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ON SPECTRAL DECOMPOSITION OF CLOSED
OPERATORS ON BANACH SPACES

BY

WANG SHENGWANG AND I. ERDELYI

This paper is concerned with presenting some necessary and sufficient
conditions for a closed operator to have the spectral decomposition property.
We refer to [2] for notations and terminology, but for convenience we repeat
some definitions.
Throughout this paper, T is a dosed operator with domain Dr and range in

a Banach space over the complex field C. Let N denote the set of natural
numbers and let Z/ N t3 {0}. If S is a set then S is the closure, Sc is the
complement, Int S is the interior and we denote by covS the collection of all
finite open covers of S. Without loss of generality, we assume that for S c C,
every { Gi)’=0 covS has, at most, one unbounded set Go. A set S C is
said to be a neighborhood of oo, in symbols S Voo, if ff is compact in C.
Given T, o(T) is the spectrum, oa(T) is the approximate point spectrum,
p(T) is the resolvent set and R(. ;T) is the resolvent operator. If A is a
bounded operator then poo(A) denotes the unbounded component of p(A). If
T has the single valued extension property (SVEP), then or(x), Or(x) and
x(-) denote the local spectrum, the local resolvent set and the local resolvent
function, respectively, at x X.

For S C, we shall make an extensive use of the spectral manifold

(1) x(r, s) (x x: o (x) s ).

We write Inv T for the lattice of the subspaces of X which are invariant
under T. For Y InvT, TIY is the restriction of T to Y and 7 T/Y
denotes the coinduced operator by T on the quotient space X/Y. The coset
=x+ Y is a vector in X/Y and D iff Dr . If f is an
X-valued function then the function f has the range in X/Y.

1. Introduction

In this section, certain basic notions pertaining to the spectral theory will be
touched upon and some preliminary results will be established to be used in
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the subsequent theory. First, we re-examine the single valued extension
property in the spirit of an earlier work by Finch [3].

1.1. THEOREM. Given T, for every x X and ho C, the following asser-
tions are equivalent:

(i) There is a neighborhood of o and an analytic function f: -o Dr such
that

(h- T)f(X) x on .
(ii) There are numbers M > O, R > 0 and a sequence (a }n---o c Dr, with

the following properties:

(a) (h 0 T)ao x; (b)(h0 Z)an+
(c) Ilall -< MRn, n Z+

Proofi (i) (ii). We may assume that

8= {XC" IX-X01 <r}

for some r > 0. Let

(1.3) f(h) E an(h0
n-----0

be the pow_er series expansion of f. By decreasing r, we may assume that (1.3)
holds on and r < 1. Then, for

Ilallr ---, 0 as n ---}

Hence, there is M > 0 such that

(1.4) [[anllrn<M, nZ+.

For R r-x, (1.4) implies (1.2)(c). By taking h 20 in (1.1) and (1.3), one
obtains (1.2)(a). Furthermore, it follows from (1.3) that

1 fo f(h) dh Z+"an ---- 8(XO_ k)n+l
n

In view of (1.1), one can write

(h o T)f(h) (ho h)f(h) + (h- T)f(h) (ho h)f(h) + x.
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T being closed, one obtains a" Dr (n Z+) and

1 fo (’o- r)f(X) dX
(h- T)a"+x 2ri n (X-1 f(X) d,

an

This proves (1.2)(b).
(ii) (i). In view of (1.2)(c), the power series (1.3) defines a function f,

analytic on

C’lX-Xol <-
Thus, for

k

n-----0

one obtains

k

(X-- Z)fk(X ) E (X-- T)an(Xo- X)
n=0

k

E (Xo- Tla’(Xo-X)"
n.O

k

x + . a._l(Xo
n=l

=X--ak(XO--X) k+l.

k

E an(XO- X) n+l

n=0

k

E a,,(,o X)
n----O

Since T is closed and for all h 8,

fk(h) f(h) and ak(ho X) k+x 0 ask ,
we have

f(h) Dr and(X- T)f(h) =x for allh8.

