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ON THE NUMBER OF CHARACTERS IN A p-BLOCK OF A
p-SOLVABLE GROUP

BY

REINHARD KNORR

In [3], R. Brauer conjectured that the number k(B) of ordinary irreducible
characters of a finite group G in a p-block B is bounded by the order |D|
of a defect group D of B. It is fairly easy to show that k(B) < |Df, even
better, Brauer and Feit [4] showed k(B) < % |D|> + 1.

The conjecture has been proved under some very specific assumptions
on D. If D is cyclic, it follows from Brauer-Dade theory [2], [6].

If D is elementary abelian of order 8, it is true as shown by Landrock
in [12], which also contains a review of what little is known in general.

In case of p-solvable groups, Nagao [14] used the method of Fong [8]
to reduce the problem to the following question:

Let V be an elementary abelian p-group on which a p’-group G acts
faithfully and irreducibly. Is it then true that the number of conjugacy
classes of the semidirect product GV is bounded by the order of V?

This sounds very innocent; however, an affirmative answer would give
information on all faithful (and irreducible) representations of all finite groups
over nearly all finite fields—excluding only those with a characteristic dividing
the group order.

The aim of this paper is to develop some ideas how to tackle the problem
(88 1-4). A key role is played by a generalized character 8 of G which
measures how far an element g € G is from acting trivially on V. It turns
out that we need information on & only for a—possibly very small-—subgroup
of G, namely the centraliser of an arbitrary element v € V.

As an application, it is shown that the answer to the above question is
yes, if G is a supersolvable group (8§88 6-7). Also, some consequences for
more general classes of finite groups (not just semidirect products) are given.
More specifically, Brauer’s conjecture holds for p-blocks of solvable groups
with a supersolvable p’-Hall group (Theorem 7.4).

The result of § 5 gives a fairly general criterion for an irreducible module
to stay irreducible when restricted to the centraliser of an abelian normal
subgroup.

The main part of this work was done during a stay at the University of
Illinois in Urbana and Chicago. I would like to thank the mathematicians
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there, in particular E. C. Dade and Paul Fong for their hospitality. My
thanks go to the Deutsche Forschungsgemeinschaft as well, whose support
made this work possible.

1. Two Results on Characters

1.1 ProprosITION Let x be a generalized character of G and let z =
71 x(g;) where the g; run over a set of representatives of the conjugacy
classes of G:

(1) z is rational integer.
(i) Ifz # 0, then zx ' is a generalized character of G.
(iii) Assume 0 # z is relatively prime to |G|. If ¢ is a generalized
character of G such that x(g)~"W(g) is an algebraic integer for all
g € G, then x ' is a generalized character.

Proof. (i) Consider the vector space of class functions on G. Multi-
plication with y is an endomorphism x* of this space and z = det x* as is
seen by taking the characteristic function of the conjugacy classes as a
basis. On the other hand, we may take the irreducible characters of G as
a basis. Let M be the matrix of x* with respect to this basis, so M = (m,,)
where m,, = (ogx, 7) € Z for all o, 7 € Irr G. Hence z = det x* = det
MeZ.

(ii) Let ¢ = zx~'; clearly this is a well defined class function. Set N
= (n,,) where n,, = (op, 7). Clearly NM = zE,so N = zM™' = adi M
has entries in Z. Hence (¢, 7) € Z for all 7 € Irr G and ¢ is a generalized
character.

(iii) Again x 'y is a well defined class function, so we have to show
(X 'Y, 7) € Zforall7 € Irr G. Pick a, b € Z such that 1 = az + b |G|.
Then

a(zx ™", ) + b|G|(x "', 7)
azx ™', 7) + b X x " '(@W(g)r(g)

x~'¢,7)

is an algebraic integer: x ~'(g)¥(g) is integral by assumption, 7(g) is integral
as character value and (zx ™'y, 7) € Z by (ii). At the same time (x "'y, 7)
= 27 'ezx"'y, 7) € Q, hence (x 'y, 7) € Z.

1.2 Remark. In (iii), the condition (z, |G|) = 1 is essential: Let 1 and
A be the irreducible characters of C,. Let x = 2 - land ¢y = 3 -1 + A\,
Then x ~'(g)y(g) € Z for g € C,, but x 'y is not a generalized character.
The condition that x ~'(g)y(g) is an algebraic integer is clearly necessary.

1.3 DeriniTiION. Let H < G and x a class function of H. For g € G,
let G = U Hx;(g) an H-(g) double coset decomposition. For each i, let
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|H|~|Hx(g)l
min{n | x,g"x;' € H}

n;

= Kxigxi ") : (xigx ") N H]
and define x®%(g) = II; x(x;g"x; ).

By the next lemma, x — x® is a map from the class functions of H into
the class functions of G. This map is called tensor induction.

1.4 Lemma x®¢ is a well defined class function of G.
Proof. Let {y;} be another set of double coset representatives. Then y;
= hxa; for h; € H and a; € (g), so
yig"yi ' = hxag"a; 'x7thit = Hxig"x; '

Since x is a class function on H, the value of x®%(g) does not depend on
the choice of the x;’s.

Now let g, € G be conjugate to g, say g, = g for y € G. Then
G = Gy = U Hx{g)y = U Hxyy @)y = U Hxy(g,),
so {x,y) is a set of H-(g,) double coset representatives. Since

|Hx;y(g)| = |Hx{g),

the n;’s are the same for g; and g. Now xygl(x;y)™! = x,g"x; " for all i,
so x®%g,) = x®%g) and x®¢ is a class function.
The next result shows what one might expect:

1.5 LemMa. Let U, H < G and X, ¥ be class functions on H.

() (Transitivity) If H< U < G, then (x®")®° = x®°.
(i) (Mackey Decomposition) Let G = U Hg,U be a double coset
decomposition. Then (x®%)y = II; (X&%anv) ® U.
(i) (Multiplicativity) (xPp)®¢ = x®Y®°,

Proof. (i) Let G = U, Uy{(g) be a U-(g) double coset decomposition;
let n, = |U|""|Uy<{g)| and u; = y,g"y;'. Now let U = U; Hv,{u;) be an H-
(u;) double coset decomposition, and set m; = |H|™'|Hv;(u,;)|. It is straight-
forward to check that G = U, ; Hu;y;(g) is an H-g) double coset decomposition.
Moreover,

lHl_lleij}’i<g>| = n;my;
and

nim -1 _ my. . —1
U;y:8"" Wy yi) T = vy
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The assertion follows. )

(ii) Take u € U and let U = U; (H* N U)y;{u) be an (H* N U)-(u)
double coset decomposition. Then G = U,; Hg;y;(u) is a double coset
decomposition,

'Hl_‘ngi}’iJ(“)' = 'Hgi N UI—IKHEI N U)}’ij(”)l =1

and

Rijyy =

Xy ") = x@yyuy; e ).
Hence the assertion.

(iii) Trivial.

Addition and tensor induction are far from being nicely connected. The
next lemma studies the simplest non-trivial case. We need some notation:
Let H < G be a normal subgroup of prime index r. Then G acts on ) =
{Hg | ¢ € G} and therefore also on the power set Q. Since G is transitive
on (), there are precisely two fixed points in Q) (namely @ and Q), so the
2" — 2 non-trivial subsets form orbits of length r under G. Let I; C Q be
representatives for these orbits, i.e., U; I§ = PQN\{#, Q}. Now let x and
¢ be class functions of H. For each I C (, define

br = 1—.[ Xw Hw¢1 ll’ws

wel

where x° = x? if « = Hg. Let ¢; = ¢;,. With this notation:

1.6 Lemma. Let H < G and |G:H| = r a prime.

D x + P = x®° + ®° + 3, ¢ for class functions x, ¥ of H.
(i) (@lp)®® = alg + r Y (a, — @)1§ for a € C a constant.

