A BACKWARD HARNACK INEQUALITY AND FATOU THEOREM FOR NONNEGATIVE SOLUTIONS OF PARABOLIC EQUATIONS

BY
Eugene B. Fabes ${ }^{1}$, Nicola Garofalo ${ }^{2}$ and Sandro Salsa ${ }^{2}$

Introduction

It is not an uncommon happening in the development of elliptic and parabolic p.d.e. that resolution of a problem first appears in the elliptic case and shortly after there is an attempt to adapt the techniques to the corresponding parabolic problem. In the majority of cases the adaptation succeeds with relative ease; but when it does not succeed so readily, or even not at all, a new and hopefully interesting insight into solutions of the parabolic problem is needed.

Such is the case in the study of the classical Fatou theorem for solutions, $u(x, t)$, of a parabolic partial differential equation of the form

$$
L u(x, t) \equiv \sum_{i, j=1}^{n} D_{x_{i}}\left(a_{i j}(x, t) D_{x_{j}} u(x, t)\right)-D_{t} u(x, t)=0 .
$$

In particular, we consider solutions, u, defined in the cylinder $D_{+} \equiv D x(0, \infty)$, $D \subset \mathbf{R}^{n}$, which are nonnegative there and we want to study their pointwise boundary behavior, especially at points on the lateral boundary, $S_{+} \equiv$ $\partial D x(0, \infty)$.

The assumptions on the operator L and domain $D \subset \mathbf{R}^{n}$ are as follows:
(i) The matrix $\left(a_{i j}(x, t)\right)$ is bounded, measurable, symmetric, and uniformly positive definite, i.e., there exists $\lambda>0$ such that for all $x \in \mathbf{R}^{n}, \xi \in \mathbf{R}^{n}$ and $t>0$,

$$
\lambda|\xi|^{2} \leq \sum_{i, j=1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j} \leq(1 / \lambda)|\xi|^{2}
$$

(ii) D is a bounded Lipschitz domain in \mathbf{R}^{n}.

[^0]In [2] the question of boundary values for nonnegative solutions of elliptic equations in a Lipschitz domain was studied. It was shown that if

$$
L u \equiv \sum_{i, j=1}^{n} D_{x_{i}}\left(a_{i j}(x) D_{x_{j}} u(x)\right)=0 \quad \text { in } D
$$

and $u \geq 0$ there, then at points $P \in \partial D$ which belong to the complement of a "small" exceptional set the pointwise limit of $u(x)$ exists provided x converges to P within a truncated cone contained in the domain and with vertex at P, i.e., $\lim _{x \rightarrow P} u(x)$ exists provided $x \rightarrow P$ nontangentially. The assumptions on the matrix, $\left(a_{i j}(x)\right)$ were, as above, the boundedness, measurability symmetry, and uniform positive definiteness. The "small" exceptional set, E, of boundary points at which the nontangential limits fail to exist is a set of L-harmonic measure zero; i.e., for each $x \in D, \omega^{x}(E)=0$ where $\omega^{x}(d P)$ is the unique finite Borel measure on ∂D such that for all $\varphi \in C(\partial D)$ the potential

$$
u(x)=\int_{\partial D} \varphi(P) \omega^{x}(d P)
$$

is the solution to the Dirichlet problem $L u=0$ in $D,\left.u\right|_{\partial D}=\varphi$.
When we attempted to adapt the techniques in [2] to the parabolic problem an interesting difficulty occurred. Essential to the proof of the Fatou theorem in the elliptic case was the "doubling" property of L-harmonic measure, $\omega^{x_{0}}$, with x_{0} fixed inside D. This means that the measure of a surface ball, $\Delta_{r}(P)$, of radius r and center P and the measure of its concentric double, $\Delta_{2 r}(P)$, are equivalent, or, more precisely,

$$
\omega^{x_{0}}\left(\Delta_{2 r}(P)\right) \leq C \omega^{x_{0}}\left(\Delta_{r}(P)\right)
$$

with C independent of r and P. The corresponding doubling property for the L-caloric measure, $\omega^{x_{0}}, T_{0}$ in the parabolic case (see Section 0) seems difficult to establish and it is, in fact, equivalent to the existence of a "backward" Harnack inequality for nonnegative solutions of parabolic equations which vanish on the entire lateral surface, $S_{+}=\partial D x(0, \infty)$. (See Theorem 2.4 and the remark following it.)

The normal Harnack inequality for nonnegative solutions, $u(x, t)$, of $L u=0$ in D_{+}states that values of u inside D and at time t_{1} are controlled or bounded by the value of u at any fixed point inside D and at a later time $t_{2}>t_{1}$. This bound can be taken to be independent of u. (See Theorem 0.2. It is also assumed that t_{1} stays at some positive distance from the initial time, $t=0$.) We point out in Section 1 that when the nonnegative solution, u, vanishes on the entire lateral boundary of D_{+}then this forward Harnack inequality can be reversed, i.e., values of u inside D and at time t_{2} are
controlled or bounded by the value of u at any fixed point inside D and at an earlier time t_{1}. Once again the bound does not depend on u, and t_{1} is assumed to stay at a positive distance from $t=0$. Another way of expressing this interior backward Harnack inequality is the statement

$$
\sup _{K} u \leq c_{K} \inf _{K} u
$$

where K is any compact subset of D_{+}. We emphasize that this Harnack is valid uniformly in u only when u belongs to the class of nonnegative solutions which vanish on $S_{+}=\partial D x(0, \infty)$. It is not true for arbitrary nonnegative solutions and, interestingly, it requires also the boundedness of the domain, D. (See Theorem 1.3 and the remark following it.)

As we have already indicated, a backward Harnack inequality is closely related to the doubling property of L-caloric measure. However, for the doubling property a form of the backward Harnack inequality stronger than the interior one described above is required; namely, one must be able to compare values of a solution at points near the boundary. Specifically one needs to prove that in the class of solutions, $u \geq 0$, which vanish on the lateral boundary, S_{+},

$$
\sup _{K_{r}} u \leq \inf _{K_{r}} u
$$

where $K_{r}=\left\{(x, t):\left|x-x_{0}\right|<r,\left|t-t_{0}\right|<r^{2}\right\}$ is contained in $D_{\delta} \equiv$ $D x(\delta, \infty), \delta>0$, and $\operatorname{dist}\left(\left\{\left|x-x_{0}\right|<r\right\}, \partial D\right)$ is equivalent to r. Here c must be found independent of u and K_{r}. This "backward Harnack at the boundary" and the ensuing Fatou Theorem for general nonnegative solutions of $L u=0$ in D_{+}are shown in Section 2 to hold in the special case of parabolic operators with time independent coefficients. These results in the general case remain an open problem.

0. Definitions and known results

In this section we set up the notation and recall some known results that will be used throughout the paper.

Our basic domain is a cylinder $D_{T}=D x(0, T)$ with Lipschitzian cross-section D. We call a bounded domain $D \subset \mathbf{R}^{n}$ a Lipschitz domain if for each $Q \in \partial D$ there exists a ball, $B_{r_{0}}$, centered at Q and a coordinate system of \mathbf{R}^{n} such that in these coordinates,

$$
B_{r_{0}} \cap D=B_{r_{0}} \cap\left\{\left(x^{\prime}, x_{n}\right) \mid x^{\prime} \in \mathbf{R}^{n-1}, x_{n}>\varphi\left(x^{\prime}\right) \text { where }\|\nabla \varphi\|_{L^{\infty}} \leq m\right\}
$$

and

$$
B_{r_{0}} \cap \partial D=B_{r_{0}} \cap\left\{\left(x^{\prime}, \varphi\left(x^{\prime}\right)\right) \mid x^{\prime} \in \mathbf{R}^{n-1}\right\}
$$

We will assume the radius of the ball, $B_{r_{0}}$, and the constant m independent of $Q \in \partial D$. These two numbers, r_{0} and m, determine what is called the Lipschitz character of D.

With S_{T} we indicate the lateral surface of the cylinder D_{T}, i.e., $S_{T}=\partial D \times$ $(0, T)$. The parabolic boundary of D_{T} is $\partial_{P} D_{T}=S_{T} \cup(D x\{0\})$. Analogously we set $D_{+}=D \times(0,+\infty), S_{+}=\partial D \times(0,+\infty)$ and $\partial_{p} D_{+}=S_{+} \cup(D \times$ $\{0\}$).