1.2. COROLLARY. T does not have the SVEP iff there exists X o C and
there are numbers M > O, R > 0 and a sequence (a’)=o c Dr such that

(X o T)ao 0; (’o- T)a,,+ a’; Ilall MR", n Z+

and a. 4:0 for n sufficiently large.
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Proof. T does not have the SVEP iff there is a neighborhood of some
ho C such that

(1.5) (A-T)f(A)=O and f(h)0on.

In view of Theorem 1.1, the situation described by (1.5) occurs iff the
properties expressed by the corollary hold, for x 0. r

Another consequence of Theorem 1.1 is [3, Theorem 2], asserting that T
does not have the SVEP if there exists h 0 C such that 0 T is surjective
but not injective.

Next, we recall some definitions and related properties. The spectral maxi-
mal space concept [4] admits two distinct extensions to the case of unbounded
operators.

1.3. DEFINITION. Given T, Y Inv 7" is called a spectral maximal space of
T if, for any Z Inv T, the inclusion o(TIZ) c o(T Y) implies Z c Y.
Y Inv T with Y Dr is said to be a T-bounded spectral maximal space

if, for any Z Inv T, the inclusions Z c Dr, o(TlX) c o(T Y) imply Z c Y.
If T has the SVEP and if, for compact F c C, X(T, F) is closed then

(1.6) X(T, F) E(T, F) X(T, ).

Here, E(T, F) is a T-bounded spectral maximal space [2]. If T has the SVEP
and if, for closed F c C, X(T, F) is closed then X(T, F) is a spectral
maximal space of T. In this case, for disjoint dosed F and compact F2 we
have [2]

(1.7) x(r, X(r, fl) * Z(r,

and if both F and F2 are compact, then

z(r, u Z(r, rl) Z(r,

Two additional types of invariant subspaces will be useful later on.

1.4 DEFINITION [7], [5]. Given T, Y Inv T is said to be T-absorbent if,
for any y Y and .any o(T Y), the condition (,- T)x =y implies
xY.
Y Inv T is called analytically invariant under T if, for every analytic

Dr-valued function f defined on an open D c C, (,- T)f(A) Y implies
f(A) Yon O.

In particular, every spectral maximal space of T as well as each T-bounded
spectral maximal space is T-absorbent [2]. If Y is any of the subspaces
introduced by Definitions 1.3 and 1.4, then a(T Y) a(T).
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2. The spectral decomposition property

In this section we study some local properties of a general type of spectral
decomposition.

2.1 DEFINITION. T is said to have the spectral decomposition property
(SDP) if, for every {Gi)..0 covo(T) with GO V, there exists (Y/}7=0 c
Inv T satisfying the following conditions:

(I) Y c Dr, if G is relatively compact (1 < < n);
(II) o(TI Y,.) c G, 0 _< < n;

(III) X 27-0 Y.

Remarks
consider

Without any deviation from the above defined notion, we may

{G },-o e cov C,

and replace (II) by
(If’) o(T Y,.) C Gi, O < < n.
In terms of spectral maximal and T-bounded spectral maximal spaces, the

decomposition (III) can be expressed by
n

(2.1) X X(T, o) + E E(T, ).

Note that (2.1) implies conditions (I), (II) and (III) above. Even a two-sum-
mand decomposition (n 1) of T implies the SDP [6].

2.2 DEFINITION. All operator T is said to have property (r) if
(a) T has the SVEP;
(b) X(T, F) is dosed for all dosed F c C.

A slightly strengthened version of Bishop’s condition (/3) [1, Definition 8],
as expressed by the following definition, will greatly enhance the study of the
spectral decomposition problem.