Proof. (i) Letg € G\ H. Then G = H(g) and [(g) : (g¢) N H| = r, so
x + 0% = x + ¥E) = x@) + ¥g) = x®U) + ¥v®%g).

Since gof(g) = 0 for all j, the equality holds on G\H. Since H is normal
in G, it follows from Lemma 1.5 (ii) that

X+l =lx+¥'=2 er=¢at e+ 252 or

wEQ IEPQ j 1el§
Since
Gy _ — g —
(‘Pj H = 2 L = 2 ‘PI,—Z‘PI
gEIG:H] gEIG:H) I€l§
and

Pa = 1—[ X = (X®G)H’ Py = (¢'®G)H,

wEN

the equality also holds on H.
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(i) We have

®G, — (41 lfg (S G\H
(alH) (g) {ar lfg = H

and

G _JO0 ifge G\H
IH(g)*{r ifg € H.

Hence the assertion.

1.7 Remark. If R is a subring of C and a € R, then, in general,
r (& — a) will not belong to R. Therefore tensor induction of an R-
generalized character does not always yield an R-generalized character.
For R = Z, however, we have:

1.8 ProrosiTION. Let H be a subgroup of G.

(G) If x is a character of H, then x*° is a character of G.
(i) If y is a generalized character of H, then y*° is a generalized
character of G.

Proof. (i) This is well known (see [1] for instance).

(i) By Brauer’s characterization of characters, it is enough to show
(y®°)g is a generalized character for each elementary subgroup E of G.
Since, by Lemma 1.5 (ii),

¥®%)g = H Viune)®® for G = U HgE,

it is enough to show that y®~ is a generalized character if y is a generalized
character of a subgroup U of the elementary group E. We proceed by
induction on |E:U|. If E = U, there is nothing to show. If U < U, < E,
then U, is elementary and |U, : U|, |E : U,| < |[E : U|, so by induction
y®Y" and then also (y®Y")®* are generalized characters. In view of Lemma
1.5 (i), this is what we want.

We may therefore assume that U is maximal in E. Since E is nilpotent,
this means U < E and |E:U| = r is a prime. Let x,y be characters of U
such that x — ¢ = y. Then Lemma 1.6 (i) tells us that

= (CWIE = X ()P X ]
J

where, of course, in the definition of the ¢;’s, we have to replace by —1.
In any case, the ¢; are—up to a sign—products of characters of U, so
S,p% is a generalized character of E. By (i), x®* and ¢®F are characters,
and
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(—9®F = [(—1,)P]®F
= (= 1y)®5Y®E  (by Lemma 1.5 (iii))
={-1g+r '[(-1) + 1]15}¢®E (by Lemma 1.6 (ii))

is a generalized character of E since r | (—1) + 1.

1.9 Remark/Definition. (i) If vy and & are class functions of a group
G, we say y < & if for all g € G, the values y(g), 8(g) and 8(g) — y(g)
are non-negative real numbers. If y < § are class functions of H < G, then
y®¢ < §%6,

(ii) For vy and 8 as above and & an ideal of the ring I of algebraic integers
in C, we say y = 8 mod « if y(g) = 8(g) mod L forallg € G. If y =3
mod f are class functions of H < G whose values are algebraic integers,
then y®° = §®° mod « (and the values of y®¢, §%¢ are algebraic integers).

2. Reduction to Cg(v)

2.1 Notation. We fix a prime p and denote by F a finite field of char-
acteristic p, by F, its prime field GF(p) and by G a finite group with order
prime to p. If V is a finite-dimensional FG-module, then # = #(G, V)
denotes the permutation character of G on V, i.e., m(g) = |Ci(g)|. Observe
that 7(g) # 0 for all g € G; in fact, w(g) is always a power of p which
divides |V|. Therefore 7~ !|V] is a generalized character of G by Proposition
1.1. We call this generalized character—which plays a central role in the
rest of this paper—8& = 8(G, V). Obviously 8(g) = 1iff m(g) = |V| iff g
€ Ker(G on V); otherwise, 8(g) = p" for some n = n(g) > 0. Since G
acts on V, we may form the semidirect product GV which is a finite group.
We try to bound k(GV), where k(H) is the number of conjugacy classes
of the group H. The reason why & is important is the following resuit.

2.2 THEOREM. Assume 2.1 and suppose there is a v € V such that
C = CH) satisfies:
(*) ifyis a generalized character of C such that y(1) # 0 mod p, then
(¥3y v)c = KC).
Then K(GV) < |V|.

Proof. We distinguish two cases: (i) v = 1 and (ii) v # 1. We first treat
the easier case, v = 1.

(i HereC=G. IfgeGandu€V,thenGDg" = u"gu = gu "u
iff (u™"¥u = 1iff u € Cy(g), since G and V intersect trivially. This implies
g% N G = g% so there are precisely k(G) conjugacy classes of GV which
intersect G non-trivially. 8 = 0 on all other conjugacy classes, whereas
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1 X
— 5(g*)
Gl .2,

1 .
~ial "
qu

1
— 3(g")
G 2
uECy(gh)

LS s(e"m(g")

- |6ligs

= |VI.
Thus, if {x;} is a set of representatives of the conjugacy classes of GV, then
KG)|V| = 2 8V(x;)

3g) =

> (8, 7)gy (by the orthogonality relations)

7€Irr GV

I

Z (w8, 7)¢ (by Frobenius reciprocity)

7€Irr GV

> KG) (by (*), since 7(1) | |G| by 1td’s theorem)

r€lrr GV
k(GV)K(G)

Dividing by k(G) gives the desired result.

(i) Now assume v # 1. Let A be the subgroup of V generated by v.
Then |A| = p and Cg(a) = Cforall 1 # a € A. Put N = Ng(A); then
C < N and N/C operates fixpoint freely on A, in particular [N:C| | p — 1.
The direct product C X A is a subgroup of GV. We will define a generalized
character n on C X A and imitate the proof given in case (i) using n instead
of 8. We first prove the following result.

W

Let{c;|i = 1, ..., k(C)} be a set of representatives for the C-conjugacy
classes of Cand let{a;|j = 1, ..., [N:C|™'(p — 1)} be a set of representatives
for the N-conjugacy classes of AN\ 1. Then {c,a;} is a set of representatives
for the conjugacy classes of GV which intersect C X (A\ 1) non-trivially.
In particular, there are k(C)|N:C|"'(p — 1) such classes.

Proof. Let ca € CA, a # 1. Then there is n € N and j such that
a" = a;. Since ¢" € C, there exist d € C and i such that ¢™ = c;. Then
(ca)™ = c;af = c;a;. On the other hand, if (c;a;)*“ = c,a, for some g € G,
u € V, then cf“ = ¢, and a§“ = a, since C and A are relatively prime and
commute with each other.
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Now A D a, = a§“ = af implies g € N since (q;) = A. But then j =
and g € C. Since ¢® € G implies u € Cy(c?), this means ¢, = ¢? € cf,
sor = i

From this proof, we also see thatforc € C, 1 # a €A, g€ Gand u €
V the following holds: (ca)®* € C x A iff g € N and u € C(c®).
Now definemon C X Abyn = 6c X (ply — p4), where p, is the regular
character of A.

