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ON THE NUMBER OF CHARACTERS IN A p-BLOCK OF A
p-SOLVABLE GROUP

BY

REINHARD KNRR

In [3], R. Brauer conjectured that the number k(B) of ordinary irreducible
characters of a finite group G in a p-block B is bounded by the order IDI
of a defect group D of B. It is fairly easy to show that k(B) < IDIE, even
better, Brauer and Feit [4] showed k(B) < 1/4 IDI + 1.
The conjecture has been proved under some very specific assumptions

on D. If D is cyclic, it follows from Brauer-Dade theory [2], [6].
If D is elementary abelian of order 8, it is true as shown by Landrock

in [12], which also contains a review of what little is known in general.
In case of p-solvable groups, Nagao [14] used the method of Fong [8]

to reduce the problem to the following question:
Let V be an elementary abelian p-group on which a p’-group G acts

faithfully and irreducibly. Is it then true that the number of conjugacy
classes of the semidirect product GV is bounded by the order of V?

This sounds very innocent; however, an affirmative answer would give
information on all faithful (and irreducible) representations of all finite groups
over nearly all finite fieldsxcluding only those with a characteristic dividing
the group order.
The aim of this paper is to develop some ideas how to tackle the problem
( 1-4). A key role is played by a generalized character 5 of G which
measures how far an element g G is from acting trivially on V. It turns
out that we need information on 5 only for a--possibly very small--subgroup
of G, namely the centraliser of an arbitrary element v V.
As an application, it is shown that the answer to the above question is

yes, if G is a supersolvable group ( 6-7). Also, some consequences for
more general classes of finite groups (notjust semidirect products) are given.
More specifically, Brauer’s conjecture holds for p-blocks of solvable groups
with a supersolvable p’-Hall group (Theorem 7.4).
The result of 5 gives a fairly general criterion for an irreducible module

to stay irreducible when restricted to the centraliser of an abelian normal
subgroup.
The main part of this work was done during a stay at the University of

Illinois in Urbana and Chicago. I would like to thank the mathematicians
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there, in particular E. C. Dade and Paul Fong for their hospitality. My
thanks go to the Deutsche Forschungsgemeinschaft as well, whose support
made this work possible.

1. Two Results on Characters

1.1 PROPOSITION Let X be a generalized character of G and let z
-i%1 x(gi) where the gi run over a set of representatives of the conjugacy
classes of G:

(i) z is rational integer.
(ii) If z O, then zX

-1 is a generalized character of G.
(iii) Assume 0 z is relatively prime to IGI. If is a generalized

character of G such that x(g)-l(g) is an algebraic integer for all
g G, then X- is a generalized character.

Proof. (i) Consider the vector space of class functions on G. Multi-
plication with X is an endomorphism X* of this space and z det X* as is
seen by taking the characteristic function of the conjugacy classes as a
basis. On the other hand, we may take the irreducible characters of G as
a basis. Let M be the matrix of X* with respect to this basis, so M (m)
where m (trX, z) Z for all tr, z Irr G. Hence z det X* det
MZ.

(ii) Let zx-; clearly this is a well defined class function. Set N
(n) where n (o’, -). Clearly NM zE, so N zM- adj M

has entries in Z. Hence (p, -) Z for all z Irr G and is a generalized
character.

(iii) Again X- is a well defined class function, so we have to show
(X-k, z) Z for all z Irr G. Pick a, b Z such that az + b
Then

(X- ld/, ’) a(zx -’b, r) + blGl(x-, z)

a(zx -lb, z) + b X- (g)d/(g)-
g

is an algebraic integer: X-l(g)(g) is integral by assumption, z(g) is integral
as character value and (zx-, z) Z by (ii). At the same time (X-, z)

z-(zx-, z) Q, hence (X-, z) Z.

1.2 Remark. In (iii), the condition (z, IGI) is essential" Let 1 and
h be the irreducible characters of C2. Let X 2 1 and 3 1 + h.
Then X-(g)O(g) Z for g C2, but X- is not a generalized character.
The condition that X-l(g)k(g) is an algebraic integer is clearly necessary.

1.3 DEFINITION. Let H < G and X a class function of H. For g G,
let G t3 Hx(g) an H-(g) double coset decomposition. For each i, let
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min{nlxig"xi- H}

I(xigxi-’)" (xigxi-’) fq HI
and define X(R)(g) H X(xg"’xT).

By the next lemma, X X(R) is a map from the class functions of H into
the class functions of G. This map is called tensor induction.

1.4 LEMMA X
(R) is a well defined class function of G.

Proof. Let {y} be another set of double coset representatives. Then y
hxai for h H and ai (g), so

yigny ’ Hxgxihixiaig ai x- hi-
Since X is a class function on H, the value of X(R)(g) does not depend on
the choice of the x’s.
Now let g G be conjugate to g, say g gY for y G. Then

G Gy 0 Hxi(g)y Hxiyy- (g)y (9 Hxiy(g),

so {xy) is a set of H-(g) double coset representatives. Since

[nxiy(g)l Inxi(g)[,

the ni s are the same for g and g Now n, - nix-Ixiyg (xiY) xig for all i,
so X(R)(g) X(R)(g) and X

(R) is a class function.
The next result shows what one might expect"

1.5

(i)
(ii)

(iii)

LEMMA. Let U, H < G and X, be class functions on H.

(Transitivity) If H < U < G, then (X. v)(R) X(R).
(Mackey Decomposition) Let G U HgiU be a double coset
decomposition. Then (X(R))v Hi (Xt,,nv) ( U.
(Multiplicativity) (Xtk)(R) X(R)(R).

Proof. (i) Let G ti Uy(g) be a U-(g) double coset decomposition;
let n IuI-’luy,(g>l and u ygn’y-1. Now let U t Hv(ui) be an H-
(u) double coset decompo.sition, and set m I/-/]-lHo,(u)l. It is straight-
forward to check that G U,Hvy(g) is an H-(g) double coset decomposition.
Moreover,

IHl-’tHvy(g)l nimij

and
_nimql’,,

VijYig ,vij.Yi Vij UpVOij
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The assertion follows.
(ii) Take u Uandlet U 2 (H Q U)Yu(u be an (H’ U)-(u)

double coset decomposition. Then G U,,,j Hgiyu(u is a double coset
decomposition,

IHI llHgiyu(u)l IHg f"l U] II(Hg’ fq U)yu (u) =" nij

and
nij)-- 1).

Hence the assertion.
(iii) Trivial.

Addition and tensor induction are far from being nicely connected. The
next lemma studies the simplest fion-trivial case. We need some notation"
Let H <1 G be a normal subgroup of prime index r. Then G acts on f
{Hglg G} and therefore also on the power set f. Since G is transitive
on f, there are precisely two fixed points in I (namely 0 and 12), so the
2 2 non-trivial subsets form orbits.of length r under G. Let/j C_ f be
representatives for these orbits, i.e., t.J I f\{), }. Now let X and
be class functions of H. For each I C_ f, define

H xHo , ,
where X X

g if to Hg. Let z. With this notation:

1.6

(i)
(ii)

LEMMA. Let H < G and IG’HI r a prime.