For $(Q, s) \in \partial_{p} D_{T}$ and r positive we define

$$
\begin{gathered}
\Psi_{r}(Q, s)=\left\{(x, t)\left|0<t<T,|x-Q|<r,|t-s|<r^{2}\right\}\right. \\
\Delta_{r}(Q, s)=\partial_{p} D_{T} \cap \bar{\Psi}_{r}(Q, s)
\end{gathered}
$$

and call $\Delta_{r}(Q, s)$ a parabolic surface box with radius r and center at (Q, s).
If $Q \in \partial D$ is represented by $\left(x_{0}, \varphi\left(x_{0}\right)\right)$ in the above mentioned local coordinates we set

$$
\begin{aligned}
& \bar{A}_{r}(Q, s)=\left(x_{0}^{\prime}, \varphi\left(x_{0}^{\prime}\right)+r, s+2 r^{2}\right) \\
& \underline{A}_{r}(Q, s)=\left(x_{0}^{\prime}, \varphi\left(x_{0}^{\prime}\right)+r, s-2 r^{2}\right)
\end{aligned}
$$

Theorem 0.1 (Energy estimate, see [1]). Let u be a nonnegative sub-solution of L in the cylinder $B_{2 r}\left(x_{0}\right) \times\left(t_{0}-4 r^{2}, t_{0}+4 r^{2}\right)$. Then

$$
\begin{aligned}
& \max _{\left|t-t_{0}\right|<r^{2}} \int_{\left|x-x_{0}\right|<r} u^{2}(x, t) d x+\int_{t_{0}-r^{2}}^{t_{0}+r^{2}} \int_{\left|x-x_{0}\right|<r}\left|\nabla_{x} u(x, t)\right|^{2} d x d t \\
& \quad \leq \frac{C}{r^{2}} \int_{t_{0}-4 r^{2}}^{t_{0}+4 r^{2}} \int_{\left|x-x_{0}\right|<2 r} u^{2}(x, t) d x d t
\end{aligned}
$$

where C depends only on λ, n.
Theorem 0.2 (Harnack Principle [1]). Let u be a nonnegative solution of $L u=0$ in D_{T}, and let D^{\prime} be a convex sub-domain of D such that $\operatorname{dist}\left(D^{\prime}, \partial D\right)$ $=\delta>0$. Then for all $x, y \in D$ and $0<s<t \leq T$ we have

$$
u(y, s) \leq u(x, t) \exp \left[c\left(\frac{|x-y|^{2}}{t-s}+\frac{t-s}{R}+1\right)\right]
$$

where $C=C(\lambda, n)$ and $R=\min \left(1, s, \delta^{2}\right)$.
Theorem 0.3 (Carleson Estimate [5]). Let $(Q, s) \in \partial_{p} D_{T}, s<T$, and u be a nonnegative solution of $L u=0$ in D_{T} which continuously vanishes on $\Delta_{2 r}(Q, s)$. Then there exists a constant $C=C\left(\lambda, n, m, r_{0}\right)$ such that for $r \leq r_{0}$ and
$(x, t) \in \Psi_{r}(Q, s)$,

$$
u(x, t) \leq C u\left(\overline{A_{r}}(Q, s)\right)
$$

For a $\varphi \in C\left(\partial_{p} D_{T}\right)$ we can uniquely solve the boundary value problem

$$
\begin{equation*}
L u=0 \quad \text { in } D_{T},\left.\quad u\right|_{\partial_{p} D_{T}}=\varphi . \tag{DP}
\end{equation*}
$$

For each $(x, t) \in D_{T}$ the L-caloric measure $\omega^{(x, t)}$ is the unique probability Borel measure on $\partial_{p} D_{T}$ with the property that the function

$$
u(x, t)=\int_{\partial_{p} D_{T}} \varphi(Q, s) d \omega^{(x, t)}(Q, s)
$$

is the unique solution of (DP). Observe that Theorem 0.2 implies that for $x, y \in D$ and $0<s<t \leq T, \omega^{(y, s)} \ll \omega^{(x, t)}$.

By the results in [1] there exists a unique Green's function $G(x, t ; \zeta, \tau)$ for the problem

$$
\begin{equation*}
L u=f \quad \text { in } D_{T},\left.\quad u\right|_{\partial_{p} D_{T}}=0 \tag{0.1}
\end{equation*}
$$

Thus for $f \in L^{q}\left(0, T ; L^{p}(D)\right)$, and suitable q, p,

$$
\begin{equation*}
u(x, t)=\int_{0}^{T} \int_{D} G(x, t ; \zeta, \tau) f(\zeta, \tau) d \zeta d \tau \tag{0.2}
\end{equation*}
$$

represents the unique solution of (0.1). Moreover Aronson's estimates (see [1]) imply that if $\Gamma(x, t ; \zeta, \tau)$ is the fundamental solution of $L u=0$ in the whole space, then there are constants $\alpha_{1}, \alpha_{2}, C_{1}, C_{2}$ depending only on λ, n such that for all $x, \xi \in \mathbf{R}^{n}$ and $t>\tau$,

$$
\begin{equation*}
C_{1} \gamma_{1}(x-\xi ; t-\tau) \leq \Gamma(x, t ; \xi, \tau) \leq C_{2} \gamma_{2}(x-\xi ; t-\tau) \tag{0.3}
\end{equation*}
$$

where γ_{i} is the fundamental solution of $L_{i}=D_{t}-\alpha_{i} \Delta$. The same estimates hold for the Green's function $G(x, t ; \xi, \tau)$ for a bounded cylinder D_{T}; what is different in this case, however, is that α_{1}, C_{1} depend in general on the distances of x, ξ from ∂D and on T while α_{2}, C_{2} do not contain such dependencies.

1. Estimates for the \boldsymbol{L}-caloric measure and comparison theorems for nonnegative solutions

It is known that to get information on the boundary behavior of nonnegative solutions of second-order elliptic equations which vanish on a part of the boundary one is led to study the corresponding elliptic measure and its
regularity properties in a neighborhood of such a boundary zone. In this context it turns out that the fact that "all nonnegative solutions which are zero on a part of the boundary actually vanish at the same rate" is equivalent to the so-called doubling condition. This is a regularity property satisfied by the elliptic measure and can be stated as follows: "The elliptic measure of a surface box of radius $2 r$ is equivalent to the elliptic measure of a box of radius r ". To prove this property one has to make explicit the relation between elliptic measure and Green's function, and the main tools to get this are a boundary form of the Harnack Principle and estimates on the Green's function.

For parabolic equations the situation is much more complicated, essentially due to the evolution nature of the latter which is reflected in a time-lag in the Harnack Principle and non self-adjointness of the operator. As a consequence the relation between caloric measure and Green's function is weaker than the elliptic analogue and presents a backward time-lag.

In this section we establish this relation together with comparison results for nonnegative solutions vanishing on a part of the parabolic boundary. In Section 2, when dealing with time-independent operators, we will be able to overcome the above mentioned difficulties establishing the doubling condition. This turns out to be equivalent to an elliptic-type form of the Harnack Principle at the boundary for the Green's function.

We begin with stating a useful consequence of Theorem 0.3.
Theorem 1.1. Let $(Q, s) \in \partial_{p} D_{T}$ and let u be a nonnegative solution of $L u=0$ in D_{T} that continuously vanishes on $\partial_{p} D_{T} \backslash \Delta_{r / 2}(Q, s)$. Then there exists a constant $C=C\left(\lambda, n, m, r_{0}\right)$ such that for r sufficiently small, depending on $T-s$ and for each $(x, t) \in D_{T} \backslash \Psi_{r}(Q, s)$ we have

$$
\begin{equation*}
u(x, t) \leq C u\left(\overline{A_{r}}(Q, s)\right) \tag{1.1}
\end{equation*}
$$

Proof. We provide the proof only for the case $s>0$. The case $s=0$ is treated in the same way and we leave the details to the reader. By the maximum principle it suffices to prove (1.1) when $(x, t) \in \partial \Psi_{r}(Q, s)$ and $t>s-\frac{1}{4} r^{2}$. Fix $\delta \in(0,1)$ small enough depending on the Lipschitz character of D so that for each $(\bar{Q}, \bar{s}) \in \partial \Psi_{r}(Q, s) \cap S_{T}, \Psi_{2 \delta r}(\bar{Q}, \bar{s}) \cap \Psi_{r / 2}(Q, s)=\varnothing$ and $\bar{s}+2 \delta^{2} r^{2}<s+2 r^{2}$. By Theorem 0.3, for each such (\bar{Q}, \bar{s}) we have

$$
\begin{equation*}
u(x, t) \leq C u\left(\bar{A}_{\delta r}(\bar{Q}, \bar{s})\right) \tag{1.2}
\end{equation*}
$$

for each $(x, t) \in \Psi_{\delta r}(\bar{Q}, \bar{s})$, where c depends only on λ, n, m, r_{0}. Harnack's Principle provides a constant C depending on λ and n such that for

$$
(\bar{Q}, \bar{s}) \in \partial \Psi_{r}(Q, s) \cap \partial_{p} D_{T}
$$

we have

$$
\begin{equation*}
u\left(\bar{A}_{\delta r}(\bar{Q}, \bar{s})\right) \leq C u\left(\overline{A_{r}}(Q, s)\right) \tag{1.3}
\end{equation*}
$$

(1.2), (1.3) and a covering argument imply that (1.1) holds on

$$
\partial_{p} \Psi_{r}(Q, s) \cap\{(x, t): \operatorname{dist}(x, \partial D) \leq c r\}
$$

where $c>0$ and depends only on the Lipschitz character of D. We use again the Harnack inequality to get (1.1) on the remaining part of $\partial \Psi_{r}(Q, s)$ which lies strictly inside D_{T}.
Q.E.D.