So

0 ifa =1

Therefore n°" vanishes on all conjugacy classes of GV which intersect
C X (A\) trivially, whereas forc € C, 1 # a € A,

n(ca) = {pa(c) ifa # 1

GV

7%%(ca) =

uev

(c®a®)
IClp 2"
UECv(ct)

1
= I_CE >, pd(ctym(c?)
gEN

-G M

gEN
= |N:CV].

Thus, if {x;} is again a set of representatives for the conjugacy classes of
GV, then

(p — DK(O)V] = [KO)IN:C|™'(p = DIIN:C|V]]
2 1)
= > ™\ D

7€Irr GV

I

= 2 (™), Texa

7€lrr GV

\

> (p — DK(C) (see below!)

T€Irr GV
= k(GV)(p — DK(C)

and, cancelling (p — 1)k(C), the assertion follows.
So it remains to show (7, T)ex4 = (p — 1)k(C) for each irreducible character
7 of GV. Since C X A is a direct product, we can write
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T|C><A = E‘T)\ X A
A

where \ runs through A = Irr A (observe |A| = p) and 7, is a character
of Corr, =0, so

1

(™, Dexa = ICx A4 EC (ca)n(ca)r(ca)
acA
= é > 7(ca)d(c)r(ca)
liigA
1 _ -
=Eﬁ27mwmw)2»mww
A MEA 1#£a€A
ceC
Since
—— _ p—1 ifA=pu
2o Mm@ {—1 i\ £
we have

(™), Texa =P 2 (8, ) — Z (79, T,;)c

AEA A UEA
= > ((r — 78, (1 — 7,))c
A<p

for some arbitrary ordering < on A. By (*), we are done if there are at
least p — 1 pairs A < u with (r, — 7,)(1) # 0 mod p. If

(1) = 7,(1) mod p for all \, u,
then

(1) = > (1) = 0 mod p,

A

contradicting It6’s theorem.
Solet Ay = {\| n(1) = 7,(1) mod p} and A, = ANA,. Then A, A, # @
and |A,| + |A,] = p. Moreover, we may choose the ordering such that
N € Ay, and u € A, implies A < u. Hence there are at least |A,||A;| pairs
A < p with (r, — 7,)(1) # 0 mod p.
Now

0= (A = DAl = 1)

= Al As] = A = |Ao] + 1
= A A) = (0 = D),
0 |A4]Az] = p — 1 and we are done.
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In the next two sections, we seek conditions which guarantee (*).

3. &G, V) for abelian G

The following will be used throughout this paragraph except for the last
result:

3.1 Notation. G is a finite abelian group and U;, i € N = {1, ..., n}
are subgroups of G. Let A be the group of irreducible characters of G and
A; = Ir(G/U;), regarded as characters of G, so A; is a subgroup of A for
eachi € N. If I C N, then we set

U=NU<G and A =][][A<A.

i€l iel

We form A; = II,c; X A;, the direct product. If J C I and « € A,, we set
a; = Ilig; a(j), so a; € A;, and a — o, is an epimorphism from A; onto
A;. Again, for « € A; and J C I, we define o’ € A, by

I _ Jali) fori e IN\J
() = {a(i)-‘ fori € J.

Finally, we define two kinds of generalized characters of G: For a € A,,
let y, = Ilie; (1 — a(i)). For each i € N, set
n = (G:U;| + Dig — 1§, and = = [] n,.

iEN

3.2 LemMma. Fix A € A and I C N. Then the Boolean group B = P(I)
operates on AA; X A; by [u, o) = [ua;, «']. Furthermore:

(l) I.f[l-"s B] € [)\a a]B’ then I-"'Y,e € {ix‘ya}'
(i) |CgI\, a)|"'\y, is a generalized character of G for all a € A,.
(iii) Let x be a generalized character of G and o € A,;. Then

271 (% e

[, BIEA, a]B

is a non-negative integer. It is positive if (x, My.) # 0.

Proof. Clearly a; € A, and o’ € A, for any J C I, a € A,, s0
[M, a]" € AAI X AI if [[lr, a] S AAI X AI‘

For J, K € B, let J + K = (J U K)\U N K). It is well-known that (B,
+) is an elementary abelian 2-group. Moreover

@) = o™ and af)x = ayix,
s0 [u, a] — [u, a)’ defines an action of B.
() Suppose [u, Bl = [A, o} = [Aay, o’]. Then
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pye = Ay [T — /G)

i€l

=A[TaDITO - )™ [T - aG))

JjES JjEJ ierNJ

=A[T@i) -0 [T a - a()
jes

ienNJ

== JTa - e TT @ - aG)

JjeJ ienNJ
= (= D"y,

(i) Let C = CylA, al. f K € C, then [\, a] = [\, a]f = [Aag, o],
so ax = 1 and sz = a. For any J € B, therefore ax;; = ax(aX); = a;.
Now, let B = U, C + J, be a coset decomposition. Then

ye =110 = a(i))

i€l

= 3 (-

Jgr

=3 2 (~ 1)y,

s KeC

=2 (=D, X (1",
s KecC

since [K + J| = |K| + |[J,| mod 2.
If |K| = 0 mod 2 for all K € C, then Zgec (- 1™ = |C]. If there is K €
C such that |K| = 1 mod 2, then the K’s of even cardinality form a subgroup
of index 2 in C, 80 Zxec (—1)X = 0. In either case, |C| ™'y, is a generalized
character and so is |C]™"\y,.

(iii) By (), mye +\y, for [u, B] € [\, al®?, so all summands in the
sum are equal. If C = Cj[\, ], then there are [B:C| = 2"|C|~! summands,
hence

271 6 mye) = 1T 06 M) = 06 MY €1 A Ys)
[w, BIEIN, a]B

which is an integer by (ii). The other assertions are obvious.
3.3 LeMMA. 1 = Zcn 277 Zoca; YoVa-

Proof. Induction on n. If n = 0, then the left hand side is 15 as product
over the empty set, whereas o1 the right, there is only one I, namely I =
@, Ay contains precisely one element, namely the empty map oy, and v,
= 1s, again as product over the empty index set.

Now let n > 0, N' = N\{n} and o' = Iliepr m;, SO = m'n, and we have
the result for »' by induction. We rewrite 7,
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S (g - Mg - N = Z[IAnIIG -3 A]

AEAR AEAR
=2(G: U1 — 13
=2, - 21,
som, = lg + $Z,ca, I — M(1g — N). Therefore
n=n'n.= 227" Y v,

ICN' a€Af

1 — -
+52 21 3 v 2 (e = Nlg = D)

ICN' a€Af AEA,
=227 3 vy + 227 Yy
ICN' a€Ar ICN' a€Arun)

since {y,(1c = M) | a € A;, N € A} = {ys | B € Ay} This proves the
lemma.

3.4 CorOLLARY. Let x be a virtual character of G. Then
0mx=222" 3 (M)

ICN A, alEA X Ap

Proof. Clearly (xYo¥a, X) = Zxea (X MYa)?, so the result follows from
the preceding lemma.

