicfunctions, Trans. Second Prague Conference
on Information Theory, Publishing House of the Czechoslovak Academy of Sci-
ences, Prague, 1960.

6.,Relative limit theorems in analysis, J. Analyse Math., vol. 8 (1960/61), pp. 289-306.
7. , A book on potential theory, J. Differential Equations, vol. 43 (1982), pp. 204-

234.
8. H. FLLMER, Feine Topologie am Martinrand eines Standard Prozesses, Z. Wahrschein-

lichkeitstheorie und Verw. Gebiete, vol. 12 (1969), pp. 127-144.
9. R. KAUFMAN and J.-M. Wt, Parabolic potential theory, to appear.



CONVERGENCE FOR HELMHOLTZ AND HEAT EQUATIONS 93

10. A. KORANYI and J. C. TAYLOR, Fine convergence and admissible convergence for sym-
metric spaces of rank one, Trans. Amer. Math. Soc., vol. 263 (1981), pp. 169-181.

11. J. T. KEMPER, Temperatures in several variables: kernel functions representations and
parabolic boundary values, Trans. Amer. Math. Soc., vol. 167 (1972), pp. 243-262.

12. O. LINDEN, Fatou theorems for the eigenfunctions of the Laplace-Beltrami operator,
Thesis, Yeshiva University, 1977.

13. J. MOSER, A Harnack inequality for parabolic differential equations, Comm. Pure Appl.
Math., vol. XVII (1964), pp. 101-134.

14. L. NAiM, Sur le rle de la frontidre de R. S. Martin dans la thdorie du potentiel, Ann.
Inst. Fourier, vol. 7 (1957), pp. 183-281.

15. D. SIBONY, Thdordme de limites fines et probldme de Dirichlet, Ann. Inst. Fourier, vol.
18 (1968), pp. 121-134.

16. E. M. STEIN and G. WEISS, Introduction to Fourier Analysis on Euclidean Spaces, Prince-
ton University Press, Princeton, N.J., 1971.

17. J. C. TAYLOR, An elementary proof of the theorem ofFatou-Nai’m-Doob, Canadian Math.
Soc. Conference Proc., vol. l, Harmonic Analysis, Amer. Math. Soc., Providence,
R.I., 1981, pp. 153-163.

18. G. N. WATSON, A treatise on Bessel functions, 2nd. ed., Cambridge University Press,
Cambridge, 1966.

19. D. V. WIDDER, The heat equation, Academic Press, New York, 1975.
20. A. ZYGMUND, Trigonometric series, vols. I, II, 2nd. rev. ed., Cambridge University Press,

New York, 1959.

WASHINGTON UNIVERSITY
ST. LOUIS, MISSOURI

MCGILL UNIVERSITY
MONTREAL, QUEBEC, CANADA