Corollary 1.2. With the hypothesis of Theorem 1.1 there is a constant C depending on λ, n, m, r_{0} such that for r small enough (say $r<\frac{1}{2} \sqrt{T-s}$ and $\left.r<r_{0}\right)$ and $(x, t) \in D_{T} \backslash \Psi_{r}(Q, s)$,

$$
\begin{equation*}
u(x, t) \leq C u\left(\overline{A_{r}}(Q, s)\right) \omega^{(x, t)}\left(\Delta_{2 r}(Q, s)\right) \tag{1.4}
\end{equation*}
$$

Proof. As in the proof of Theorem 1.1 it is enough to get the bound

$$
\begin{equation*}
\omega^{(x, t)}\left(\Delta_{2 r}(Q, s)\right) \geq C \tag{1.5}
\end{equation*}
$$

for each $(x, t) \in \partial \Psi_{r}(Q, s)$, with C having the above dependence. (1.5) is a consequence of uniform Hölder continuity at the boundary of nonnegative solutions of $L u=0$ vanishing at the boundary and the fact that

$$
\omega^{(x, t)}\left(\Delta_{2 r}(Q, s)\right) \equiv 1 \quad \text { on } \Delta_{2 r}(Q, s) . \quad \text { Q.E.D. }
$$

Theorem 1.1 implies an elliptic-type Harnack inequality which holds inside D_{T} and that we may formulate in the following way.

ThEOREM 1.3. Let u be a nonnegative solution of $L u=0$ in D_{+}which continuously vanishes on S_{+}, and for $\delta \in\left(0, \min \left(\frac{1}{2} r_{0}, \frac{1}{2} \sqrt{T}\right)\right)$ set

$$
D_{\delta}=\{x \in D \mid \operatorname{dist}(x, \partial D)>\delta\}, D_{\delta, T}=D_{\delta} \times\left(\delta^{2}, T\right)
$$

There exists a positive constant $C=C\left(\lambda, n, m, r_{0}, \delta, \operatorname{diam} D, T\right)$ such that

$$
\begin{equation*}
\max _{\overline{D_{\delta, T}}} u \leq C \frac{\min }{\bar{D}_{\delta, T}} u . \tag{1.6}
\end{equation*}
$$

Proof. Since $u \in C\left(\bar{D}_{\delta, T}\right)$ there exist $\left(X_{0}, T_{0}\right)$ and $\left(X_{1}, T_{1}\right)$ belonging to $\bar{D}_{\delta, T}$ such that $u\left(X_{0}, T_{0}\right)=\min _{\bar{D}_{\delta, T}} u, u\left(X_{1}, T_{1}\right)=\max _{\bar{D}_{\delta, T}} u$. Let $D_{\delta, T}^{*}$ denote the cylinder $D \times\left(\frac{1}{2} \delta^{2}, T\right]$. It is clear that $D_{\delta, T} \subset \subset D_{\delta, T}^{*}$. If $(Q, s) \in S_{T}$ and
$s=\frac{1}{2} \delta^{2}$ then $D_{T} \cap \Psi_{\delta / 2}(Q, s) \subset D_{\delta / 2, T}^{*} \backslash \bar{D}_{\delta, T}$, and also $s+\frac{1}{4} \delta^{2}=\frac{3}{4} \delta^{2}$. By the Carleson estimate (Theorem 0.3), applied to the box $D_{T} \cap \Psi_{\delta / 2}(Q, s)$, we get for all $(x, t) \in D_{T} \cap \Psi_{\delta / 4}(Q, s)$,

$$
\begin{equation*}
u(x, t) \leq C_{1} u\left(\bar{A}_{\delta / 4}(Q, s)\right) \tag{1.7}
\end{equation*}
$$

where C_{1} depends on λ, n, m, and r_{0}. The Harnack inequality provides a constant $C_{2}=C_{2}(\lambda, n, \delta, \operatorname{diam} D, T)$ such that for all $(Q, s) \in S_{T}$ with $s=\frac{1}{2} \delta^{2}$,

$$
\begin{equation*}
u\left(\bar{A}_{\delta / 4}(Q, s)\right) \leq C_{2} u\left(X_{0}, T_{0}\right) \tag{1.8}
\end{equation*}
$$

By (1.7), (1.8) we get

$$
\begin{equation*}
u\left(x, \frac{1}{2} \delta^{2}\right) \leq C_{3} u\left(X_{0}, T_{0}\right) \tag{1.9}
\end{equation*}
$$

for all $x \in D$ such that $\operatorname{dist}(x, \partial D) \leq \delta / 4$. Again by the Harnack inequality we find a constant $C_{4}=C_{4}(\lambda, n, \delta, \operatorname{diam} D, T)$ such that

$$
\begin{equation*}
\max _{D_{\delta / 4} \times\left\{\delta^{2} / 2\right\}} u \leq C_{4} u\left(X_{0}, T_{0}\right) \tag{1.10}
\end{equation*}
$$

Since $u \equiv 0$ on S_{T} by (1.9), (1.10) and the maximum principle we get

$$
\begin{equation*}
\max _{D_{\delta, T}^{*}} u \leq C u\left(X_{0}, T_{0}\right) \tag{1.11}
\end{equation*}
$$

with $C=\max \left(C_{3}, C_{4}\right)$. To conclude the proof observe that $u\left(X_{1}, T_{1}\right) \leq$ $\max _{D_{\delta, T}^{*}} u$.
Q.E.D.

Remark. Theorem 1.3 may fail to hold if one drops either the boundedness of the base D of D_{+}, or the fact that u vanishes identically on S_{+}. In fact, in the first case if $D=\mathbf{R}^{n}$ for example, and

$$
u(x, t)=\frac{e^{-\left|x+x_{0}\right|^{2} / 4 t}}{(4 \pi t)^{n / 2}}
$$

then u is a solution of $L u=\Delta u-u_{t}=0$ in $\mathbf{R}^{n} \times(0, T), T>1$. If $x=$ $\left(x_{1}, \ldots, x_{n}\right)$ is fixed so that $x_{i}>0$ for each $i=1, \ldots, n$, taking $x_{0}=$ $\left(x_{01}, x_{2}, \ldots, x_{n}\right)$ we get

$$
\frac{u(0,1)}{u(x, 1)}=e^{|x|^{2} / 4} e^{\left\langle x, x_{0}\right\rangle / 2} \rightarrow 0
$$

as $x_{01} \rightarrow-\infty$. This shows that the boundedness of D is necessary.

To see that the "cooling" condition $u=0$ on S_{+}is necessary too, one can consider, in the case $n=1$, the situation typified in the diagram, where $D_{\delta, T}$ is as in the statement of Theorem 1.3.

For each $\varepsilon>0$, we let u_{ε} be the solution of $L u=0$ in D_{T} corresponding to the boundary values assigned as in the diagram. Since the maximum of u over $D_{\delta, T}$ is strictly bigger than a positive constant independent of ε while the minimum there is less than or equal to ε, (1.6) cannot hold uniformly in ε.

We now establish the main relation between the L-caloric measure and the Green's function.