3.5 ProOPOSITION. Let the notation be as before and assume in addition
that Uy = 1. Then (xm, X) = |G| for every virtual character x # 0 of G.
Proof. For each A € A, let
M, = {I C N | there exists u € A; such that (x, A\u) # 0}.
Since x # 0, there is v € A such that
0# (x,v)=(M\"W) and A\ E A = Ay

Since Ker Ay = N Ker A; = Uy = 1), which shows that N € M#,, so, in
particular, 4, # @. Now, in each , choose an element of minimal cardinality;
call this element m(\). So we have a map m : A — P(N) such that, for
all A € A,

(i) there exists u € A, with (x, Aw) # 0, and
(i) IfJ C, m()\), then (x, Auw) = O for all u € A,.

We partition A = U,cy m™'(I) where m~'(I) = {\ € A | m(\) = I} is the
inverse image of I under m.
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Fix I C N and a coset ¢A; C A.
Claim. |m~™'(I) N @A, | < 2~ i, aeenrxar G wy.)

Proof of claim. There is nothing to show if m™'(I) N eA; = @, so
assume m~'(I) N ¢A; = {¢oy, ..., o}, the o, € A, all different. By
construction, m(eo,) = I, so if J C, I and B8 € A,, then (x, ¢o,8) = 0.
For a € A;, we have y, = Z,o; (= 1)V, so

06 904¥a) = 2 (= Dy, eo,a;) = (- D(x, po,ar).

JcI

Now, a — «; is an epimorphism A; — A; and by definition of I, there is
a 8 € A, such that (x, ¢o8;) # 0. Moreover, we can choose a, € A; such
that (a,); = o, 'o; € A;. Let B, = a,8 € A;; then [po,, B,] € ¢A; X A;
for s = 1, ..., t. We will show that (i) (x, poyyg) # 0 for all s and (ii) the
[eo,,B;]’s belong to different orbits under the action of B = 2(I) (see
Lemma 3.2). The claim will then follow from (iii) of the lemma.

(i) As we have seen before,
O ¢0.75) = (= D'(x, po(B.))
= (= D", po(a.)iBr)
= (= D", ¢o1B1)

# 0.
(ii) LetJ C Isuchthatforl <s, k<1,

o, Bs] = lepoy, Bk]J = [eow(Bi)s» (Bk)J]-
Then

1) aB =B, = B) = aip’,
2 o, = olBe)s = olau)sBs-

From (1), we get

o 'oiBr = ()

= (aB);

= (B8)

= (@B
(a)il(e), 172818 2
ot 'oil()s17B(B) 2,

SO0 o, = O-k[(ak)llz(,BJ)z'
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Comparing with (2), we get (a),8; = 1,s0 0, = o, and s = k.
Now it is easy to prove the proposition:

Omx) = 22" 3 (x M. (byCorollary 3.4)

ICN A\ alEAXA;

=2 2 27" 3 66ma)
ICN @€[A:A] [n,al€pAIx Af

=> Y |m7'0)N A, (by the claim)
ICN o€[A:AL

=3 U m'd)neA
ICN eE[A: A

=2 Im™'@)

ICN
= |Al
= |Gl.

The application to the problem of bounding the class number is contained
in the next two results. We use again the notation introduced in § 2.

3.6 PropPosSITION. Let G be an abelian p'-group and V a faithful FG-
module. Then (x8, x) = |G| for each virtual character x # 0 of G (of course
8 = &G, V)).

Proof. Let V = I, @ W, be a decomposition into irreducible FG-
modules and put §; = 8(G, W,). Since m(g) = |Cy(g)| = II; |Cw(g)| for all
g € G and |V| = II; |W,], we have 8§ = II; §;. Now Cy(g) is an FG-
submodule of W, since G is abelian, so by the irreducibility of W; either
Cw(g) = W; which means g € Ker(G on W;) (= U, for short) or
Cw(g) = 0. This implies

1 ifge U,
si(g)={lwil if ¢

ifg ¢ Uia

SO
= IWi| -1 G
81’ - IWzllG |GU,| lUi'

Since §; is a generalized character and (17, 15) = 1, this implies in particular
|G:U,| | [W| = 1, say [W;| = t|G:U,| + 1. Therefore

8 = (tIG:Ui| + D1g — 11§,
= (G:U)| + Dl — 1§, + (& — DIG:Ui|1lg — 1§]
= (G:U| + Dig - 1§,

=N
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since t; = 1 and |G:U;|1g — 17, only takes non-negative real values. This
implies 8 = IL§; = IIm; = m, so (x8, x) = (xm, xX) = |G| by Proposition
3.5 since Uy = NiepyU; = Ker(G on V) = 1.

We now drop the assumption that G is abelian.

3.7 TuHeoreM. Let G be a p'-group and V a faithful FG-module. If
there exists v € V such that Cs(v) is abelian, then k(GV) < |V|.

Proof. Immediate from Theorem 2.2 and Proposition 3.6.

4. & Contains a Square

4.1 DerINITION. Let & be a Z-lattice in C and & an ideal of I (the ring
of algebraic integers in C). Assume 7 to be a generalized character of G
with non-negative real values. We say that m contains an £-square with
respect to oA, if there is an £-generalized character v of G such that

(i) m =vvand
(i) » =v» mod ¥

(see Remark 1.9).

4.2 Notation. In our applications, & will always be the same ideal,
namely & = \/;)7 We therefore drop the reference to & and say simply
that n contains an £-square. The most important case is £ = Z; we then
shorten notation further and say that % contains a square. If convenient,
we will also say that n contains the square of ». The assumption on £ in
the next proposition is certainly satisfied for & = Z.

4.3 ProposITION. Let m be a generalized character of G with
n(1) = 0 mod p but n(g) € A forall1 # g € G. Let £ be a Z-lattice in
C such that |x| = 1 for all 0 # x € &. If  contains an ¥-square, then
(yn, ¥) = k(G) for each generalized character vy of G with y(1) # 0 mod
p.

Proof. First, observe that the assumption on the values of 1 forces G
to be a p’-group:

(m, DEZ and |G|(m, 1) = X, n(g)=mn()%#0mod &,
14
so p |G-
Now let v be as in the assumption and » as in Definition 4.1. Then

(m,y) = (o, y) = (w,w) = X |ow, D

7€lrr G

Since v is an ZL-generalized character and £ is a Z-lattice, yv is an &-



196 REINHARD KNORR

generalized character, so (yv, ) € £. In view of the assumption on %, it
is therefore enough to show that (yv, 7) # 0 for all 7 € Irr G. We have

IGl(yv, 7) = 2 ¥(@)v(g)r(g)

g2€G

=Y ygm(g)g) mod

2EG
= y(Hn(1)7(1) mod &
#0 mod «,

since y(1)n(1)=(1) € Z is not divisible by p (recall 7(1) | |G)).

In view of Theorem 2.2 and the last proposition, it is of interest to give
sufficient conditions for the existence of an element v € V (an FG-module)
such that 8(C4(v), V) contains a square. It is fairly easy to show that it is
usually enough to consider a primitive module V. The induction step will
be provided by Proposition 4.6.

4.4 Notation. Let H < G be a subgroup, G a p'-group. Then we write
’n'(G:H) = W(G, Fo ®F0HFOG) and S(G:H) = 8(G, Fo ®F0HF0G)’
F, the trivial FoH-module; i.e., we consider the permutation module (over
the prime field) of G on the cosets of H in G.
4.5 PropPosITION. Let H be a subgroup of the p'-group G and let W
be an FH-module. Then
(G, W ®pFG) = 8(H, W)®° §(G:H)' where t = dimgW.