2.3 DEFINITION. T has property (fl) if, for any sequence { fn: G Dr) of
functions, analytic on an open G c C, (X T)fn(X) ---, 0 (as n --, ) in the
strong topology of X and uniformly on every compact subset of G implies that

fn(X) --, 0 in the strong topology of X and uniformly on every compact subset
of G.

In contrast to [8, 4.16-4.18], the above definition does not require that Tf,
be analytic for each n. Property (fl) implies property (r). Clearly, it implies
the SVEP. Also, if T has property (/3) then, for closed F c C, X(T, F) is
dosed (e.g., [8, Corollary 4.18]).
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2.4 LEMMA. Given T, let Y Inv T be such that Y c Dr and T/Y is
closed. If T has the SVEP and o(TI Y) c3 o() is nowhere dense in C, then Y is
analytically invariant under T.

Proof.
tion

Let f: Df - Dr be analytic on an open Df c C and satisfy condi-

(- r)f(h) Y for allhD.
We may assume that D, is connected. By the canonical map X X/Y, we
have

(A 7)f(A) 8 on Dy.

By [6, Lemma 3.2], there is an analytic function h: Dh( Dr) Dr such that
() f(,) and (- T)h(,) is analytic on Dh. Likewise Dr, Dh can be
assumed to be a connected open set.

First, suppose that Dh CI p(T Y) : . The function g: Dh C p(TI Y) X,
defined by g(,) (, T)h(A), is analytic and

implies that g(,) Y on D n t(TI Y). Then

(k T)[h(k) R(X; TIY)g(X)] 0

and the SVEP of T implies

h(X) R(}t; TIY)g(X) c Y on Dh t3 p(TIY).

Thus, h(,) Y on Dh, by analytic continuation. Since f(A) and () agree
on Dh, we have f(,)- h(,) Y on Dh. Thus, f(,) Y on Dh and hence
f(h) Y on Dr, by analytic continuation.

Next, assume that Dh o(T Y). Since, by hypothesis, Dh p(7) : it
follows from (, 7) (A) that (A) 6 on Dh t9 (7). Therefore,
f(X) 0, i.e. f() Yon D,, by analytic continuation, t3

2.5. L.Ma. Given a subspace Y of X, let H, K be open disks with K c H. If
f: V X/Y is an analytic function on a neighborhood V of H, then there exists
an analytic function h: H X such that

m h (X)II a max f( ,)11,
XK

where A is a constant.
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Proof Let

H= {X" IX-hol <R}, K= {X" IX-Xll <r}

for XoC,xlH,0<r<r+ IX0-hl[ <Randlet

[(x) E a (x- Xo) with (cn) c X/Y

be the power series expansion of Choose p to satisfy r + IX o Xll < p < R.
By the Cauchy inequality, we have I111 < MR -n, where M
maxxllf(h)ll. For every n, choose a t such that Ilall -< 2lltll and
define

h(X) E an(X--
n----0

Then h is analytic on H and since K c (X: I X ol < p }, we have

max-lih(X) II-< IlanllP" < 2M E
XK n=0 n=0

h max_llflX) II,

where A 2R/(R 0).

2.6. THEOREM. Given T, suppose that for every pair of open disks G, H with
G c H, there exists Z Inv T such that

(a) o(r Z) c GC;
(b) T T/Z is bounded in X/Z and o(T) c H.

Then T has property ( fl ).

Proof. Let (fn) be a sequence of Dr-valued analytic functions on an open
GO such that

(X- T)f(X)0 (n o0)

in the strong topology of X and uniformly on every compact subset of Go. We
may assume that GO { X: I1 < R) for some R > 0. Choose the numbers
Ro,R1,R2suchthat0<Ro<Rl<R2<Randlet

g-- (X" IXl-< Ro),G= (X" IXl < R1), H= (X" IXl < R2}.