(X + )(R)o= X(R)o + d(R)o + ,j for class functions X, of H.
(CIH)(R) alo + r-(Cr a)lHfor a C a constant.

Proof. (i) Let g G\H. Then G H(g) and [(g)" (g) C H r, so

(x + ,)(R)(g) (x + )(g9 x(g) + O(gr) x(R)(g) + (R)(g).
Since (g) 0 for all j, the equality holds on G\H. Since H is normal
in G, it follows from Lemma 1.5 (ii) that

[(x + 0)(R)], r] (x + o) , ,. + + ,,.
toEf IEPf j IEI

Since

and
g.[G H] g.[G H] 11

,. [-[ x (x(R))., o ((R))H,

the equality also holds on H.
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(ii) We have

and

Hence the assertion.

a ifg G\H(al/)(R)(g)
o if g H

l(g)= { ifgG\HifgH.

1.7 Remark. If R is a subring of C and a R, then, in general,
r-(a a) will not belong to R. Therefore tensor induction of an R-
generalized character does not always yield an R-generalized character.
For R Z, however, we have:

1.8

(i)
(ii)

PROPOSITION. Let H be a subgroup of G.

If X is a character of H, then X
(R) is a character of G.

If y is a generalized character of H, then y(R)a is a generalized
character of G.

Proof. (i) This is well known (see [1] for instance).
(ii) By Brauer’s characterization of characters, it is enough to show

(y(R))e is a generalized character for each elementary subgroup E of G.
Since, by Lemma 1.5 (ii),

(T(R)G) H (T,},n)(R) for G 0/-/g,E,

it is enough to show that y(R)e is a generalized character if y is a generalized
character of a subgroup U of the elementary group E. We proceed by
induction on IE: UI. If E U, there is nothing to show. If U < U < E,
then U is elementary and U U[, [E UI[ < IE" UI, so by induction
y(R)t and then also (y(R)t:)(R)e are generalized characters. In view of Lemma
1.5 (i), this is what we want.

We may therefore assume that U is maximal in E. Since E is nilpotent,
this means U <1 E and IE" UI r is a prime. Let ,q be characters of U
such that X q Y. Then Lemma 1.6 (i) tells us that

v [x + x + +
J

where, of course, in the definition of the g’s, we have to replace
In any case, the g are---up to a sign--products of characters of U, so
E/py is a generalized character of E. By (i), X

(R)e and O(R)e are characters,
and
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( l/t)(R)E [( 1u)](R)E

(-- 1u)(R)Eb(R)E (by Lemma 1.5 (iii))

{-- 1E + r-[( 1) + 1]lt}t(R)E (by Lemma 1.6 (ii))

is a generalized character of E since r I(-1) + 1.

1.9 Remark (i) If Y and are class functions of a group
G, we say T < if for all g G, the values Y(g), (g) and (g) Y(g)
are non-negative real numbers. If Y are class functions of H G, then

(ii) For and 8 as above and an ideal of the ring I of algebraic integers
inC, wesay 8modif(g) 8(g) modforallg6 G. If8
mod are class functions of H G whose values are algebraic integers,
then T@ @ mod (and the values of T@, @ are algebraic integers).

2. Reduction to Co(v)

2.1 Notation. We fix a prime p and denote by F a finite field of char-
acteristic p, by F0 its prime field GF(p) and by G a finite group with order
prime to p. If V is a finite-dimensional FG-module, then r r(G, V)
denotes the permutation Character of G on V, i.e., r(g) ICv(g)l. Observe
that 7r(g) 0 for all g G; in fact, r(g) is always a power of p which
divides IVI. Therefore zr-llVI is a generalized character of G by Proposition
1.1. We call this generalized character--which plays a central role in the
rest of this paper--- (G, V). Obviously (g) 1 iff zr(g) IV iff g

Ker(G on V); otherwise, (g) p" for some n n(g) > 0. Since G
acts on V, we may form the semidirect product GV which is a finite group.
We try to bound k(GV), where k(H) is the number of conjugacy classes
of the group H. The reason why is important is the following result.

2.2 THEOREM. Assume 2.1 and suppose there is a v V such that
C C(v) satisfies:

(*) if Y is a generalized character of C such that T(1) 0 mod p, then
(T Y)c > k(C).

Then k(GV) IVI.
Proof. We distinguish two cases: (i) v and (ii) v 1. We first treat

the easier case, v 1.

(i) Here C G. Ifg G and u V, then G g" u-gu g(u-)Su
iff (u-)u 1 iff u Cv(g), since G and V intersect trivially. This implies
gV tq G g so there are precisely k(G) conjugacy classes of GV which
intersect G non-trivially. 5v 0 on all other conjugacy classes, whereas
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1

1

uV

1 E
uCv(gh)

(gh)

Thus, if {xi} is a set of representatives of the conjugacy classes of GV, then

k(G)lVl

zIrr GV

z.Irr GV

,rIrr GV

(’r6v, "r)v (by the orthogonality relations)

(z, z) (by Frobenius reciprocity)

k(G) (by (*), since -(1)11GI by It6’s theorem)

k(GV)k(G)

Dividing by k(G) gives the desired result.
(ii) Now assume v 1. Let A be the subgroup of V generated by v.

Then IAI p and C(a) Cforall a A. PutN N(A); then
C < N and N/C operates fixpoint freely on A, in particular IN: Clip 1.
The direct product C A is a subgroup of GV. We will define a generalized
character on C A and imitate the proof given in case (i) using instead
of 5. We first prove the following result.

Let {cil 1, k(C)} be a set of representatives for the C-conjugacy
classes of C and let {aj IJ 1, IN’Cl-(p 1)} be a set of representatives
for the N-conjugacy classes of A\ 1. Then {caj} is a set of representatives
for the conjugacy classes of GV which intersect C (A\ 1) non-trivially.
In particular, there are k(C)lN’Cl-(p 1) such classes.

Proof. Let ca CA, a 1. Then there is n Nandj such that
a aj. Since c C, there exist d C and such that C

nd
Ci. Then

(ca)nd d
ciaj On the other hand, if (ciaj)gu ca for some g G,ciaj

u V, then c cr and ajg.u as since C and A are relatively prime and
commute with each other.
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Now A a a" a implies g N since (a) A. But thenj s
and g C. Since c G implies u Cv(c), this means c c c,
sor i.

From this proof, we also see that for c C, 1 a A, g G and u
V the following holds: (ca)g C A iff g N and u Cv(cg).
Now define on C x A by 6c lA PA), where pa is the regular
character of A.
So

fp(c) if a
(ca ) ifa 1.