Proof. Take x € G and write X = (x). Let G = U, , HgX be a
double coset decomposition, n; = |H|"'|Hg;X| and put V = W ®zxFG. By
Mackey Decomposition and Frobenius Reciprocity,

dimF Cv(x) = dimp Hompx(F, VFX)
= dimF Hompx(F, 2 @ wé ®p(xn1)FX)
= > dimy Hompm(F, W#)

= 2 dimsCy(g:x"g; ]) ’

SO
(G, V)(x) = [[ #(H, W)(gx"gi") = =(H, W)®%(x),

1

i.e., (G, V) = w(H, W)®°. On the other hand,
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[m(H, W) 8(H, W)1®°(x) = |W|®%x) = |W| = p* = [#(G:H)X)],

i.e., [w(H, W) 8(H, W)]®° = #(G:H)'. Therefore
m(G, V) 8(H, W)®° &G:H)' = [w(H, W) & (H, W)]®° &G:H)'
= [#(G:H) §G: H)

— pIG:H|t
= W]l
%
(G, V) 8G, V).

The assertion follows.

4.6 ProrosiTioN. Let W be an FH-module, H a subgroup of the p'-
group G and put V.= W Qry FG. Assume dimg (W) > 1. If there exists
w € W such that 8(Cgyg(w), W) contains a square, then there exists v € V
such that 8(Cs(v), V) contains a square.

Proof. Let G = U, Hg; be a coset decomposition and v = Sw ® g;.
Let C = Cy(w) and D = C4(v); let 8 = 8(G, V), n = 8(H, W) and y =
8(G:H). By the previous proposition, 8 = n®%/, where t = dimg,W > 1.
Moreover, by assumption there exists a generalized character » of C such
that n|c = v¥ and n|c = v mod &. Let G = U, Hg;D be a double coset
decomposition, J C I. Take x € H¥ N D, say x = h*. Looking at j-th
component of Sw ® g, = v = vx = Sw ® gh¥, we see that wh =
soheC and x € C¥; hence H¥ N D < C¥. Now let v; = vsnp and
{ = Hje,v, . By Proposition 1.8 (ii), { is a generalized character of D.
Moreover

cc—H ®D,, D

= H(VJV] )®P  (since tensor induction is multiplicative
Jj and commutes with taking the complex
conjugate)

< [T uerp)®®  (by Remark 1.9 (i)
J

= 7®9|, (by Lemma 1.5 (ii)),
and v; = 9¥|genp mod &, so
@ = (0¥ genp)® mod & (by Remark 1.9 (ii))
and

g = 7]®G|D mod .
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This means that ®°|, contains the square of {. Clearly ' contains the
square of y, so 8(D, V) = n®°,(y|p)’ contains the square of {ylp.

4.7 CoroLLARY. Let W be an FH-module, H a subgroup of the p'-
group G. Assume that 8(H, W) contains a square and that dimpW > 1.
Then 8(G, W ®uFG) contains a square.

Proof. This follows from the proof of the preceding proposition, putting
v=w=0.

The last two results are used as induction steps. We also need ‘‘absolute”’
results for two special modules. The first one is the group algebra itself (G
a p’-group):

4.8 Lemma. Either 8(G, FG) contains a square or |G| = 2 and F =
F,.

Proof. If F > F,, then 8(G, FG) contains the square of 8(G, F,G), so
we assume F = F,.
By Corollary 4.7, it is enough to find a subgroup H such that & = 8(H,
FH) contains a square, since FG = FH ®zFG. The case G = 1 being
trivial, we may choose a subgroup H of order r, where r is either an odd
prime or r = 4. Let

1. _ if r is odd
L= 2(r 1)
1 ifr =4,

and observe that (p*)* = 1 mod r since p and r are relatively prime. Therefore
pF=¢e= x1modr.

Define v = gp*ly — r~'(ep* — 1)py where py denotes the regular character
of H. Then v is a generalized character of H and if h € H, then

1 ith=1
v(h) = {ep" ifh# 1.

Since 8(h) = p™~°®7" it is obvious that » = § mod « and easy to check
that v = ¥ < 8 (in fact, we have equality unless H = C,). Therefore &
contains the square of v.

The second result in this context concerns permutation modules of
2-groups. Let p be an odd prime, a = (1 + i\/ﬁ) € Cand ¥ =
Z @ Zo. With this notation:

4.9 ProPosITION. Let G be a 2-group acting on a finite set ). Then
(G, FQ) contains an $¥-square.
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Proof. 1t is enough to consider the cases [} = 2" (n = 0, 1, ...) and
G a Sylow-2-subgroup of S, since the assertion will then hold for any
subgroup as well (observe that 8§ = &G, FQ) = &G, FQ') if Q' D Q and
G acts trivially on Q'\ ().

We set o = sign, so o is a linear character of G, and proceed by induction
on n to produce a generalized character x such that v = x[lg + a(c —
15)] has the following two properties:

i vw=29
(i) v=06mod &«

(the induction will show that x takes values in Z). Since v is clearly an £-
generalized character, this will prove the proposition.

It is easy to check that x = 1 will do for n = 0, 1.

So assume n > 1. The structure of G is then easily described: say

Q=A{1,..,27%

andlet Q, = {1, ...,2" Jand Q, = 2""' + 1,...,2%, 500 = O, U Q,.
Let H, be a Sylow-2-subgroup of S, and s the product of the transpositions
Gi+ 2" Yfori=1,..,2"". Then H, = H} is a Sylow-2-subgroup of
Sq, and a look at the orders shows that G is—up to conjugation in So—
the semidirect product (H; X H,Xs). We put H = H, X H,, so

FQ = FQ] ®FHFG,

where of course H acts on (; with kernel H,. By induction, there is a
(integral-valued) generalized character x; of H,—and therefore of H—such
that

v = xillyg + aloy — 14)]

satisfies (i) and (ii) with & replaced by §, = 8(H, F(),). It should be noted
that o, is the signum function of H not on Q but on Q,, i.e., o,(hhy) =
signg,(h,) for h; € H;.

We need some notation: let ¢ be the linear character of G with Kerp =
H,ie., 1§ = 1g + ¢, and let u = of; then clearly ou = u. Since n >
1, the element s belongs to the alternating group; using this and the definition
of tensor induction, it is straightforward to check o = o®°. Observe that
o # ¢ since H contains transpositions. Furthermore, o = 0,04, so ou
= (0lgo)® = (69)° = p. This implies that (4%, 0) = (&, po) = (u, w),
and we may replace o in the last equations by 1¢, ¢ or go. Since u*(1) =
4, it follows that u* = p = 1g + ¢ + & + ¢o. Finally p> = 4p, up =
4u and p = pp = po. All characters introduced here are integral-valued.
Write 1 = dim(FQ;) = 2" and ¢ = p’; observe that a = ¥(1 + \/g) is
an integer. We define three small integers b,, b,, b; depending on the
congruency class of p mod 8:
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a,1, 1 if p=1mod 8
(-1,2,0) if p=3mod 8
(-1,1, —1) ifp=5mod8
(1,0,0) if p =7 mod 8.

Set by = —4(p + 1)(b, + by — 1) € Z. Then one checks that
b, + b,=0 mod4 and b; + by =0 mod 2.

(bla b2’ b3) =

Therefore
1 1
Y= bl[lG + ale — 1g) — Z(bz + byp + E(bs + b4)lL:|

is a generalized character with values in Z.