Theorem 1.4. Let $(Q, s) \in S_{T}$, then for r sufficiently small, say

$$
r<\min \left(\frac{1}{2} r_{0}, \frac{1}{2} \sqrt{s}, \frac{1}{2} \sqrt{T-s}\right)
$$

and each $(x, t) \in D_{T}$ with $s+4 r^{2} \leq t \leq T$ we have

$$
\begin{equation*}
C^{-1} r^{n} G\left(x, t ; \bar{A}_{r}(Q, s)\right) \leq \omega^{(x, t)}\left(\Delta_{r}(Q, s)\right) \leq C r^{n} G\left(x, t ; \underline{A}_{r}(Q, s)\right) \tag{1.12}
\end{equation*}
$$

where C is a constant which depends solely on λ, n, r_{0}, m and T.
Proof. Pick $\varphi \in C_{0}^{\infty}\left(\mathbf{R}^{n+1}\right)$ such that $\varphi \geq 0$ and

$$
\varphi= \begin{cases}1 & \text { in } \Psi_{r}(Q, s) \\ 0 & \text { outside } \Psi_{6 r / 5}(Q, s)\end{cases}
$$

For $(x, t) \in D_{T}$ with $t \geq s+4 r^{2}$ we have

$$
\begin{align*}
& \omega^{(x, t)}\left(\Delta_{r}(Q, s)\right) \tag{1.13}\\
& \quad \leq \int_{\partial_{p} D_{T}} \varphi(\bar{Q}, \bar{s}) d \omega^{(x, t)}(\bar{Q}, \bar{s})-\varphi(x, t) \\
& \quad=\iint_{D_{T}}\left[\sum_{i, j} a i_{j}(\xi, \tau) D_{\xi_{i}} G(x, t ; \xi, \tau) D_{\xi j} \varphi(\xi, \tau)\right. \\
& \left.\quad+G(x, t ; \xi, \tau) D_{\tau} \varphi(\xi, \tau)\right] d \xi d \tau
\end{align*}
$$

Observing that $\left|D_{\xi_{j}} \varphi\right| \leq c / r,\left|D_{\tau} \varphi\right| \leq c / r^{2}$, by Schwarz's inequality we get

$$
\begin{align*}
\omega^{(x, t)}\left(\Delta_{r}(Q, s)\right) \leq & C r^{n / 2}\left(\iint_{\Psi_{6 r / 5}(Q, s) \cap D_{T}}\left|\nabla_{\xi} G(x, t ; \xi, \tau)\right|^{2} d \xi d \tau\right)^{1 / 2} \tag{1.14}\\
& +c r^{-2} \iint_{\Psi_{6 r / 5}(Q, s)} G(x, t ; \xi, \tau) d \xi d \tau
\end{align*}
$$

with C depending only on λ, n. Theorem 0.1 gives

$$
\begin{align*}
& \left(\iint_{\Psi_{6 r / s}(Q, s)}\left|\nabla_{\xi} G(x, t ; \xi, \tau)\right|^{2} d \xi d \tau\right)^{1 / 2} \tag{1.15}\\
& \quad \leq \frac{C}{r}\left(\iint_{\Psi_{s_{r / 4}(Q, s)}} G(x, t ; \xi, \tau)^{2} d \xi d \tau\right)^{1 / 2}
\end{align*}
$$

after having extended $G(x, t ; \cdot, \cdot)$ to be zero outside D_{T}, which makes it a sub-solution of $L^{*}=\sum_{i, j=1}^{n} D_{\xi_{j}}\left(a_{i j} D_{\xi_{i}}\right)+D_{\tau}$. Using the analogue of Theorem 0.3 for nonnegative solutions of $L^{*} v=0$, for each $(x, t) \in D_{T}$ with $t \geq s+4 r^{2}$ and $(\xi, \tau) \in \Psi_{5 r / 4}(Q, s)$ we get

$$
\begin{equation*}
G(x, t ; \xi, \tau) \leq C G\left(x, t ; \underline{A}_{r}(Q, s)\right) \tag{1.16}
\end{equation*}
$$

where $C=C\left(\lambda, n, r_{0}, m, T\right)$. (1.14), (1.15) and (1.16) give the right-hand side of (1.12).

For the left-hand side of (1.12) we first note that

$$
G(x, t ; \xi, \tau) \leq C_{2} \gamma_{2}(x-\xi ; t-\tau)
$$

where C_{2} and γ_{2} are defined in Section 0 . Now choose δ depending on m (the

Lipschitz constant) such that if $\left(Q_{r}, s_{r}\right)$ represents the point $\overline{A_{r}}(Q, s)$, then the cylinder

$$
\Phi_{r}=\left\{(x, t)| | x-Q_{r} \mid<\delta_{r}, s_{r}<t<s_{r}+\delta^{2} r^{2}\right\}
$$

is contained in D_{T} and $s_{r}+\delta^{2} r^{2}<s+4 r^{2}$. Using the above estimate on G, for $(x, t) \in \partial \Phi_{r}$ and $t>s_{r}$ we get

$$
\begin{equation*}
r^{n} G\left(x, t ; \overline{A_{r}}(Q, s)\right) \leq C . \tag{1.17}
\end{equation*}
$$

On the other hand (see Lemma 4.2 in [5] for example) for all such points we get

$$
\begin{equation*}
\omega^{(x, t)}\left(\Delta_{r}(Q, s)\right) \geq C \tag{1.18}
\end{equation*}
$$

By the maximum principle, observing that $G\left(x, t ; \bar{A}_{r}(Q, s)\right)=0$ if $t=s_{r}$ and $x \neq Q_{r}$, and (1.17), (1.18) we get the left-hand side of (1.12).
Q.E.D.

Before stating the next result we need to introduce some notation. For a point $(Q, s) \in S_{T}$ and r small enough let $\alpha_{r}(Q, s)$ and $\beta_{r}(Q, s)$ be the sets

$$
\begin{aligned}
& \alpha_{r}(Q, s)=\partial_{p}\left(\Psi_{r}(Q, s) \cap D_{T}\right) \backslash \partial_{p} D_{T} \\
& \beta_{r}(Q, s)=\left\{(y, t)=\left(y^{\prime}, y_{n}, t\right) \in \partial_{p} \Psi_{r}(Q, s) \mid y_{n} \geq \varphi\left(y^{\prime}\right)+b r\right\}
\end{aligned}
$$

where $b \in(0,1)$ is fixed and φ is the function which describes ∂D around Q. Observe that $\operatorname{dist}\left(\beta_{r}(Q, s), S_{T}\right)$ is equivalent to $b r$.

With ω_{r} and G_{r} we indicate the L-caloric measure and the Green's function relative to the domain $\Psi_{r}(Q, s) \cap D_{T}$.

Lemma 1.5. Let $(Q, s) \in S_{T}$ and $r<\min \left(\frac{1}{2} r_{0}, \frac{1}{2} \sqrt{s}, \frac{1}{2} \sqrt{T-s}\right)$. Then there exists a positive constant $C=C\left(\lambda, n, r_{0}, m\right)$ such that

$$
\begin{equation*}
\omega_{r}^{(x, t)}\left(\alpha_{r}\right) \leq C \omega_{r}^{(x, t)}\left(\beta_{r}\right) \tag{1.19}
\end{equation*}
$$

for each $(x, t) \in \Psi_{r / 8}(Q, s) \cap D_{T}$.
Proof. Set $U_{r}=\left(\Psi_{r / 2}(Q, s) \backslash \Psi_{r / 4}(Q, s)\right) \cap D_{T}$ and pick $\varphi \in C^{\infty}\left(\mathbf{R}^{n+1}\right)$ such that $\varphi \equiv 1$ outside $\Psi_{r / 2}(Q, s)$ and $\varphi \equiv 0$ inside $\Psi_{r / 4}(Q, s)$. As in Theorem 1.4, for $(x, t) \in \Psi_{r / 8}(Q, s) \cap D_{T}$ we have

$$
\begin{align*}
\omega_{r}^{(x, t)}\left(\alpha_{r}\right) \leq & \int_{\partial_{p}\left(\Psi_{r}\left(Q, s \cap D_{\tau}\right)\right)} \varphi(y, s) d \omega_{r}^{(x, t)}(y, s)-\varphi(x, t) \tag{1.20}\\
= & \iint_{U_{r}}\left[a_{i j}(\xi, \tau) D_{\xi i} G_{r}(x, t) ; \xi, \tau\right) D_{\xi j} \varphi(\xi, \tau) \\
& \left.\quad+G_{r}(x, t ; \xi, \tau) D_{\tau} \varphi(\xi, \tau)\right] d \xi d \tau
\end{align*}
$$

Following the same argument as in Theorem 1.4, for $(x, t) \in \Psi_{r / 8}(Q, s)$ we get

$$
\begin{equation*}
\omega_{r}^{(x, t)}\left(\alpha_{r}\right) \leq C G_{r}\left((x, t) ; \underline{A}_{r / 2}(Q, s)\right) r^{n} . \tag{1.21}
\end{equation*}
$$

Now, for each $(x, t) \in \Psi_{r / 8}(Q, s) \cap D_{T}$, a maximum principle argument similar to that used for proving (1.12) gives

$$
\begin{equation*}
r^{n} G_{r}\left(x, t ; \underline{A}_{r / 2}(Q, s)\right) \leq C \omega_{r}^{(x, t)}\left(\beta_{r}\right) \tag{1.22}
\end{equation*}
$$

(1.21) and (1.22) imply (1.19).
Q.E.D.