Therefore v vanishes on all conjugacy classes of GV which intersect
C x (Al) trivially, whereasforc C, a A,

aV(ca ) [C x A [(ca)g]

uV

ICIp (cgag)
gN

uCcg)

ICIp P(cg)(cg

Ic. Ivl

IN:CIIVI,
Thus, if {x} is again a set of representatives for the conjugacy classes of
GV, then

(p- 1)k(C)lVl [k(C)lN’Cl-’- 1)][Ig’CllVl]
.V(x)

zI GV

1)k(C) (seebelow)
zI GV

(GV)(p 1)(C)

and, cancelling 1)k(C), the assertion follows.
So it remains to show (r, r)CA 1)k(C) for each ieducible character
of GV. Since C x A is a direct product, we can write



THE NUMBER OF CHARACTERS IN A p-BLOCK 189

IcxA x x x

where h runs through A Irr A (observe IAI p) and - is a character
ofCorz 0, so

1 c z(ca)q(ca)’(ca)(, )cA If x AI
aA

aA

cC

Since

we have

h(a)/x(a) { p- ifh =/z

l#aff.A --1 if h :/:

("I"91"1, 7")C A

for some arbitrary ordering < on A. By (*), we are done if there are at
least p 1 pairs h </z with O’x z.)(1) 0 mod p. If

then

zx(1) z.(1) mod p for all X,

"r(1) ] ’rx(1) -= 0 mod p,

contradicting It6’s theorem.
So let A {h zx(1) -= z(1) mod p} and A2 A\A. Then A1, A2
and IAI + IA21 P. Moreover, we may choose the ordering such that
h A, and/ A2 implies h < /. Hence there are at least IAIIA21 pairs
h < / with 0"x z,)(1) 0 mod p.
Now

0 < (IA11 1)(IAI )

IA,] IAzl- IA, I- IA21 /

IA, A21 (p 1),

so IAIIAzl p and we are done.
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In the next two sections, we seek conditions which guarantee (*).

3. (G, V) for abelian G

The following will be used throughout this paragraph except for the last
result:

3.1 Notation. G is a finite abelian group and U, N {1, n}
are subgroups of G. Let A be the group of irreducible characters of G and
A lrr(G/U), regarded as characters of G, so A is a subgroup of A for
each N. If I C_ N, then we set

U U < G and A= IA<A.
il il

We form At IIz A, the direct product. If J C_ I and a At, we set
a IIj a(j), so c A, and a -> at is an epimorphism from At onto
At. Again, for a At and J C_ I, we define cd A by

a(i) for l\Jcd(i) a(i)- foriJ.

Finally, we define two kinds of generalized characters of G: For a At,
let y, 1-IiI (1G o[(i)). For each N, set

"0 ([G’UI + 1)1 1, and
iN

3.2 LEMMA. Fix h A and I C_ N. Then the Boolean group B (I)
operates on hA1 x At by [tz, or] [txoQ, ot]. Furthermore:

(i) If [Iz, fl] [X, a], then/zya {_Xy,,}.
(ii) [C[X, a]l-X),,, is a generalized character of G for all a At.
(iii) Let X be a generalized character of G and a At. Then

)22 -I,I (X /-*’)’a
[,,](,,]

is a non-negative integer. It is positive if (X, hy) O.

Proof. Clearly a At and a At for any J C_ I, a At, so

[/z,a]hAt xAt if [/z,a]hAt xAt.
For J, K B, let J $ K (J t3 K)\(J tq K). It is well-known that (B,
-i-) is an elementary abelian 2-group. Moreover

(ot)x a-l and a(a)x a.r,

so I/z, a] [/, a] defines an action of B.

(i) Suppose [/z,/3] [X, a] [ha, a]. Then
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Xa(j) H(1 (j)-’) (1 a(i))
jJ jJ ilJ

(a(j)- 1) (1 a(j))
jJ ilJ

(-1)VIal(1 (j)) (1 -(i))
jY ilNJ

(-

(ii) Let C C[X,]. IfK C, then [X,] [X,] [X,],
so I and . For any J B, therefore , () .
Now, let B 0, C J be a coset decomposition. Then

T. (1 (i))
il

KC

KC

since Ig 4 J,I Igl + lJ, m 2.
If IKI 0 mod 2 for all K
C such that IKI 1 rood 2, then the K’s of even cardinality form a subgroup
of index 2 in C, so 2ec (- 1)I! 0. In either case, Icl-% is a generNized
character and

(iii) By (i), o X for [, B] IX, ], so all summands in the
sum are equal. If C C[, ], then there are IB" cl 21c1- summands,
hence

(x,

which is an integer by (ii). The other asseions are obvious.

3.3 LEMMA.

Proof. Induction on n. If n 0, then the left hand side is le as product
over the empty set, whereas o the right, there is only one I, namely I, A contains precisely one element, namely the empty map a, and

le, again as product over the empty index set.
Now let n > 0, N’ N\\{n} and ’ IIieN, 9]i so ’0’n and we have
the result for r/’ by induction. We rewrite
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,, (1 h)(l
kAn

2|lAnl-

2JIG" W.l
kAn

2"q.- 21o,

so . lo + 1/2EXA. (lo- K)(lo- h). Therefore

IC_N’

+
21cN

2 -I‘1 y (10 h)(10 h)
aCA1 hAn

IN’ aA1 IN’ aAlo{n}

since {T(1G X)]a a, X A,} {Yalfl au{,}}. This proves the
lemma.

3.4 COROLLARY. Let X be a virtual character of G. Then

(X’O, X) ] 2-111 (X, h%).
IG_N [h,a]A AI

Proof. Clearly (Xg/aa, X) EhA (X, hYa)2, so the result follows from
the preceding lemma.

3.5 PROPOSITION. Let the notation be as before and assume in addition
that UN 1. Then (Xq, X) > ]GI for every virtual character X 0 of G.

Proof. For each h A, let

tx {I C_ N there exists/ A such that (X, h) 4- 0}.

Since X 4 0, there is v A such that

0 (X, 1)) (X, h[k-ll)]) and h-v A AN
Since Ker AN Ker A UN 1), which shows that N tx, so, in
particular, = . Now, in each choose an element of minimal cardinality;
call this element m(h). So we have a map rn A ---> (N) such that, for
all h A,

(i) there exists/z Am(x) with (X, X/z) 0, and
(ii) If J c m(h), then (X, h/z) 0 for all As.

We partition A 0c_u m-(I) where m-(I) {X A m(X) I} is the
inverse image of I under m.
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Fix I C_ N and a coset qAl

_
A.