We claim that x = x®P% has the desired properties.
(i) Putv = x[lg + a(c — 15)]. We have to show that ¥ = 3. Define

t[;1=16—%(p+1)p+a((r—l(;)+%(p+1)/.4,,

. 1 1
mn = b,[lc + alp — 16) - szp + -z—bau]-

Then n(1) = b,(1 — b, + b;) = 1, by choice of the b,’s.

An application of Lemma 1.6 together with (o’ — a) = —#(p + 1) will
show that , = [15 + alo; — 15)]1%° and by easy calculations one finds
¥m = Yllg + aloc — 15)] and

1
m=n"=1¢+ 2@ - a)ls — ¢) + Z(b% + b3 — 2by)p + by(1 — by)u

— q ; llc _4 ; 1<p (by choice of a and b,, b,, b3)
3 p + 1 _ D — 1 ! . [ S

__< : 1g > <p) (since p' = q)

= &G : HY.

To summarize,
v =xllg + alo — 15)]
= xPNllc + alo — 15)]
= X?Glbm
xPUy + aloy = 1)]1%%

= 1¥% (by Lemma 1.5 (iii)),
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SO

w = PP

@,7,)®%7n% (again by Lemma 1.5 (iii) and
since tensor induction commutes
with complex conjugation)

= 8%%8(G : H)' (by induction)
= 8 (by Proposition 4.5)

(i) Since v,(1) = x;(1) € Z and v,(1)*
v4(1) = 1. This implies
v(1) = vP°(Mm(1) = 1 = 8(1).

If1 # g € G, then 8(g) € «, so it is enough to show that »(g) € «.
If o(g) = 1, then v(g) = x(g) € Z, so v(g)’* = 8(g) € « implies that v(g)
€ o If o(g) = —1, then »(g) = —i\/px(g) € A, since i\/p € A.

I

8,(1) = »,(1) mod &, necessarily

5. A Result Which Does Not Belong Here

The next result and its corollary are true for any field F with char F =
p > 0 and any finite group G. The present proof is due to the referee.

5.1 ProrosITION. Let V be an irreducible FG-module, A an abelian
normal subgroup of G and C = Cg(A). Assume that

i) ANKer(GonV) =1 and
(i) all irreducible constituents of Virc are isomorphic.

Then V|gc is irreducible.

Proof. 1In view of (ii), it is enough to show that V| is multiplicity-free.
This in turn will follow if (V ® K)|gc is multiplicity-free for K being the
algebraic closure of F. Let V; be the irreducible constituents of the KG-
module V. Then the V;’s are all different and algebraically conjugate (see
[16, Theorem 9.21]). If § is an irreducible constituent of V|4, then S is a
faithful KA-module since V|g, is faithful and homogeneous by (i), (ii) and
Clifford theory. Therefore the inertia group of § in G is C and V, =
W; ®xcKG for any irreducible W; | Vi|xc. Now

dimgHomg(W;, (V ® K)|xc) = dimgHomgs(V;, V® K) = 1

by Frobenius reciprocity, and the assertion follows.

5.2 CoroLLARY. LetV be a faithful primitive FG-module, A an abelian
normal subgroup of G and C = Cg(A). Then V|gc is irreducible.
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Proof. Use the proposition: (i) is satisfied since Ker(G on V) = 1 and
(ii) is a consequence of Clifford theory since V is primitive.

The title of this section also covers the next remark. Although it will
only partly be used in the sequel, it explains where some of the complications
in the next two paragraphs come from.

5.3 Remark. Let p, r be primes and 0 < n, m € N such that p” — 1
= r™. Then one of the following holds:

i) p =2, m = 1and ris a Mersenne prime;
(ii) r =2,n = 1and p is a Fermat prime;
Gii) r=n=2andp =m = 3.

Proof. Well known.

6. Lemmas on Supersolvable Groups

6.1 LeEmMMA. Let G be a supersolvable group.

(i) If H < G is a proper subgroup and s is the largest prime dividing
|G:H|, then there exists a subgroup G, such that H < G, < G and |G,:H|
= s.

(ii)) If A is a maximal abelian normal subgroup of G, then Cz(A) = A.

Proof. (i) It is well known (see [10, Satz 9.1, p. 716]) that G has a

Sylow tower
1=N,<N,<..<N,, =G

where N; < G and |N;:N;_,| = pf for i = 1, ..., m with primes p; such
that p, > p, > ... > p,,. Refining this series to a principal series gives

1=K0<K1<...<Kn=G,

where the K; are normal in G and |K;:K;_,| = |K,, : K;| are primes. Multiply
this series with H to obtain

H=KH<KH=<..<KH-=0G.

The first term K;H bigger than H has the desired property.

(ii) Clearly A < C = Cg(A) < G. Suppose C >, A; then, refining the
normal series 1 < A < C < G, we find a normal subgroup N of G with
A < N =< C and |N:A| a prime, so in particular N/A cyclic. Since A <
Z(N), this implies N abelian, contradicting the maximality of A.

6.2 Lemma. Let W be an FH-module, H a subgroup of the supersolvable
group G. Let K = Ker(H on W) and let s be the largest prime dividing
|G|. If V.= W®gyFG is faithful and irreducible, then s | |H:K|.
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Proof. The Sylow-s-subgroup S of G is normal [10, Satz 9.1, p. 716].
If s/ |G:K], then S < K, so

S< () K®!=Ker(GonV) =1,
gEG

a contradiction.
So s | |G:K| = |G:H|H:K|. If s | |H:K]|, then there exists a subgroup U
such that H < U and |U:H| = s by Lemma 6.1 (i). Set N = N,y H*, so
N is the kernel of the permutation action of U on {Hu | u € U}. By a result
of Galois (see [10, Satz 3.6, p. 163]), the structure of U/N is known; in
particular s | |[U:N| but s* | |U:N|.
Let M = N,eyK¥, so M < U, in fact M = Ker(U on W®g4FU). Since
we have an embedding NNM & Ty X H*/K* and s | |H:K|, it follows
that s { [N:M|, so s | |[U:M| and s* | |U: M.
Therefore there is a normal subgroup T of U such that [T:M| = s (again
by [10, Satz 9.1], used for U/M); clearly T < H.
Now consider V; = W@ggFU. Choose 0 # w € W and ¢t € T\ M. Then

0# X WwRFECD and w® 1 ¢ CyD).

i=1

Therefore 0 <, Cy,(T) <, V,. But Cy,(T) is an FU-submodule of V,, since
T < U. Therefore V; is not irreducible, hence V = V; ®gFG is not
irreducible, the desired contradiction.

6.3 LemMA. Let W be an FH-module, H a subgroup of the nilpotent
group G, and assume |F*| is not a prime power. Let V = W®guFG. If
there exists an element w € W such that Ciy(w) = Ker(H on W), then
there exists an element v € V such that Cz(v) = Ker(G on V).

Proof. Proceeding by induction on |G:H|, we may assume H normal
and of prime index s in G, since G is nilpotent. Let S be the Sylow-s-
subgroup of G. Then G = HS, so we may choose 1 = x,, x5, ..., x, € §
such that G = U; Hx;. Pick an element 1 # f € F* of order prime to s;
such element exists since F* is not an s-group. Let V3 v =w ® x; +
Si>1 wf ® x; for w given by the hypothesis. If g € C4(v), then the s-part
g of g also belongs to Cg(v) since g, is a power of g. Now x;g, = hxy,
for suitable h; € H since the x;’s are coset representatives. In fact, the
h; € H N § since x;, x;, and g, belong to . Now assume g, & H. Then
w ® x1)g; = why ® xjq) with j(1) # 1. Since g, € Cs(v), this implies wh,
= wf, a contradiction, since o(h,) is a power of s, whereas 1 # o(f) is
prime to s.