Theorem 1.6 (Local comparison theorem). Let $(Q, s) \in S_{T}$ and u, v be two positive solutions of $L u=0$ in $\Psi_{2 r}(Q, s) \cap D_{T}$ vanishing continuously on $\Delta_{2 r}(Q, s)$. Then there exists a constant $C=C\left(\lambda, n, r_{0}, m\right)$ such that for r sufficiently small, say $r<\min \left(\frac{1}{2} r_{0}, \frac{1}{2} \sqrt{s}, \frac{1}{2} \sqrt{T-s}\right)$, and $(x, t) \in \Psi_{r / 8}(Q, s) \cap$ D_{T} we have

$$
\begin{equation*}
\frac{u(x, t)}{v(x, t)} \leq C \frac{u\left(\bar{A}_{r}(Q, s)\right)}{v\left(\underline{A}_{r}(Q, s)\right)} \tag{1.23}
\end{equation*}
$$

Proof. By Theorem 0.3,

$$
\begin{equation*}
u(x, t) \leq C u\left(\overline{A_{r}}(Q, s)\right) \tag{1.24}
\end{equation*}
$$

for each $(x, t) \in \Psi_{r}(Q, s) \cap D_{T}$; hence, by the maximum principle for each $\operatorname{such}(x, t)$

$$
\begin{equation*}
u(x, t) \leq C u\left(\overline{A_{r}}(Q, s)\right) \omega_{r}^{(x, t)}\left(\alpha_{r}\right), \tag{1.25}
\end{equation*}
$$

where $\omega_{r}, \alpha_{r}, \beta_{r}$ have the same meaning as in Lemma 1.5. If $(x, t) \in \beta_{r}$, Harnack's inequality implies

$$
\begin{equation*}
v(x, t) \geq C v\left(\underline{A}_{r}(Q, s)\right) \tag{1.26}
\end{equation*}
$$

and using the maximum principle again we have

$$
\begin{equation*}
v(x, t) \geq C v\left(\underline{A}_{r}(Q, s)\right) \omega_{r}^{(x, t)}\left(\beta_{r}\right) \tag{1.27}
\end{equation*}
$$

for each $(x, t) \in \Psi_{r}(Q, s) \cap D_{T}$. From (1.25), (1.27) and Lemma 1.5 we get (1.23).
Q.E.D.

Remark. Exchanging the roles of u and v in 1.23, we obtain

$$
\begin{equation*}
\frac{1}{C} \frac{u\left(\underline{A}_{r}(Q, s)\right)}{v\left(\overline{A_{r}}(Q, s)\right)} \leq \frac{u(x, t)}{v(x, t)} \leq C \frac{u\left(\overline{A_{r}}(Q, s)\right)}{v\left(\underline{A}_{r}(Q, s)\right)} \tag{1.28}
\end{equation*}
$$

for $(x, t) \in \Psi_{r / 8}(Q, s) \cap D_{T}$. (1.28) gives a precise control on the quotient of two positive solutions vanishing on a portion of the lateral boundary. Information of this kind cannot be obtained for positive solutions which vanish on a portion of the base of D_{T}. As the following counterexample shows, one cannot hope to decide that two nonnegative solutions vanishing on a part of the base actually go to zero at an equivalent rate as $t \rightarrow 0^{+}$. Let $D=B_{1}(0)$, the unit ball in \mathbf{R}^{n}, and assume $a_{i j} \in C^{\infty}\left(\mathbf{R}^{n+1}\right)$; then the solution of the problem

$$
\begin{equation*}
L u=0 \text { in } D_{+},\left.\quad v\right|_{S_{+}}=g, v(x, 0)=0, x \in D \tag{1.29}
\end{equation*}
$$

is represented by the potential

$$
u(x, t)=\int_{0}^{t} \int_{\partial D} K(x, t ; Q, s) g(Q, s) d Q d s
$$

where $K=\partial G / \partial N_{Q}$, the conormal derivative of the Green's function, i.e., $N_{Q}=A(Q) n_{Q}$ and n_{Q} is the inward pointing normal to ∂D at Q. Let u_{α} and u_{β} denote the solutions of (1.29) corresponding to the lateral data $g=s^{\alpha}$ and $g=s^{\beta}$ respectively. Assume $\alpha<\beta$; then

$$
\begin{align*}
u_{\alpha}(x, t) & =\int_{0}^{t} \int_{\partial D} K(x, t ; Q, s) s^{\alpha} d Q d s \tag{1.30}\\
& >\frac{1}{t^{\beta-\alpha}} \int_{0}^{t} \int_{\partial D} K(x, t ; Q, s) s^{\beta} d Q d s \\
& =\frac{u_{\beta}(x, t)}{t^{\beta-\alpha}}
\end{align*}
$$

for each $(x, t) \in D_{+}$. (1.30) implies

$$
\begin{equation*}
\frac{u_{\alpha}(x, t)}{u_{\beta}(x, t)}>\frac{1}{t^{\beta-\alpha}} \rightarrow+\infty \quad \text { as } t \rightarrow 0 \tag{1.31}
\end{equation*}
$$

for each fixed x in D, which proves the remark.
As a by-product of Theorems 1.3 and 1.6 we get the following:
Theorem 1.7 (Global comparison theorem). Let u, v be two nonnegative solutions of $L u=0$ in D_{+}which continuously vanish on S_{+}, and for

$$
\delta \in\left(0, \min \left(\frac{1}{2} r_{0}, \frac{1}{2} \sqrt{T}\right)\right)
$$

define

$$
D_{\delta, T}^{*}=D \times\left(2 \delta^{2}, T-\delta^{2}\right)
$$

Then there exists a positive constant $C=C\left(\lambda, n, m, r_{0}, \delta, \operatorname{diam} D, T\right)$ such that

$$
\begin{equation*}
v\left(X_{0}, T\right) u(x, t) \leq C u\left(X_{0}, T\right) v(x, t) \tag{1.32}
\end{equation*}
$$

for all $(x, t) \in D_{\delta, T}^{*}$, where $X_{0} \in D$ is fixed.
Proof. It is clear that for each $(Q, s) \in \partial D \times\left(2 \delta^{2}, T-\delta^{2}\right)$,

$$
\psi_{\delta / 2}(Q, s) \cap D_{T} \subset D \times\left(\delta^{2}, T-\frac{3}{4} \delta^{2}\right)
$$

We now use a covering argument similar to that of the proof of Theorem 1.3. There is a finite number of points $\left(Q_{j}, s_{j}\right) \in \partial D \times\left(2 \delta^{2}, T-\delta^{2}\right), j=$ $1, \ldots, p$, such that the family of boxes $\Psi_{\delta 2}\left(Q_{j}, s_{j}\right) \cap D_{T}$ covers $\partial D \times\left(2 \delta^{2}, T\right.$ $-\delta^{2}$). Apply Theorem 1.6 to each of these boxes to get

$$
\begin{equation*}
v\left(\underline{A}_{\delta / 4}\left(Q_{j}, s_{j}\right)\right) u(x, t) \leq C_{1} u\left(\bar{A}_{\delta / 4}\left(Q_{j}, s_{j}\right)\right) v(x, t) \tag{1.33}
\end{equation*}
$$

for all $(x, t) \in \Psi_{\delta / 32}\left(Q_{j}, s_{j}\right) \cap D_{T}, j=1, \ldots, p$, where C_{1} depends on λ, n, m, r_{0}. The Harnack Principle provides constants C_{2} and C_{3}, depending on $\lambda, n, \delta, \operatorname{diam} D$ and T, such that

$$
\begin{equation*}
u\left(\bar{A}_{\delta / 4}\left(Q_{j}, s_{j}\right)\right) \leq C_{2} u\left(X_{0}, T\right), \quad v\left(\underline{A}_{\delta / 4}\left(Q_{j}, s_{j}\right)\right) \geq C_{3} v\left(X_{0}, \delta^{2}\right) \tag{1.34}
\end{equation*}
$$

for each $j=1, \ldots, p$. By (1.33) and (1.34) we get

$$
\begin{equation*}
v\left(X_{0}, \delta^{2}\right) u(x, t) \leq C_{4} u\left(X_{0}, T\right) v(x, t) \tag{1.35}
\end{equation*}
$$

for all $(x, t) \in D_{\delta, T}^{*}$ such that $\operatorname{dist}(x, \partial D) \leq \delta / 32$. Using a Harnack inequality again we obtain

$$
\begin{equation*}
u(x, t) \leq C_{5} u\left(X_{0}, T\right), \quad v(x, t) \geq C_{6} v\left(X_{0}, \delta^{2}\right) \tag{1.36}
\end{equation*}
$$

for all $(x, t) \in D_{\delta, T}^{*}$ with $\operatorname{dist}(x, \partial D)>\delta / 32$. To complete the proof observe that by Theorem 1.3 there exists $C_{7}=C_{7}\left(\lambda, n, m, r_{0}, \delta, \operatorname{diam} D, T\right)$ such that

$$
v\left(X_{0}, \delta^{2}\right) \geq C_{7} v\left(X_{0}, T\right)
$$

2. Time-independent operators: Boundary backward Harnack principle and non-tangential limits

In this section we specialize the results of Section 1 to the study of time-independent operators. Using a simple time-shifting argument and the results previously achieved we are able to get what we call a boundary
backward Harnack Principle (Corollary 2.2) for nonnegative solutions which vanish on the lateral boundary. This in turn implies the doubling condition (Theorem 2.4), and is actually equivalent to it. Afterwards we establish an estimate (Theorem 2.5), which is suitable to control the Radon-Nikodym derivative of an L-caloric measure with respect to another, i.e. to control the kernel function, which is introduced at this point. As observed by Kemper [4] the notion of kernel function in intimately linked to the principle of positive singularities stated by Emile Picard: "Given a differential operator L, a domain $\Omega \subseteq \mathbf{R}^{n}$ and a point $Q_{0} \in \partial \Omega$, there is a non-trivial nonnegative solution u of $L u=0$, continuously vanishing on $\partial \Omega \backslash\left\{Q_{0}\right\}$. Such u is uniquely determined up to a constant multiple". In our case the existence and uniqueness of the solution called for in the above principle amounts to an equivalent statement for the kernel function, Theorem 2.7. This theorem can also be viewed as an answer to the problem of determining the Martin boundary of a Lipschitz cylinder D_{T} with respect to the class of parabolic operators L we deal with. We can then say: "The Martin boundary of D_{T} with respect to L is (homeomorphic to) the Euclidean parabolic boundary $\partial_{p} D_{T}$ of D_{T} ".