Claim. Im-(I) qOAll < 2 -Ill E[tA,ot]oAIXA (X, .,Yo)2

Proof of claim. There is nothing to show if m-l(/) fq AI , SO

assume m-l(/) N AI {o’1, po’t}, the o’s AI all different. By
construction, m(tr) I, so if J C/ I and fl Aj, then (X, Ctrfl) 0.
For a AI, we have y Esi (-1)lJIcj, so

(X, ,o’,’y,) 1)lJl(X, #o’,j) 1)[II(x O’sOli).
jC_l

Now, a -> OI is an epimorphism AI --> AI and by definition of I, there is
a [3 AI such that (X, ,o’d3) 0. Moreover, we can choose a A such
that (Ols)I O’f-lo’l At. Let fl a,fl A; then [o-,/3] e A X AI
for s 1, t. We will show that (i) (X, er,y,) # 0 for all s and (ii) the
[pr,,fl,]’s belong to different orbits under the action of B (I) (see
Lemma 3.2). The claim will then follow from (iii) of the lemma.

(i) As we have seen before,

(X O’s’)lfls) I)[I[(x, O’s(s )i)

(-- 1)III(x
(-- 1)I/I(x 9o’1i)

#0.
(ii) Let J C_ I such that for 1 < s, k < t,

[r,, ,] [r,/] [()j, (#)J].
Then

(1) ,,8 ,8, (fl)J aflJ,
(2) o’, rk(,)j r,(a,)j#j.

From (1), we get

so r, r,[(a,)j]:(#jy.

O’- 10"1i (s)ll

(s)l

(OlJkJ)l

(OlJk)l(J)l
(Olk)l[(lk)j]-2l(j) -2

o’lo’l[(Olk)j]-2fi(fj) -2,
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Comparing with (2), we get (Olk)jfl., I, SO O’s Crk and s k.
Now it is easy to prove the proposition:

(X/, X) 2-gl (X,)W)2 (by Corollary 3.4)
IN [k,a]A xA/r

E E 2-1’1 E (X,%)2
IN [A:A] [/,]aAxA

> [m-(1) pA,[ (by the claim)
IN aE[A:A/r]

0 m-(I) fl

X [m-l(1)[
IN

IGI.
The application to the problem of bounding the class number is contained
in the next two results. We use again the notation introduced in 2.

3.6 PROPOSITION. Let G be an abelian p’-group and V a faithful FG-
module. Then (X6, X) > [G[ for each virtual character X # 0 ofG (ofcourse

(G, V)).

Proof. Let V X% ) W be a decomposition into irreducible FG-
modules and put 6(G, W). Since r(g) tCv(g)l II ICw,(g)] for all
g G and IVt II ]WI, we have II . Now Cw,(g) is an FG-
submodule of W since G is abelian, so by the irreducibility of W either
Cw,(g) W which means g Ker(G on W) (= U for short) or
Cw,(g) 0. This implies

1 ifg U6’(g) IW ifgU,
SO

Since

U.

is a generalized character and (lt,, lo) 1, this implies in particular
w, say w, tlG" G[ / 1. Therefore

(IG’u,I + 1)1o- lg, + (h- 1)[IG-u, II- lt,l

(IG: UI + 1)1 1
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since t > 1 and [G" U[lo 1, only takes non-negative real values. This
implies II > Hr/ r/, so (X, ) > (Xr/, X) > IGI by Proposition
3.5 since Us qesU Ker(G on V) 1.
We now drop the assumption that G is abelian.

3.7 THEOREM. Let G be a p’-group and V a faithful FG-module. If
there exists v V such that C(v) is abelian, then k(GV) < IvI.

Proof. Immediate from Theorem 2.2 and Proposition 3.6.

4. Contains a Square

4.1 DEFINITION. Let be a Z-lattice in C and M an ideal of I (the ring
of algebraic integers in C). Assume r to be a generalized character of G
with non-negative real values. We say that r contains an .-square with
respect to M, if there is an -generalized character v of G such that

(i) > vand
(ii) =-vmodM

(see Remark 1.9).

4.2 Notation. In our applications, M will always be the same ideal,
namely M V. We therefore drop the reference to M and say simply
that r contains an .-square. The most important case is Le Z; we then
shorten notation further and say that r contains a square. If convenient,
we will also say that r contains the square of v. The assumption on in
the next proposition is certainly satisfied for Z.

4.3 PROPOSITION. Let q be a generalized character of G with
r(1) 0 mod p but o(g) sg for all 1 g G. Let . be a Z-lattice in
C such that Ixl > 1 for all 0 x .. If contains an .-square, then
(/, /) > k(G) for each generalized character 3t of G with /(1) 0 mod
p.

Proof. First, observe that the assumption on the values of r/forces G
to be a p’-group:

(,/, 1) Z and IGI( , 1) r/(g) r/(1) @ 0 mod M,
g

so p *IGI,

Now let y be as in the assumption and v as in Definition 4.1. Then

,lrr G

Since v is an .’-generalized character and . is a Z-lattice, yv is an .Y-
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generalized character, so (yv, ) . In view of the assumption on , it
is therefore enough to show that (yz,, ) 0 for all - Irr G. We have

IGI(  ,
gG

y(g)(gl(g) mod
gG

=- /(1)(1)-(1) mod d

0 mod d,

since 3/(1)r/(1)(1) Z is not divisible by p (recall z(1) IGI).
In view of Theorem 2.2 and the last proposition, it is of interest to give

sufficient conditions for the existence of an element v V (an FG-module)
such that (C(v), V) contains a square. It is fairly easy to show that it is
usually enough to consider a primitive module V. The induction step will
be provided by Proposition 4.6.

4.4 Notation. Let H < G be a subgroup, G a p’-group. Then we write

r(G:H) or(G, Fo ()FouFoG) and (G:H) (G, Fo ()toi-iFoG),

F0 the trivial FoH-module; i.e., we consider the permutation module (over
the prime field) of G on the cosets of H in G.

4.5 PROPOSITION. Let H be a subgroup of the p’-group G and let W
be an FH-module. Then

(G, W (FIFG) 6(H, W)(R) 6(G’H) where t dimF0W.

Proof. Takex Gand writeX (x). Let G t]i___l sHgiXbe a
double coset decomposition, n IHI-lItgXI and put V W @euFG. By
Mackey Decomposition and Frobenius Reciprocity,

dim Cv(x) dime Homex(F, Vex)

dimFHomex(F,i
dimF HOmF(xn,(F, Wg’)

dimeCw(gixng: 1),

SO

,n’(G, V)(x) l-I ’rt’(H, W)(gixn’g ’) "rr(H, W)(R)C(x),

i.e., r(G, V) r(H, W)(R). On the other hand,
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[Tr(H, W)8(H, W)](R)V(x) Iwt  (x) Iwl pSt= [,rr(G.H)(x)]t,

i.e., [Tr(H, W)8(H, W)](R)= (G’H)t. Therefore

’(G, V) 8(H, W)@ 8(G’ H)’ [(H, W) 8 (H, W)]@ 8(G"H)

[(G’H) 8(G’H)]’

pl:Hit

(G, V)8(G, V).
The assertion follows.