Therefore g, € H; but the s'-part g, of g also belongs to H since
|G:H| = s and H < G. Therefore g € H, so
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w®x + wa@xi =v
i>1 =vg
=wg @x + 2, wingx ' ® x;,
i>1

which implies x;gx;' € Cy(w) for all i. Hence
g € N Cx(w)* = N Ker(H on W)* = Ker(G on V).

We have shown that Cs(v) =< Ker(G on V). The converse is trivial.

6.4 Remark/Notation. Let E be a finite field extension of F and I’ =
Gal(E/F) the Galois group. There is a natural action of I' on E*, and the
semidirect product TE* acts on E by e(ye,) = e’e,(y €T, e, e; € E and
e, # 0) This action is F-linear, making E into an F(C'E*)-module.

6.5 ProrosiTION [10, 3.11, p. 166]). Let W be a primitive FH-module,
H a supersolvable group. Then there exists a field extension E of F and a
homomorphism o : H — TE* such that W = E as FH-modules, where of
course the action of H on E is defined via o.

Proof. Passing from H to H/Ker(H on W), we may assume that W is
faithful. Let A be a maximal normal subgroup of H. Then A = Cg4(A) by
Lemma 6.1 (i), so W|g, is irreducible by Corollary 5.2. Therefore there
exists an FA-linear epimorphism ¢ : FA — W. Since FA is commutative,
ker ¢ is a maximal ideal and E = FA/Ker ¢ is a field extension of F. We
have an FA-isomorphism ¢ : E — W induced by ¢, which we use to impose
an FH-structure on E, i.e. for e € E, h € H we define eh = ephe™". This
of course makes ¢ an FH-isomorphism. Therefore it is enough to define a
homomorphism o : H — T'E* such that eh = eo(h) for all ¢ € E and
h € H. We first define a homomorphism 7 : H — I': The conjugation action
of H on A extends to an action as F-algebra automorphisms of H on FA.
Because W is an FH-module, #{ = anng,(W) is invariant, so we have the
induced action of H on E. Since F is fixed, H acts as a group of F-
automorphisms on E. This gives 7 as desired. Observe that writing E D e
= x + JM for some x € FA, we have ¢® = x" + M. Now it is easy to
define o : if » € H, then 1;h € E*, so o(h) = (r(h), 1zh) € TE*. We
show that eh = eo(h) foralle € E, h € H.

Any e = x + J for some x € FA, and for each y € FA, we have ey =
xy + M = e(y + M) since € is FA-linear, so in particular e = 1zx. Therefore

eh = (1gx)h
= (1zh)x" (since E is an FH-module)
= (1h)(x" + M)
= (1gh)e®
= ea(h).
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Since E is faithful as an 'E*-module, this also implies that ¢ is an homo-
morphism (in fact a monomorphism).

6.6 CorOLLARY. Let W be a primitive FH-module, H a supersolvable
p'-group. Let K = Ker(H on W). Then one of the following holds:

D dimg (W) = 2 and there exists a w € W such that 8(Cyg(w), W)
contains a square.
D dimg(W) = 1 (and H/K acts by multiplication on W = F).
(III) dimg (W) = 2 and H/K = TA for a subgroup A of E*, acting
on W = E = GF(p? as described in Remark 6.4. Furthermore
@ + DAl

Proof. By Proposition 6.5, we may assume H = H/K < T'E* for a
suitable field extension E of F and I' = Gal(E/F). If 0 # e € E, then
C = Cgle) < Crpe) =g+ Cres(1) = I'. The existence of a normal basis
for E (see [13]) implies E = FT as FT-module, so E = (FC)' as FC-module
where ¢t = |C|™'|[|; therefore 8(C, E) = 8(C, FC)' which contains a square
by Lemma 4.8 unless t = 1, F = F, and |C| = 2.

So if dimg,W = 2 but (I) does not hold, then H is a subgroup of TE* for
E = GF(pY), satisfying |[Cx(e)| = 2 for all 0 # e € E; so in particular
I' = Cre(l) = Cx(1) < H, which implies that H = T'(H N E*) is indeed
a semidirect product. To show (IIl), it remains to prove the assertion on
the order of A = H N E*,

Let ¢ : E* — E* by defined by ¢(e) = e' . Clearly ¢ is a group endomorphism
and Ker ¢ = F*, so [Im ¢| = p + 1. But Im ¢ < A : Take e € E*,
then [Cg(e)] = 2, so there exists a € A with (y, a) € Cgle), where
1 # y € T. This means e = e(y, a) = e’a, i.e. ple) = ' ” = a € A.
If dim;, W = 1, then clearly (II) holds.

7. Results

7.1 Remark. We are now in a position to study irreducible modules
over supersolvable p'-groups, taking Corollary 6.6—which covers the primitive
case—as a starting point. The proofs are not difficult, but there are far too
many different cases to consider to call the approach satisfactory, let alone
esthetic. The gentle and patient reader is likely to feel growing exasperation
before he or she is halfway through that lengthy struggle, a feeling warmly
shared by the author. It will turn out that the trouble is caused by the
“small’’ cases and the small primes dividing the group order, in particular
by 2-groups. Some indication why these cases are difficult is given by the
exceptions which appear in Lemma 4.7, Lemma 4.8 and Corollary 6.6, and
also by the number theoretic Remark 5.3. But it seems that the difficulties
are not only caused by the technicalities of the proof. Examples show that
the inequality we are trying to establish actually becomes an equality (or
is at least not far from it) for some of these small cases.
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7.2 LemMma. Let W be an FH-module, H a subgroup of the supersolvable
group G such that |G:H| is a power of 2. Assume there is a w € W such
that D/K is a 2-group and W|gp is a permutation module, where D =
Cy(w) and K = Ker(H on W). Then there is v € V = W€ such that
C/Ker(G on V) is a 2-group and V|gc is a permutation module for C = Cg(v).

Proof. There is no loss in assuming Ker(G on V) = 1. Let {g; | i € I}
be a set of coset representatives of H in G and put v = Sw & g;. Then
H® N C < D% as is easily seen. By Mackey decomposition,

VIFC = 2 @ we ® F(HSNC) FC for some J CclIL

ieJ

By assumption, W|zp = =, @ F ®gy,FD for suitable subgroups U, < D
acting trivially on F. Together, this implies V|zc = =,F ®px,FC, the X, <
C acting trivially on F, so V|sc is a permutation group.
It remains to show that C is a 2-group. Since, by assumption, H contains
the normal 2’'-Hall subgroup of G (see [10, p. 716 Satz 9.1]), the same is
true for N = N,ec H®. Therefore G/N and in particular C/C N N are 2-
groups. If n € C N N, then
2W®gi =V =Un= Zngngi—l®gia

i
so n € N; D*. Hence there is a homomorphism

a:CNN-][] x D¥/K*.

Since Ker a = N; K¥ = Ker(G on V) = 1, this implies that C N N—
hence C—is a 2-group.

7.3 ProrosITION. Let V be a faithful irreducible FG-module, G a su-
persolvable p'-group. Then (at least) one of the following holds:

(i) There exists v € V such that 8(Cs(v), V) contains a square.
(ii) There exists v € V such that Cg(v) is abelian.
(iii) There exists v € V such that C = Cg(v) is a 2-group and V| is
a permutation module.