Finally we establish the representation result Theorem 2.11, and use it to study non-tangential limits along the lines of the classical theorem of Fatou.

Theorem 2.1 (Backward Harnack Principle). Let u be a nonnegative solution of $L u=0$ in D_{+}continuously vanishing on S_{+}, and for

$$
\delta \in\left(0, \min \left(\frac{1}{2} r_{0}, \frac{1}{2} \sqrt{T}\right)\right)
$$

let $D_{\delta, T}^{*}$ be defined as in Theorem 1.7. Then there exists a positive constant $C=C\left(\lambda, n, m, r_{0}, \delta, \operatorname{diam} D, T\right)$ such that for $0<r \leq 1$ and all $(x, t) \in D_{\delta, T}^{*}$ we have

$$
\begin{equation*}
u\left(x, t+4 r^{2}\right) \leq C u(x, t) \tag{2.1}
\end{equation*}
$$

Proof. By Theorem 1.7, for all (x, t) in $D_{\delta, T}^{*}$ we get

$$
\begin{equation*}
u\left(X_{0}, T\right) v(x, t) \leq C v\left(X_{0}, T\right) u(x, t) \tag{2.2}
\end{equation*}
$$

where u, v are two nonnegative solutions satisfying the hypothesis of the theorem. Now, let u be the function in the statement of Theorem 2.1 and define $v(x, t)=u\left(x, t+4 r^{2}\right)$. For $(x, t) \in D_{\delta, T}^{*}$, (2.2) implies

$$
\begin{equation*}
u\left(X_{0}, T\right) u\left(x, t+4 r^{2}\right) \leq C u\left(X_{0}, T+4 r^{2}\right) u(x, t) \tag{2.3}
\end{equation*}
$$

Without loss of generality we may assume $u\left(X_{0}, T\right), u\left(X_{0}, T+4 r^{2}\right) \neq 0$. By Theorem 1.3 we find a constant C depending on the above mentioned
parameters such that for $r \leq 1$,

$$
\begin{equation*}
\frac{1}{C} \leq \frac{u\left(X_{0}, T+4 r^{2}\right)}{u\left(X_{0}, T\right)} \leq C \tag{2.4}
\end{equation*}
$$

Then (2.3) and (2.4) give (2.1).
Q.E.D.

Corollary 2.2 (Boundary Backward Harnack Principle). Let u be a nonnegative solution of $L u=0$ in D_{+}continuously vanishing on S_{+}. Choose δ as in Theorem 2.1, and let $(Q, s) \in S_{+}$with $2 \delta^{2}<s<T-\delta^{2}$. Then there exists $C=C\left(\lambda, n, m, r_{0}, \delta, \operatorname{diam} D, T\right)$ such that for $r \leq \delta / 4$,

$$
\begin{equation*}
u\left(\overline{A_{r}}(Q, s)\right) \leq C u\left(\underline{A}_{r}(Q, s)\right) \tag{2.5}
\end{equation*}
$$

Proof. Immediate consequence of Theorem 2.1.
Theorem 2.1 and Corollary 2.2 have, of course, an adjoint companion if one considers $L^{*}=\sum_{i, j=1}^{n} D_{\xi_{j}}\left(a_{i j}(\xi) D_{\xi_{i}}\right)+D_{\tau}$ instead of L. From the adjoint version of Corollary 2.2 we get the following result for the Green's function G for L and D_{T}.

COROLLARY 2.3. There exists a constant $C=C\left(\lambda, n, m, r_{0}, \operatorname{diam} D, T\right)$ such that for all $(Q, s) \in S_{+}$with $0<s<T-\delta^{2}$, and all $r \leq \delta / 4$,

$$
\begin{equation*}
\frac{1}{C} \leq \frac{G\left(X_{0}, T ; \underline{A}_{r}(Q, s)\right)}{G\left(X_{0}, T ; \overline{A_{r}}(Q, s)\right)} \leq C . \tag{2.6}
\end{equation*}
$$

Corollary 2.3 together with Theorem 1.4 have as a consequence the so-called doubling condition for the L-caloric measure which we may state as follows.

Theorem 2.4 (Doubling Condition). Let $\delta \in\left(0, \min \left(\frac{1}{2} r_{0}, \frac{1}{2} \sqrt{T}\right)\right)$. There exists a positive constant $C=C\left(\lambda, n, m, r_{0}, \delta, \operatorname{diam} D, T\right)$ such that for all $(Q, s) \in \partial_{p} D_{T}$ with $0 \leq s \leq T-\delta^{2}$ and for all $r \leq \delta / 4$,

$$
\begin{equation*}
\omega^{\left(X_{0}, T\right)}\left(\Delta_{2 r}(Q, s)\right) \leq C \omega^{\left(X_{0}, T\right)}\left(\Delta_{r}(Q, s)\right) \tag{2.7}
\end{equation*}
$$

Proof. For points $(Q, s) \in S_{T}$ with $0<s<T-\delta^{2}$, the proof is an immediate consequence of (1.12) and (2.6). For points $(Q, 0) \in \bar{D} \times\{0\}$, the proof requires some technical adjustment, but essentially goes through in the same way. We give only an outline leaving the details to the reader. Let \tilde{G} be the Green's function for the cylinder $\tilde{D}_{T}=D \times(-1, T)$. Reasoning as in the proof of Theorem 1.4 one can bound $\omega^{\left(X_{0}, T\right)}\left(\Delta_{r}(Q, 0)\right)$ from above by an integral on a horse-shoe shaped domain involving $G\left(X_{0}, T ; \xi, \tau\right)$, the Green's function with pole at $\left(X_{0}, T\right)$ for L and D_{T}. By the maximum principle
(applied to the adjoint variables (ξ, τ)), $\tilde{G}\left(X_{0}, T ; \xi, \tau\right)$ coincides with $G\left(X_{0}, T ; \xi, \tau\right)$ in D_{T}, therefore we may substitute G with \tilde{G} in the above mentioned integral. By using the Carleson estimate or the Harnack Principle, depending on the distance of Q from ∂D, we get, as for (1.12),

$$
\omega^{\left(X_{0}, T\right)}\left(\Delta_{r}(Q, 0)\right) \leq C r^{n} \tilde{G}\left(X_{0}, T ; \underline{A}_{r}(Q, 0)\right)
$$

where C is independent of r and $\underline{A}_{r}(Q, 0)$ lies below $\Delta_{r}(Q, 0)$. By (2.6) or (1.6), again depending on $\operatorname{dist}(Q, \partial D)$, we get

$$
\begin{aligned}
\omega^{\left(X_{0}, T\right)}\left(\Delta_{r}(Q, 0)\right) & \leq C r^{n} \tilde{G}\left(X_{0}, T ; \overline{A_{r}}(Q, 0)\right) \\
& =C r^{n} G\left(X_{0} T ; \overline{A_{r}}(Q, 0)\right)
\end{aligned}
$$

Now, as in the proof of Theorem 1.4, using the estimates on G, we get the bound from below,

$$
\omega^{\left(X_{0}, T\right)}\left(\Delta_{r}(Q, 0)\right) \geq \frac{1}{C} r^{n} G\left(X_{0}, T ; \overline{A_{r}}(Q, 0)\right),
$$

and this completes the proof.
Q.E.D.