4.6 PROPOSITION. Let W be an FH-module, H a subgroup of the p’-
group G and put V W @FH FG. Assume dimt0(W) > 1. If there exists
w W such that 8(CH(W), W) contains a square, then there exists v V
such that 8(C6(v), V) contains a square.

Proof. Let G Oi.I Hgi be a coset decomposition and v iw Q gi.

Let C Cn(w) and D C(v); let (G, V), (H, W) and Y
(G’H). By the previous proposition, (R)yt, where t dimFoW > 1.
Moreover, by assumption there exists a generalized character v of C such
that /[c > v and [c v mod M. Let G @es HgjD be a double coset
decomposition, J c_ I. Take x HgJ 71 D, say x hgJ. Looking at j-th
component of Eiw @ gi v vx Eiw @ gihgJ, we see that wh w,
so h C and x cgJ; hence Hg 71 D < Cg. Now let vj vgJno and

IIjesv. By Proposition 1.8 (ii), is a generalized character of D.
Moreover

I-I(vjg)(R)o (since tensor induction is multiplicative
J and commutes with taking the complex

conjugate)

< 1-[(qg[HgjnO)(R) (by Remark 1.9 (i))
J

r/(R)6[o (by Lemma 1.5 (ii)),

and v qn.no mod M, so

,’ =_ (n,.I...)(R)’ mod at (by Remark 1.9 (ii))

and
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This means that (R)[o contains the square of g. Clearly yt contains the
square of y, so 6(D, V) contains the square of

4.7 COROLLARY. Let W be an FH-module, H a subgroup of the p’-
group G. Assume that (H, W) contains a square and that dime0W > 1.
Then (G, W (enFG) contains a square.

Proof. This follows from the proof of the preceding proposition, putting
V=W=0.

The last two results are used as induction steps. We also need "absolute"
results for two special modules. The first one is the group algebra itself (G
a p’-group):

4.8 LEMMA.
F0.

Either (G, FG) contains a square or [GI 2 and F

Proof. If F > F0, then 5(G, FG) contains the square of (G, FOG), so
we assume F F0.
By Corollary 4.7, it is enough to find a subgroup H such that (H,
FH) contains a square, since FG FH (R)rnFG. The case G being
trivial, we may choose a subgroup H of order r, where r is either an odd
prime or r 4. Let

k= (r- 1) ifrisodd

1 ifr 4,

and observe that (pk)2 mod r since p and r are relatively prime. Therefore
pk _= e +/- 1 mod r.
Define v epklH r-(epk 1)/gH where tgn denotes the regular character
of H. Then v is a generalized character of H and if h H, then

1 ifhv(h ep ifh 1.

Since (h) pt-on-q, it is obvious that v -= mod and easy to check
that v v2 < (in fact, we have equality unless H C). Therefore
contains the square of v.
The second result in this context concerns permutation modules of

2-groups. Let p be an odd prime, t 1/2(1 + iVY) c and .
Z Zct. With this notation:

4.9 PROPOSITION. Let G be a 2-gro.up acting on a finite set f. Then
5(G, Ff) contains an -square.
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Proof. It is enough to consider the cases Ill[ 2 (n 0, 1, ...) and
G a Sylow-2-subgroup of Sa, since the assertion will then hold for any
subgroup as well (observe that 6 (G, FI) 8(G, FII’) if II’ _D 1 and
G acts trivially on 1’\
We set r sign, so o- is a linear character of G, and proceed by induction
on n to produce a generalized character X such that v x[lo + a(r
lo)] has the following two properties:

(i) v
(ii) u-=SmodM

(the induction will show that takes values in Z). Since v is clearly an
generalized character, this will prove the proposition.
It is easy to check that X Io will do for n 0, 1.
So assume n > 1. The structure of G is then easily described: say

fl {1, 2},

and let fl {1, 2"-} and 1 {2- + 1, 2}, so 1 r, 0 f12.
Let H be a Sylow-2-subgroup of Sn, and s the product of the transpositions
(i,i + 2-) for 1 ,2"-. Then H2 H is a Sylow-2-subgroup of
Sa and a look at the orders shows that G is---up to conjugation in
the semidirect product (H x H2)(s). We put H H x H2, so

Ffl F (vnFG,

where of course H acts on r, with kernel H:. By induction, there is a
(integral-valued) generalized character X of H,--and therefore of H--such
that

v x[ln + a(r In)]

satisfies (i) and (ii) with replaced by $ $(H, FI). It should be noted
that o-, is the signum function of H not on 12 but on 1, i.e., r(hh)
signn,(h) for h Hi.
We need some notation: let o be the linear character of G with Kero

H, i.e., In lo + 0, and let/z r; then clearly oft . Since n >
1, the element s belongs to the alternating group; using this and the definition
of tensor induction, it is straightforward to check r r. Observe that
r # o since H contains transpositions. Furthermore, rn rr], so rtz

(r[nr) () /z. This implies that (/z, r) (ft, tzr)
and we may replace o- in the last equations by lo, o or oo,. Since tz(1)
4, it follows that/z p lo + o + o- + oo-. Finally p 40, tzp
4/z and p po pr. All characters introduced here are integral-valued.
Write t dim(Ffl0 2- and q pt; observe that a 1/2(1 + V) is
an integer. We define three small integers b, b, b depending on the
congruency class of p mod 8:
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(1, 1, 1) ifp -= mod 8
1, 2, 0) ifp 3 mod 8

(bl, bE, b3) 1, 1, 1) ifp 5 mod 8
1, 0, 0) ifp 7 mod 8.

Set b4 1/2(p + 1)(bE + b3 1) Z. Then one checks that

bE + b4 0 mod 4 and b3 + b4 0 mod 2.

Therefore

tO b 1 + a(o 1) (b2 + b4)p + (b3 + b4)/

is a generalized character with values in Z.

We claim that X Xq has the desired properties.
(i) Put v X[I + c(r 1)]. We have to show that v . Define

1
t01 1 (p + 1)O + c(o- 1) + (p + 1)/,

bl lo + a(p 1) b2p + -b3t.
Then (1) b1(1 bE + b3) 1, by choice of the bi’s.
An application of Lemma 1.6 together with 1/2(a O) --(p + 1) will

show that [1H + a(O- 1H)](R), and by easy calculations one finds
q/ q[l + a(tr- 1)] and

/ /2 1 + 2(a2 a)(lo- o) + ](b2
q+l

|G
2

2 1

( H)’.