Proof. There exists a subgroup H of G and a primitive FH-module W
such that V = W ®gy FG. We treat the cases (I)-(III) given by Corollary
6.6 separately and keep the notation introduced there.

(I) By Proposition 4.6, (i) holds.
) Ifp = 2,then H/K = 1,50 G = 1 by Lemma 6.2 and (i) holds.
Assume next p odd but not a Fermat prime; so |[F*| is not a prime power.

As usual, denote by G’ the commutator subgroup of G. Since G is super-
solvable, G’ is nilpotent [10, p. 716 Satz 9.1]. By Mackey decomposition,

VlG' = 2 @ We ®F(HKEUG') FG,, Where G = U HgiG,.

i
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Since W¥# is a one-dimensional F(H® N G')-module, there exists an element
w; € W¥ such that Cysng(w;) = Ker(H® N G' on W¥)—in fact, every
element #0 will do. By Lemma 6.3 then, there exists an element

U; = Vi = Wg‘ ®F(HginG’)FG,
such that Cs(v;) = Ker(G’ on V;). Setting v = Zv;, it follows that
Ce(v) = O Co(v;)

= N Ker(G'onV;) (since V=2 @V,)

Ker(G' on V)
1 (since V is faithful)

Therefore Co(v) N G' = 1, i.e., there exists an embedding Cs(v) &
G/G’, which is an abelian group. Hence (ii) holds. Now assume p a Fermat
prime. Then |F*| is a power of 2, so H/K is a 2-group; by Lemma 6.2, G
is a 2-group. Therefore the conditions of Lemma 7.2 are satisfied (with
D = K) and (iii) follows.

(III) Identify W with E and H/K with TA. If |G:H| is a power of 2,
then (iii) follows again from Lemma 7.2, since Cy(15)/K = T is a 2-group
and E is a permutation module over FI' by the normal basis theorem.

So assume that |G: H| is not a power of 2. Since 2 = [I| | |G|, p must
be an odd prime. If p = 3, then |[E¥ = 8, so |H/K| | 16, and G is a 2-
group by Lemma 6.2. But this contradicts the assumption on |G: H|. Hence
p > 3. Let G' be as before and put U = H N G’; so UK/K is a subgroup
of TA. We distinguish two cases:

(@ UK/K<A
(B) UK/K ¥ A.

(e) This means that U acts on E by multiplication, so E is an EU-
module. Since p > 3, it follows from Remark 5.3 that |E*| is not a prime
power, so we use the same argument as in case (II) to show that (ii) holds.
In doing so, observe that

E ®ry FG' = E Qgy EG'IFG'

and similarly for the conjugate modules in the Mackey decomposition of
VIFG'.

(B) Itis easy to check that (I'A)’ = Im ¢, where ¢ : A — A is defined
by ¢(a) = a'?. By (Il), |A| = d(p + 1) for some d | p — 1. Hence
|Ker ¢| = g.c.d. (A], p — 1) | 2d, so there is a subgroup B < (TA)’
oforder 4(p + ). Now H' < HN G' = U, so B < (TA) = (H/K)' =
H'K/K < UK/K = U/UNK which is nilpotent, since U is nilpotent.

Let b € B by an element of prime order r. By assumption (B), there is an
element ya € UK/K, where 1 # y € I'. Conjugation with ya is an inner
automorphism of order 2 in UK/K, and b” = b?. If b* = b, thenr|p —



208 REINHARD KNORR

1. Since r also divides |B| = 3(p + 1), this forces r = 2. On the other
hand, if b # b, then the nilpotency of UK/K implies r = 2, since ya acts
trivially on all Sylow-subgroups of UK/K except (possibly) the Sylow-2-
subgroup.

Thus we have shown that B is a 2-group. This of course implies that p =
2|B| — 1 is a Mersenne prime, and that E*/F* is a 2-group.

Now let s be the largest prime dividing |G: H|. By assumption, s > 2, and
by Lemma 6.1 (i), there is a subgroup G, of G such that |G,:H| = s. Put
V: = E Qpy FG,. We will show that 8(Cg,(v,), V;) contains a square for
a suitable element v; € V. Once this is done, (i) will follow from Proposition
4.6. Therefore, there is no loss in assuming G = G, and V = V;, so we
drop the subscript.

Since T acts trivially on F* and E*/F* is a 2-group, it is clear that H/K
is nilpotent. Put N = N cc H?; then N < G and there is a homomorphism
a: N — Il,eg X H®/K®. Since

Kera = (| K¥ = Ker(Gon V) = 1,
gEG

this implies that N is nilpotent, so the Sylow-2-subgroup M of N is char-
acteristic in N, hence M <| G. The 2’'-Hall group G,, is normal in G since
G is supersolvable [10, Satz 9.1] and M N G,, = 1, so m € M commutes
with any element ¢ € G of odd order.

Let S be a Sylow-s-subgroup of G and choose x € S\ H. Then

Zli=0,..,5 -1}

is a set of H-coset representatives in G, so any element in V can be written
as Z;¢; ® x' for suitable e; € E. Let {1, e} be an F-basis of E and let
v=1®1 + Zle ® x and C = Cs(v).

We claim that C N N = 1. Let us first show that it is a 2-group: if n €
C N N, then

LRI+ D e®@x =v

i£0

vn

1kn®1+ D ex'nx ™' ® x',

i#0

$0 1zn = 1z and ex'nx™" = e for i # 0. Since |Cx(1g)/K| = |Cule)/K| =
2, this forces x'n*x~" € K for all i. Therefore

<E e; (@.rc")n2 = 2 exn’x @x' = 2 6@ x'

i

for all ¢; € E. This means n*> € Ker(G on V) = 1 and shows C N N <
M.

But then any n € C N N commutes with x (which is of odd order), so

1gn = 1z and e = ex'nx™' = en implies n € K, since {lg, e} is an F-basis
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of E. The argument used above then shows n = 1, thereby proving the
claim,
Now it is easy to see that 8(C, V) contains a square: by Proposition 4.5,

8 = 8(G, V) = 8H, E)Y*° §G:H)* = 8§G:H),

since 8(H, E)®¢ = 15. So certainly 8|c = 8(G:H)|¢ and it is enough to
check that 8(c) = 8(G: H)(c) mod p for all ¢c € C. For ¢ = 1, both characters
have value 1. In general, 8(G:H)(c) | 8(c), and if ¢ # 1, then ¢ & N,
the kernel of the permutation action of G on [G:H], so &G:H)(c) =
0 mod p.

This finishes the proof.

7.4 THEOREM. Let G be a p-solvable group such that a p'-Hall-group
of G is supersolvable. If B is a p-block of G with defect d, then k(B) < p°.

Proof. We use Fong-Nagao reduction (see [8] and [14]) as presented by
Gow in [9, Theorem 1.3]. Therefore, it is enough to consider the situation
described in Proposition 7.3. In case (ii) of 7.3, we are done by Theorem
3.7. In case (iii), we know from Proposition 4.9 that §|c contains an
P-square, where £ = Z D Z a witha = §(1 + i\/;)) and p an odd prime.
If0 # x = a + ba € &, then

x> = a® + b* + ab +%(p -3)=d+b +ab=1.
Therefore, Proposition 4.3 applies in case (iii) and clearly also in case (i);
it follows that (y8, y)c = k(C) for any generalized character y of C with
(1) # 0 mod p. So the condition of Theorem 2.2 is satisfied and the assertion

follows.
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