Remark. Observe that, by virtue of (1.12), (2.7) is actually equivalent to (2.6) for points $(Q, s) \in S_{T}$. (2.6), in turn, implies (2.5) if one uses the representation of a solution vanishing on S_{T} as the integral over a cross-section of its values against the Green's function. Precisely, for $r \leq \delta / 4$,

$$
\begin{align*}
u\left(\overline{A_{r}}(Q, s)\right) & =\int_{D} G\left(\bar{A}_{r}(Q, s) ; \xi, \delta^{2}\right) u\left(\xi, \delta^{2}\right) d \xi \tag{2.8}\\
& \leq C \int_{D} G\left(\underline{A}_{r}(Q, s) ; \xi, 2 \delta^{2}\right) u\left(\xi, \delta^{2}\right) d \xi \\
& =C u\left(\underline{A}_{r}(Q, s)\right)
\end{align*}
$$

Therefore we can conlude that: "The doubling condition on the lateral boundary is equivalent to the backward Harnack Principle at the boundary (2.5)".

Theorem 2.5. Let $\delta \in\left(0, \min \left(\frac{1}{2} r_{0}, \frac{1}{2} \sqrt{T}\right)\right),(Q, s) \in \partial_{p} D_{T}$, with $0 \leq s<$ $T-\delta^{2}$, and u, v be two nonnegative solutions of $L u=0$ in D_{+}continuously vanishing on $\partial_{p} D_{+} \backslash \Delta_{r / 2}(Q, s)$. Then there exists a positive constant

$$
C=C\left(\lambda, n, m, r_{0}, \delta, \operatorname{diam} D, T\right)
$$

such that for all $r \leq \delta / 4$,

$$
\begin{equation*}
u\left(X_{0}, T\right) v\left(\overline{A_{r}}(Q, s)\right) \leq C v\left(X_{0}, T\right) u\left(\overline{A_{r}}(Q, s)\right) \tag{2.9}
\end{equation*}
$$

where $X_{0} \in D$ is fixed.
Proof. Since by the maximum principle, $u(x, t)=v(x, t)=0$ for $0 \leq t \leq$ $s-\frac{1}{4} r^{2}$, we may fix the initial time at $t=s+\frac{1}{4} r^{2}$. Therefore, without loss of generality, we only consider the case of $(Q, s) \in \partial_{p} D_{T}$ with either $s=\frac{1}{4} r^{2}$ or $s=0$. In both cases, by Corollary 1.2 there is $C=C\left(\lambda, n, m, r_{0}\right)$ such that for $r \leq \delta / 4$,

$$
\begin{equation*}
u(x, t) \leq C u\left(\overline{A_{r}}(Q, s)\right) \omega^{(x, t)}\left(\Delta_{r}(Q, s)\right) \tag{2.10}
\end{equation*}
$$

for each $(x, t) \in D_{T} \backslash \Psi_{r}(Q, s)$. Now let $v_{r}(x, t)=v\left(x, t+4 r^{2}\right) . v_{r}$ is a nonnegative solution of $L u=0$ in $D_{T-4 r^{2}}$ which is continuous in $D_{T-4 r^{2}}$. We consider the case $s=\frac{1}{4} r^{2}$; the case $s=0$ is easier and we leave the details to the reader. If $Q=\left(Q^{\prime}, Q_{n}\right)$, let $B_{r}=\left(Q^{\prime}, Q_{n}+r, 0\right)$, and choose $\alpha>0$ depending on m such that if

$$
\tilde{\Delta}_{\alpha r}\left(B_{r}\right)=\left\{x \in D| | x-B_{r} \mid<\alpha r\right\}
$$

then

$$
\tilde{\Delta}_{\alpha r}\left(B_{r}\right) \subset D \quad \text { and } \quad \operatorname{dist}\left(\tilde{\Delta}_{\alpha r}, \partial D\right) \cong r
$$

Then we have

$$
\begin{align*}
v_{r}(x, t) & =\int_{\partial_{p} D_{T-4 r^{2}}} v_{r}(\bar{Q}, \bar{s}) d \omega^{(x, t)}(\bar{Q}, \bar{s}) \tag{2.11}\\
& \geq \inf _{\Delta_{\alpha r}\left(B_{r}\right)} v_{r} \cdot \omega^{(x, t)}\left(\tilde{\Delta}_{\alpha r}\left(B_{r}\right)\right)
\end{align*}
$$

By the Harnack inequality there exists C such that

$$
\begin{equation*}
\inf _{\tilde{\Delta}_{\alpha r}\left(B_{r}\right)} v_{r} \geq C v\left(\bar{A}_{r}\right) \tag{2.12}
\end{equation*}
$$

therefore for each $(x, t) \in D_{T-4 r^{2}}$, (2.11) and (2.12) give

$$
\begin{equation*}
v_{r}(x, t) \geq C v\left(\bar{A}_{r}(Q, s)\right) \omega^{(x, t)}\left(\tilde{\Delta}_{r}\left(B_{r}\right)\right) \tag{2.13}
\end{equation*}
$$

By (1.12), (2.6) and the maximum principle we get

$$
\begin{align*}
\omega^{\left(X_{0}, T\right)}\left(\Delta_{r}(Q, s)\right) & \leq C r^{n} G\left(X_{0}, T ; \underline{A}_{r}(Q, s)\right) \tag{2.14}\\
& \leq C r^{n} G\left(X_{0}, T ; \overline{A_{r}}(Q, s)\right) \\
& \leq C \omega^{\left(X_{0}, T\right)}\left(\tilde{\Delta}_{\alpha r}\left(B_{r}\right)\right)
\end{align*}
$$

If we take $(x, t)=\left(X_{0}, T\right)$ in (2.10) and (2.13), and use (2.14), we obtain

$$
\begin{equation*}
u\left(X_{0}, T\right) v\left(\overline{A_{r}}(Q, s)\right) \leq C v\left(X_{0}, T+4 r^{2}\right) u\left(\overline{A_{r}}(Q, s)\right) \tag{2.15}
\end{equation*}
$$

(2.9) now follows from (2.4) and (2.15).
Q.E.D.

Remark. As a particular case of Theorem 2.5, we have the doubling condition (2.7). To see this, take

$$
u(x, t)=\omega^{(x, t)}\left(\Delta_{2 r}(Q, s)\right) \quad \text { and } \quad v(x, t)=\omega^{(x, t)}\left(\Delta_{r}(Q, s)\right)
$$

and use Lemma 4.2 in [5].
We now introduce the notion of kernel function associated to a parabolic operator $L=\sum_{i, j=1}^{n} D_{x_{i}}\left(a_{i j}(x) D_{x_{j}}\right)-D_{t}$ and a Lipschitz cylinder D_{+}. Let $\left(X_{0}, T\right) \in D_{+}$be fixed.

Definition 2.6. We say that a function $K: D_{+} \times \partial_{p} D_{+} \rightarrow \mathbf{R}^{+} \cup\{+\infty\}$ is a kernel function at $(Q, s) \in \partial_{p} D_{+}$(for L and D_{+}) normalized at $\left(X_{0}, T\right)$ if the following conditions are fulfilled:
(i) $K(x, t ; Q, s) \geq 0$ for each $(x, t) \in D_{+}$and $K\left(X_{0}, T ; Q, s\right)=1$;
(ii) $K(\cdot, \cdot ; Q, s)$ is a (weak) solution of $L u=0$ in D_{+};
(iii) $K(\cdot, \cdot ; Q, s) \in C\left(\bar{D}_{+} \backslash\{(Q, s)\}\right)$ and

$$
\lim _{(x, t) \rightarrow\left(Q_{0}, s_{0}\right)} K(x, t ; Q, s)=0 \text { if }\left(Q_{0}, s_{0}\right) \in \partial_{p} D_{+} \backslash\{Q, s\}
$$

If $s \geq T, K(x, t ; Q, s)$ will be taken identically equal to zero.
For domains in \mathbf{R}^{n+1} whose boundary is locally given by the graph of a function that is Lipschitz continuous in space and $\frac{1}{2}$-Hölder in time, and $L=\Delta-D_{t}$, the kernel function has been introduced by Kemper [3], who established its existence and uniqueness. The next theorem extends this result to our setting. We emphasize that our proof of existence and uniqueness of the kernel function is applicable to time-dependent operators, once the doubling condition is available. Before stating the main theorem we need to introduce some notation. If $(Q, s) \in \partial_{p} D_{T}$ and $r>0$ we define

$$
\Phi_{r}(Q, s)=\left\{(x, t)| | x-Q \mid<r, s-r^{2}<t<s+4 r^{2}\right\}
$$

We set $D_{T}^{r}=\left\{(x, t) \in D_{T} \mid t>s\right\} \backslash \Phi_{r}(Q, s)$. Notice that the last definition makes sense even if $s=0$. Now for points $(Q, s) \in \bar{S}_{T}$ fix $b>0$, depending on the Lipschitz constant m, and define

$$
\begin{array}{r}
\beta_{r}(Q, s)=\partial \Phi_{r}(Q, s) \cap\left\{(x, t) \in \partial D_{T}^{r} \mid \text { if } x=\left(x^{\prime}, x_{n}\right)\right. \tag{2.16}\\
\text { then } \left.x_{n} \geq \varphi\left(x^{\prime}\right)+b r\right\}
\end{array}
$$

where φ is the Lipschitz function that locally describes ∂D around Q. Observe that $\operatorname{dist}\left(\beta_{r}(Q, s), S_{T}\right) \cong b r$. If, instead, $(Q, 0) \in D \times\{0\}$, then for r sufficiently small we define $\beta_{r}(Q, 0)$ be the top face of $\partial \Phi_{r}(Q, 0)$, i.e.,

$$
\begin{equation*}
\beta_{r}(Q, 0)=\partial \Phi_{r}(Q, 0) \cap\left\{(x, t) \in \partial D_{T}^{r} \mid t=4 r^{2}\right\} . \tag{2.17}
\end{equation*}
$$

We wish to emphasize that the set β_{r} is suitably defined for applications of Harnack inequality. The reader should be aware that in the proof below we have sometimes preferred, for the sake of readability, to avoid writing cumbersome, but straightforward, details.