To summarize,

+ b32 2bz)p + b3(1 b2)/

(by choice of a and b, b2, b3)

p-1 )2 P (sincep’ q)

v X[I + ct(tr- i)]

Xq[l + a(tr- 1)]

X[I. + a(- 1H)]G
(by Lemma 1.5 (iii)),
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SO

(vP)(R)V (again by Lemma 1.5 (iii) and
since tensor induction commutes
with complex conjugation)

88(G’H) (by induction)

8 (by Proposition 4.)

(ii) Since v(1) X(1) Z and (1) 8(1) (1) rood , necessarily
(1) 1. This implies

() ()v() a().

If 1 g G, then 8(g) , so it is enough to show that v(g) .
If r(g) l, then v(g) x(g) Z, so v(g) 8(g) implies that u(g). If o-(g) -1, then v(g) -iv/x(g) , since i’v/ e .

5. A Result Which Does Not Belong Here

The next result and its corollary are true for any field F with char F
p > 0 and any finite group G. The present proof is due to the referee.

5.1 PROPOSITION. Let V be an irreducible FG-module, A an abelian
normal subgroup of G and C Co(A). Assume that

(i) A N Ker(Gon V) and
(ii) all irreducible constituents of VIFC are isomorphic.

Then VIFc is irreducible.

Proof. In view of (ii), it is enough to show that V]ec is multiplicity-free.
This in turn will follow if (V @ K)lrc is multiplicity-free for K being the
algebraic closure of F. Let V be the irreducible constituents of the KG-
module V. Then the V’s are all different and algebraically conjugate (see
[16, Theorem 9.21]). If S is an irreducible constituent of VIKA, then S is a
faithful KA-module since VIeA is faithful and homogeneous by (i), (ii) and
Clifford theory. Therefore the inertia group of S in G is C and V
W (R)rcKG for any irreducible W, V,]ic. Now

dimrHom:c(Wi, (V () K)l/c) dimrHomro(Vi, V @ K) 1

by Frobenius reciprocity, and the assertion follows.

5.2 COROLLARY. Let V be a faithful primitive FG-module, A an abelian
normal subgroup of G and C Co(A). Then VIFc is irreducible.
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Proof. Use the proposition: (i) is satisfied since Ker(G on V) 1 and
(ii) is a consequence of Clifford theory since V is primitive.

The title of this section also covers the next remark. Although it will
only partly be used in the sequel, it explains where some of the complications
in the next two paragraphs come from.

5.3 Remark. Letp, rbeprimesand0< n, rn Nsuchthatp 1
r’. Then one of the following holds:

(i)
(ii)

(iii)

p 2, m 1 and r is a Mersenne prime;
r 2, n 1 and p is a Fermat prime;
r n 2andp rn 3.

Proof. Well known.

6. Lemmas on Supersolvable Groups

6.1 LEMMA. Let G be a supersolvable group.

(i) If H < G is a proper subgroup and s is the largest prime dividing
[G’HI, then there exists a subgroup G such that H < G < G and [G "HI

(ii) IfA is a maximal abelian normal subgroup of G, then C(A) A.

Proof. (i) It is well known (see [10, Satz 9.1, p. 716]) that G has a
Sylow tower

1 No<N <... <Nm G

where Ni <1 G and IN,’N,_,I for 1, rn with primes Pi such
that p > P2 > > Pm. Refining this series to a principal series gives

1 Ko<K<...<Kn G,

where the K are normal in G and IK:K_ 1 > IK/ : KI are primes. Multiply
this series with H to obtain

H KoH<KH< <KnH G.

The first term KH bigger than H has the desired property.
(ii) Clearly A < C C(A) <1 G. Suppose C >/ A; then, refining the

normal series 1 < A < C < G, we find a normal subgroup N of G with
A < N < C and IN:AI a prime, so in particular N/A cyclic. Since A <
Z(N), this implies N abelian, contradicting the maximality of A.

6.2 LEMMA. Let W be an FH-module, H a subgroup ofthe supersolvable
group G. Let K Ker(H on W) and let s be the largest prime dividing
IGI. zf v W(R)  FG is faithful and irreducible, then s In:gl.
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Proof. The Sylow-s-subgroup S of G is normal [10, Satz 9.1, p. 716].
If s IG" KI, then S < K, so

S < f"l K Ker(Gon V) 1,

a contradiction.
So s IG’KI IG’IIH:KI. If s IH’KI, then there exists a subgroup U
such that H < U and IU:/-/] s by Lemma 6.1 (i). Set N tqeuH, so
N is the kernel of the permutation action of U on {Hu u U}. By a result
of Galois (see [10, Satz 3.6, p. 163]), the structure of U/N is known; in
particular s U: NI but s2 U" NI.
Let M fqeuK, so M <] U, in fact M Ker(U on W(R)mFU). Since
we have an embedding N/MC---> iIu x H/Ku and s IH:KI, it follows
that s IN’MI, so s U:MI and s2 U:MI.
Therefore there is a normal subgroup T of U such that IT:M! s (again
by [10, Satz 9.1], used for U/M); clearly T H.
Now consider V1 W(R)mFU. Choose 0 # w W and t TN,M. Then

0 w(R)t’Cv1(T) and w(R)lCv(T).
i=l

Therefore 0 </ Cry(T) </ V. But CvI(T) is an FU-submodule of V, since
T <1 U. Therefore V1 is not irreducible, hence V V (R)evFG is not
irreducible, the desired contradiction.

6.3 LEMMA. Let W be an FH-module, H a subgroup of the nilpotent
group G, and assume IF*I is not a prime power. Let V W()FnFG. If
there exists an element w W such that Cn(w) Ker(H on W), then
there exists an element v V such that C(v) Ker(G on V).

Proof. Proceeding by induction on [G’/-/], we may assume H normal
and of prime index s in G, since G is nilpotent. Let S be the Sylow-s-
subgroup of G. Then G HS, so we may choose Xl, x2, x, 6 S
such that G 0 Hx. Pick an element 1 f F* of order prime to s;
such element exists since F* is not an s-group. Let V v w (R) xt +
Xi> wf ( X for w given by the hypothesis. If g C(v), then the s-part
g, of g also belongs to C(v) since g, is a power of g. Now xg, hxyo
for suitable h 6 H since the x’s are coset representatives. In fact, the
h 6 H tq S since x, x0 and g, belong to. S. Now assume g, H. Then
(w (R) x)g, wh (R) x<) with j(1) 1. Since g, C(v), this implies Whl

wf, a contradiction, since O(hl) is a power of s, whereas 1 # o(f) is
prime to s.
Therefore g, 6 H; but the s’-part g,, of g also belongs to H since
IG:H[ s and H <1 G. Therefore g H, so
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w(R)x +  f(R)x, v

Vg

wg ( Xl + E wfxigx; ( Xi,
i>1

which implies xigx-1 CH(W) for all i. Hence

g 0 CH(W)x’ 0 Ker(H on W)x’ Ker(G on V).