By hypothesis, there exists Z Inv T satisfying conditions (a) and (b) for G
and H. It follows from (2.2) that

(x- -> 8
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in the strong topology of X/Z and uniformly on H Since OH c p(7), we
have

(.3) (x)

in the strong topology of X/Z and uniformly on OH. By the maximum
principle, the convergence (2.3) is uniform on H. Furthermore, since T is
bounded,

(2.4) 7) (k)

in the strong topology of X/Z and uniformly on H.
The graph G(T) of T is closed in X X and G(TI Z) is closed in Z Z.

The mapping

[x 7x + (lz)] - (x + z) (rx + z)

of G(T)/G(TIZ) into G(7) c X/Z) (X/Z) is both injective and surjec-
tive. Since T is bounded, G(T) is closed and hence it follows from the
inequalities

that z is a topological isomorphism.
Since , f(,) 7)(X) is analytic on a neighborhood of if, so is

Evidently, z-l() 7) is a G(T)/G(TlZ)-valued function. Consequently,
one can find a G(T)-valued analytic function h,, Th defined on H such
that

It follows from Lemma 2.5 that one can choose h such that

(2.5) maxl[h (X) Th (X)II < Amax[l-l[f(A) a 7(2,)]

for some A > 0. Clearly, both h
H. Thus,

and Th,, are analytic and f (t ) j( ) on

h,(X) -f,(X) Z on H.
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In view of (2.3) and (2.4),

(2.6) )(X) 7(,) -o i

uniformly on H. By (2.5) and (2.6),

h,(,) --, 0 and Th,(,)

uniformly on K. It follows from (2.2) and (2.7) that

(2.8) (x- r)[h.(X)-f.(X)] -, 0 (,- o)

uniformly on K. Since K c G and o(TIZ) Gc, we have K c p(TIZ) and
then (2.8) implies that

h.(X) L(X) - 0 (, -
uniformly on K. Thus, by (2.7), f,()) --, 0 uniformly on K. Since R 0 < R is
arbitrary, it follows that T has property (fl).

Remark. In Theorem 2.6, the inclusion in (b) can be replaced by o(7) c G

2.7. COROLLARY. If T has the SDP then T has property (fl).

Proof Let G, H be open disks with G c H. Since ((G) c, H} covo(T),
there exist Y, Z Inv T such that

X= Y+ Z, o(T Y) C H, Yc Dr, o(TIZ) c (G-) C G.
Since p(T Y q Z) D poo(TI Y) Hc, we have o(T Y N Z) c H. The coin-
duced operators T T/Z and 7 (T[ Y)/Y Z being similar, 2? is bounded
and

o(7) o() c o(TI Y) o(TlYt3 Z) c H.

Thus, T satisfies the hypotheses of Theorem 2.6 and hence T has property
(/). r

Next, we quote a property which will be used in characterizations of
operators with the SDP (Theorems 2.9, 2.10).

2.8. THEOREM [10]. Let T have the SDP. Then, for every Y Inv T with
o(TI Y) 4= C, the coinduced operator T/Y is closed. In particular, if Y is a
spectral maximal space of T or a T-bounded spectral maximal space, then

o( ) o(r ) ’o(1).
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Moreover, if Y is a spectral maximal space and o(T)-o(TI Y) is compact,
then is bounded.

Some characterizations of closed operators with the SDP now follow.

2.9. THEOREM. Given T, the following assertions are equivalent.
(I) T has the SDP.

(II) (a) T has property
(b) for every compact F Voo 7 T/X(T, F) is closed and

o(7) c (Int F) c.

(III)
(2.9)

For every relatively co_top.act open G c C, there is Y Inv T such that
Y Dr, o(T[ Y) G, T T/Y is closed and o(7) Gc.

Proof (I) (II). ^Corollary 2.7 implies (II)(a). Let F c C be compact. If
Int F , then o(T) c C (Int F)c. Suppose that Int F 4: . By [9, Theo-
rem 1.6], we have

Int F c o(T) c Int F o(T) c o[TIE(T, F)].