We have shown that C(v) < Ker(G on V). The converse is trivial.

6.4 Remark/Notation. Let E be a finite field extension of F and F
Gal(E/F) the Galois group. There is a natural action of F on E*, and the
semidirect product FE* acts on E by e(),el) eve1(5 F, e, el E and
el 0) This action is F-linear, making E into an F(FE*)-module.

6.5 PROPOSITION [10, 3.11, p. 166]. Let W be a primitive FH-module,
H a supersolvable group. Then there exists a field extension E ofF and a
homomorphism cr H ---> FE* such that W E as FH-modules, where of
course the action ofH on E is defined via

Proof. Passing from H to H/Ker(H on W), we may assume that W is
faithful. Let A be a maximal normal subgroup Of H. Then A C6(A) by
Lemma 6.1 (ii), so WIFa is irreducible by Corollary 5.2. Therefore there
exists an FA-linear epimorphism e FA ---> W. Since FA is commutative,
ker e is a maximal ideal and E FA/Ker e is a field extension of F. We
have an FA-isomorphism o E ---> W induced by e, which we use to impose
an FH-structure on E, i.e. for e E, h H we define eh eoho-1. This
of course makes o an FH-isomorphism. Therefore it is enough to define a
homomorphism o- H ---> FE* such that eh eo’(h) for all e E and
h H. We first define a homomorphism H ---> F" The conjugation action
of H on A extends to an action as F-algebra automorphisms of H on FA.
Because W is an FH-module, annFa(W) is invariant, so we have the
induced action of H on E. Since F is fixed, H acts as a group of F-
automorphisms on E. This gives as desired. Observe that writing E e

x + for some x FA, we have ez(h) xh -t- [/. Now it is easy to
define o- if h H, then leh E*, so o-(h) ((h), leh) FE*. We
show that eh eo’(h) for all e E, h H.
Any e x + for some x FA, and for each y FA, we have ey =
xy + e(y + ) since e is FA-linear, so in particular e lex. Therefore

eh (lex)h

(leh)xh (since E is an FH-module)

(leh)(xh +
(leh)e

eo’(h).



THE NUMBER OF CHARACTERS IN A p-BLOCK 205

Since E is faithful as an FE*-module, this also implies that tr is an homo-
morphism (in fact a monomorphism).

6.6 COROLLARY. Let W be a primitive FH-module, H a supersolvable
p’-group. Let K Ker(H on W). Then one of the following holds"

(I)

(II)
(III)

dimF0(W) > 2 and there exists a w W such that (CH(w), W)
contains a square.
dimFo(W) (and H/K acts by multiplication on W Fo).
dimFo(W) 2 and H/K FA for a subgroup A of E*, acting
on W E GF(p2) as described in Remark 6.4. Furthermore
(p + 1) Ial.

Proof. By Proposition 6.5, we may assume H H/K < FE* for a
suitable field extension E of F and F Gal(E/F). If 0 e E, then
C Ce) < Cre.(e) re* Cre.(1) F. The existence of a normal basis
for E (see [13]) implies E FF as FF-module, so E (FC) as FC-module
where t ICI-lrl; therefore (C, E) 8(C, FC) which contains a square
by Lemma 4.8 unless 1, F F0 and [CI 2.
So if dimFoW > 2 but (I) does not hold, then H is a subgroup of FE* for
E GF(p2), satisfying Ifn(e)l 2 for all 0 e E; so in particular
F Cre.(1) CI) < H, which implies that H F(H fq E*) is indeed
a semidirect product. To show (III), it remains to prove the assertion on
the order of A H f3 E*.
Let o" E* E* by defined by o(e) e1-p. Clearly o is a group endomorphism
and Ker o F*, so IIm ol p + 1. But Im p < A Take e E*,
then ICr,(e)l 2, so there exists a A with (y, a) Ce), where

:/: ), F. This means e e(y, a) ePa, i.e. p(e) e1-p a A.
If dimFoW 1, then clearly (II) holds.

7. Results

7.1 Remark. We are now in a position to study irreducible modules
over supersolvable p’-groups, taking Corollary 6.6---which covers the primitive
case---as a starting point. The proofs are not difficult, but there are far too
many different cases to consider to call the approach satisfactory, let alone
esthetic. The gentle and patient reader is likely to feel growing exasperation
before he or she is halfway through that lengthy struggle, a feeling warmly
shared by the author. It will turn out that the trouble is caused by the
"small" cases and the small primes dividing the group order, in particular
by 2-groups. Some indication why these cases are difficult is given by the
exceptions which appear in Lemma 4.7, Lemma 4.8 and Corollary 6.6, and
also by the number theoretic Remark 5.3. But it seems that the difficulties
are not only caused by the technicalities of the proof. Examples show that
the inequality we are trying to establish actually becomes an equality (or
is at least not far from it) for some of these small cases.
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7.2 LEMMA. Let W be an FH-module, H a subgroup ofthe supersolvable
group G such that IG:H is a power of 2. Assume there is a w W such
that D/K is a 2-group and WIFz) is a permutation module, where D
Cl(W) and K Ker(H on W). Then there is v V W such that
C/Ker(G on V) is a 2-group and VlFc is a permutation modulefor C C(v).

Proof. There is no loss in assuming Ker(G on V) 1. Let {gil I}
be a set of coset representatives of H in G and put v ;iw (R) g. Then
Hgi N C < Dg’ as is easily seen. By Mackey decomposition,

Vlc O) Wg’ ( Fl,nC) FC for some J C_ I.
iJ

By assumption, Wlfo Zr F ()FvrFD for suitable subgroups Ur < D
acting trivially on F. Together, this implies Vlvc EsF (vxsFC, the Xs <
C acting trivially on F, so Vltc is a permutation group.
It remains to show that C is a 2-group. Since, by assumption, H contains
the normal 2’-Hall subgroup of G (see [10, p. 716 Satz 9.1]), the same is
true for N fqg Hg. Therefore G/N and in particular C/C tq N are 2-
groups. If n C t3 N, then

w ( gi v vn wging-1 ( gi,

SO n (’]i Dg’. Hence there is a homomorphism

a" C t3 N --) I Dg’/

Since Ker a fq Kg’ Ker(G on V) 1, this implies that C t3 N--
hence C--is a 2-group.

7.3 PROPOSITION. Let V be a faithful irreducible FG-module, G a su-
persolvable p’-group. Then (at least) one of the following holds:

(i) There exists v V such that 8(C(v), V) contains a square.
(ii) There exists v V such that C(v) is abelian.
(iii) There exists v V such that C C(v) is a 2-group and Vltc is

a permutation module.

Proof. There exists a subgroup H of G and a primitive FH-module W
such that V W (FH FG. We treat the cases (I)-(III) given by Corollary
6.6 separately and keep the notation introduced there.

(I) By Proposition 4.6, (i) holds.
(II) Ifp 2, thenH/K 1, soG by Lemma 6.2 and (i) holds.

Assume next p odd but not a Fermat prime; so IF* is not a prime power.
As usual, denote by G’ the commutator subgroup of G. Since G is super-
solvable, G’ is nilpotent [10, p. 716 Satz 9.1]. By Mackey decomposition,

Via. ., ( Wg’ (r(l,,u’) FG’, where G 0 HgiG’.
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Since W’ is a one-dimensional F(Hgi tl G’)-module, there exists an element
w W’ such that Cn,,o,(w) Ker(H’fq G’ on W’)--in fact, every
element 0 will do. By Lemma 6.3 then, there exists an element

v Vi Wg’ (R)eH,,n’)FG’

such that C,(v) Ker(G’ on V). Setting v Yv, it follows that

c,(v) C,(v,)

I"1 Ker(G’ on V) (since V @ V)

Ker(G’ on V)

1 (since V is faithful)

Therefore C(v) fq G’ 1, i.e., there exists an embedding C(v)
GIG’, which is an abelian group. Hence (ii) holds. Now assume p a Fermat
prime. Then IF*l is a power of 2, so H/K is a 2-group; by Lemma 6.2, G
is a 2-group. Therefore the conditions of Lemma 7.2 are satisfied (with
D K) and (iii) follows.

(III) Identify W with E and H/K with FA. If [G’H[ is a power of 2,
then (iii) follows again from Lemma 7.2, since CH(le)/K F is a 2-group
and E is a permutation module over FF by the normal basis theorem.
So assume that IG:HI is not a power of 2. Since 2 Irl Ial, p must

be an odd prime. If p 3, then IE*I 8, so IH/KII 16, and G is a 2-
group by Lemma 6.2. But this contradicts the assumption on IG’HI. Hence
p > 3. Let G’ be as before and put U H f3 G’; so UK/K is a subgroup
of FA. We distinguish two cases’

(a) UK/K < A
(fl) UK/K A.

(a) This means that U acts on E by multiplication, so E is an EU-
module. Since p > 3, it follows from Remark 5.3 that IE*I is not a prime
power, so we use the same argument as in case (II) to show that (ii) holds.
In doing so, observe that

E ()FV FG’ E ()eu EG’I,
and similarly for the conjugate modules in the Mackey decomposition of
Vle,.

(fl) It is easy to check that (FA)’ Im p, where p A A is defined
by p(a) a-’. By (Ill), [A[ d(p + 1) for some dip 1. Hence
[Ker ,1 g.c.d. (IAI, p l) 2d, so there is a subgroup B < (FA)’
of order1/2(p + 1). NowH’ < Hf’I G’ U, soB < (FA)’ (H/K)’
H’K/K < UK/K U/UfqK which is nilpotent, since U is nilpotent.
Let b B by an element of prime order r. By assumption (fl), there is an
element ya UK/K, where y F. Conjugation with ya is an inner
automorphism of order 2 in UK/K, and ba bp. If bp b, then rip
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1. Since r also divides IB 1/2(p + 1), this forces r 2. On the other
hand, if bp b, then the nilpotency of UK/K implies r 2, since 7a acts
trivially on all Sylow-subgroups of UK/K except (possibly) the Sylow-2-
subgroup.
Thus we have shown that B is a 2-group. This of course implies that p
21B[ is a Mersenne prime, and that E*/F* is a 2-group.
Now let s be the largest prime dividing IG’HI. By assumption, s > 2, and
by Lemma 6.1 (i), there is a subgroup G of G such that IG’HI s. Put
V E (i FG1. We will show that 8(C(Vl), V) contains a square for
a suitable element Vl V. Once this is done, (i) will follow from Proposition
4.6. Therefore, there is no loss in assuming G G and V V, so we
drop the subscript.
Since F acts trivially on F* and E*/F* is a 2-group, it is clear that H/K
is nilpotent. Put N g Hg; then N <] G and there is a homomorphism
c" N --> HgeG X Hg/Kg. Since

Kera I") Kg= Ker(GonV) = 1,
gG

this implies that N is nilpotent, so the Sylow-2-subgroup M of N is char-
acteristic in N, hence M <1 G. The 2’-Hall group G2, is normal in G since
G is supersolvable [10, Satz 9.1] and M n G2, 1, so rn M commutes
with any element g G of odd order.
Let S be a Sylow-s-subgroup of G and choose x S\H. Then

{xi O, S 1}

is a set of H-coset representatives in G, so any element in V can be written
as Ee x for suitable e E. Let {le, e} be an F-basis of E and let

s-1
Xv le () 1 + 2i= e () and C C(v).

We claim that C n N 1. Let us first show that it is a 2-group: if n
C n N, then

le(R) 1 + e(xi= v

un

1En ( + exinx-i @ X,
0

so len le and exinx -i e for 0. Since ICI(1D/KI IC,(e)/KI
2, this forces xn2x- K for all i. Therefore

2 ei (,i)n 2 eixing-x-’ ( xi 2 ei ( xi

for all ei . E. This means n2 Ker(G on V) and shows C n N <
M.
But then any n C n N commutes with x (which is of odd order), so
ln le and e exinx- en implies n K, since {le, e} is an F-basis
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of E. The argument used above then shows n 1, thereby proving the
claim.
Now it is easy to see that 6(C, V) contains a square: by Proposition 4.5,

t$ t$(G, V) t$(H, E)(R) t$(G:H)2 > t$(G:H)2,
since 6(H, E)(R) > l. So certainly 6lc > 6(G:H)21c and it is enough to
check that 6(c) 6(G:H)(c) mod p for all c C. For c l, both characters
have value 1. In general, 6(G:H)(c)16(c), and if c - 1, then c N,
the kernel of the permutation action of G on [G:H], so 6(G:H)(c) -=
0 mod p.
This finishes the proof.

7.4 THEOREM. Let G be a p-solvable group such that a p’-Hall-group
of G is supersolvable. IfB is a p-block of G with defect d, then k(B) < pd.

Proof. We use Fong-Nagao reduction (see [8] and [14]) as presented by
Gow in [9, Theorem 1.3]. Therefore, it is enough to consider the situation
described in Proposition 7.3. In case (ii) of 7.3, we are done by Theorem
3.7. In case (iii), we know from Proposition 4.9 that 61c contains an
-square, where Z 0) Z a with a 1/2(1 + i’V/’) and p an odd prime.
If0 : x a + ba ,then

a2 + b2 + ab + (p 3)> a2 + b2 + ab > 1.

Therefore, Proposition 4.3 applies in case (iii) and clearly also in case (i);
it follows that (y6, y)c > k(C) for any generalized character y of C with
y(1) 0 mod p. So the condition of Theorem 2.2 is satisfied and the assertion
follows.
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