Then, with the help of Theorem 2.8, we obtain

o(7) o(T) oLTI_(T, F)] c o(T) [Int F f3 o(T)] c (Int F) .
(II) (III). This follows for Y E(T, G)
(III) (I). First, we show that T has the SVEP. Let f:

analytic and such that
Df-- DT be

(2.10) (, T)f(, ) 0 on an open DI C.

We may suppose tha_t Df is connected. Choose G C open and relatively
compact such that G D;. By hypothesis, there exists Y Inv T satisfying
(2.9). In view of (2.10), we have

(2.11)

Since G c p(7), (2.11)implies that f(A)= 0 on G and hence f(A)= 6 on

D,, by analytic continuation._Thus, f(,) Y on Dr. It follows from (2.10)
and the inclusion o(TI Y) G that f(A) 0 on Df- G and hence f(,) 0
on D,, by analytic continuation. Therefore, T has the SVEP.
Now, let (Go, Gx) covo(T) with Go Voo. Put G Go c3 G and note

that there is Y Inv T satisfying the conditions in (2.9). By Lemma 2.4, Y is
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analytically invariant under T and hence o(T] Y) c o(T). Then,

o() c o(T) u o(rl r)

and, by the last of (2.9),

o(7 c n 0(7") n o(v)] u n o(r)l.

The spectral sets G n o(T), G n o(T) are d)sjoint and the former is com-
pact. By the functional calculus, there are Z0, Z Inv 7 satisfying conditions

X/Y 20 1, 1 c De, o(f[i) c Gf n o(T), j i; i, j O, 1.

The subspaces Z { x X, x , i } (i 0,1) are invariant under T
and X Zo + Z1. Furthermore, we have

o(TlZ,) c o(TI ) u o(li) c (u [Gf n o(T)] c , j 4= i; i, j O, 1.

Since Y c Dr and 1 C De, it follows from the definition of Zx that Z c Dr.
Thus, T has the SDP. []

2.10. THEOREM. Given T, the following assertions are equivalent:
(i) T has the SDP.
(ii) (a) T has property (x);

(b) for every closed F Vo, T T/X(T, F) is bounded and

o(7) c (Int F)C;

(iii)
(2.12)

For every relatively compact open G c C, there is Y Inv T such that
T/Y is bounded, o(T Y) G and o()

Proof. (i) (ii).
Theorem 1.6] to write

T has property (x), by Corollary 2.7. We quote [9,

(2.13) Int F n o(r) c Int F n o(T) c o[TIX(T, F)].

It follows from (2.13) that o(T) o[TIX(T, F)] is compact and hence 7 is
bounded by Theorem 2.8. Furthermore, with the help of (2.13) we obtain

o(7) o(r) o[TIX(T, F)] c o(r) [Int F n o(T)] c (Int F) c.
(ii) (iii). This follows directly for G F and Y X(T, F).
(iii) (i). T has property (), by Theorem 2.6. Let (Go, G1) covC

with GO V. Select an open H V such that H c GO and {H, G)
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cov C. The open set

s (o)C u

is relatively compact and, by hypothesis, there exists Y Inv T satisfying the
conditions in (2.12). Since

C- GonH n G1= ,
there are o, 1 Inv producing the decomposition

X/Y 20 + 21, o(712o) c H n G1, (7]) c C ( c G.

Define the subspaces Zi= ( x X,x ., - Zi) = Inv T (i=0,1) and
obtain

(2.14)
(2.15)
(2.16)

X=Z0+ Z1;

o(TlZ0) c (120) u o(TI Y) c ;
o(TIZ) c o(71) u o(TI Y) c !-/c U G.

Hence Zo X(T, Go), by (2.15) and it follows from (2.16) and (1.7) that

Z1 X(T, HU G) _(T, Hc) X(T, G) c _(T, (1) + X(T, ro).

Thus, we infer from (2.14) that

x x(r, + =_(r,

and hence T has the SDP.
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