Theorem 2.7. There exists a unique kernel function (for L and D_{+}) at $(Q, s) \in \partial_{p} D_{+}, 0 \leq s<T-\delta^{2}$, normalized at $\left(X_{0}, T\right)$.

Proof. The existence part is standard and similar to that given in [3]. The geometry, however, is different. For $r>0$ we let ω_{r} be the L-caloric measure for the domain D_{T}^{r}. For each $n \in \mathbf{N}$ we set: $D_{T}^{n}=D_{T}^{2^{-n}}, \omega_{n}=\omega_{2^{-n}}, \beta_{n}(Q, s)$ $=\beta_{2^{-n}}(Q, s)$, and we define for $(x, t) \in D_{T}^{n}$

$$
\begin{equation*}
K_{n}(x, t)=\frac{\omega_{n}^{(x, t)}\left(\beta_{n}(Q, s)\right)}{\omega_{n}^{\left.X_{0}, T\right)}\left(\beta_{n}(Q, s)\right)} . \tag{2.18}
\end{equation*}
$$

We clearly have $K_{n} \geq 0, L K_{n}=0$ in D_{T}^{n} and $K_{n}\left(X_{0}, T\right)=1$, for each n large enough. Since $D_{T}^{n} \not D_{T}$ as $n \rightarrow \infty$, the Harnack Principle implies that the sequence $\left\{K_{n}\right\}$ is uniformly bounded and equicontinuous on compact subsets of D_{+}. Thus we can find a subsequence, still denoted by $\left\{K_{n}\right\}$, that converges on compact subsets of D_{+}to a nonnegative solution \tilde{K} of $L u=0 . \quad \tilde{K}\left(X_{0}, T\right)$ $=1$. Now, let $\alpha_{n}(Q, s)$ be the set $\partial D_{T}^{n} \cap \partial \Phi_{2^{-n}}(Q, s)$, and $\bar{A}_{n}(Q, s)=$ $\bar{A}_{2^{-n}}(Q, s)$. By Theorem 1.1 and the maximum principle, for each $(x, t) \in D_{T}^{n}$ and for n sufficiently large, say $n \geq n_{0}$, we get

$$
\begin{equation*}
K_{n}(x, t) \leq C K_{n}\left(\bar{A}_{n}(Q, s)\right) \omega_{n}^{(x, t)}\left(\alpha_{n}(Q, s)\right) . \tag{2.19}
\end{equation*}
$$

Now, if $\left(Q_{0}, s_{0}\right) \notin \Delta_{2^{-n_{0}}}(Q, s)$ and (x, t) is near $\left(Q_{0}, s_{0}\right)$, letting $n \rightarrow \infty$ in (2.19) we get (iii). This proves that \tilde{K} is a kernel function.

We now proceed to prove uniqueness. The strategy is to show that if v is another kernel function at (Q, s) normalized at (X_{0}, T), then there is a positive constant $C=C\left(\lambda, n, m, r_{0}, \delta, \operatorname{dim} D, T\right)$ such that for all $(x, t) \in D_{+}$,

$$
\begin{equation*}
v(x, t) \geq C \tilde{K}(x, t ; Q, s) \tag{2.20}
\end{equation*}
$$

From (2.20), the uniqueness of \tilde{K} follows along the lines of Kemper [3].

To prove (2.20), let $v_{r}(x, t)=v\left(x, t+8 r^{2}\right)$. For each $r>0, v_{r} \in C\left(D_{T}^{r}\right)$ so we get

$$
\begin{align*}
v_{r}(x, t) & =\int_{\partial_{p} D_{T}^{r}} v_{r}(\bar{Q}, \bar{s}) d \omega_{r}^{(x, t)}(Q, s) \tag{2.21}\\
& \geq \int_{\beta_{r}(Q, s)} v_{r}(\bar{Q}, \bar{s}) d \omega_{r}^{(x, t)}(\bar{Q}, \bar{s}) \geq \inf _{\beta_{r}(Q, s)} v_{r} \cdot \omega_{r}^{(x, t)}\left(\beta_{r}(Q, s)\right)
\end{align*}
$$

Harnack's inequality provides a constant C_{1} such that for r sufficiently small,

$$
\begin{equation*}
\inf _{\beta_{r}(Q, s)} v_{r} \geq C_{1} v\left(\overline{A_{r}}(Q, s)\right) \tag{2.22}
\end{equation*}
$$

On the other hand, by Theorem 1.1 and the maximum principle, for all $(x, t) \in D_{T}^{r}$ we have

$$
\begin{equation*}
v(x, t) \leq C_{2} v\left(\bar{A}_{r}(Q, s)\right) \omega_{r}^{(x, t)}\left(\alpha_{r}(Q, s)\right) \tag{2.23}
\end{equation*}
$$

where, as before, $\alpha_{r}(Q, s)=\partial D_{T}^{r} \cap \partial \Phi_{r}(Q, s)$. From (2.23) we obtain

$$
\begin{equation*}
1=v\left(X_{0}, T\right) \leq C_{2} v\left(\overline{A_{r}}(Q, s)\right) \omega_{r}^{\left(X_{0}, T\right)}\left(\alpha_{r}(Q, s)\right) \tag{2.24}
\end{equation*}
$$

which gives

$$
\begin{equation*}
v\left(\overline{A_{r}}(Q, s)\right) \geq \frac{1}{C_{2}} \frac{1}{\omega_{r}^{\left(X_{0}, T\right)}\left(\alpha_{r}(Q, s)\right)} \tag{2.25}
\end{equation*}
$$

To complete the proof of (2.20) we need the doubling condition for the L-caloric measures ω_{r}. Suitably modifying the geometrical details of the proofs of Theorems 1.4 and 2.4 we get the existence of a constant C_{3}, depending on $\lambda, n, m, r_{0}, \delta, \operatorname{diam} D$ and T, but not on r, such that for r sufficiently small,

$$
\begin{equation*}
\omega_{r}^{\left(X_{0}, T\right)}\left(\alpha_{r}(Q, s)\right) \leq C_{3} \omega_{r}^{\left(X_{0}, T\right)}\left(\beta_{r}(Q, s)\right) \tag{2.26}
\end{equation*}
$$

Putting together (2.21), (2.22), (2.23), (2.25) and (2.26), for all $(x, t) \in D_{T}^{r}$, we get

$$
\begin{equation*}
v_{r}(x, t) \geq C \frac{\omega_{r}^{(x, t)}\left(\beta_{r}(Q, s)\right)}{\omega_{r}^{\left(X_{0}, T\right)}\left(\beta_{r}(Q, s)\right)} \tag{2.27}
\end{equation*}
$$

Letting $r \rightarrow 0^{+}$in (2.27), we obtain (2.20).
By (2.20), the proof of uniqueness follows along the lines of the analogous proof for the case of the heat operator; see [3].
Q.E.D.

Remark. In the proof of Theorem 2.7 we used the function

$$
\tilde{K}(x, t ; Q, s)=\lim _{n \rightarrow \infty} K_{n}(x, t)
$$

where K_{n} is defined, as in (2.18), as a kernel function at (Q, s) with normalization at $\left(X_{0}, T\right)$. We now define

$$
K(x, t ; Q, s)=\lim _{\delta \rightarrow 0^{+}} \frac{\omega^{(x, t)}\left(\Delta_{\delta}(Q, s)\right)}{\omega^{\left(X_{0}, T\right)}\left(\Delta_{\delta}(Q, s)\right)}
$$

It is easy to check that K is a kernel function at (Q, s) normalized at $\left(X_{0}, T\right)$. By Theorem 2.7, $K=\tilde{K}$ in D_{+}; therefore from now on we will use K instead of \tilde{K}. Also, to avoid cumbersome details, when dealing with the cylinder D_{T} we will always assume K to be normalized at the point $\left(X_{0}, T_{1}\right)=\left(X_{0}, T+1\right)$. In this way we avoid the limitation $0 \leq s<T-\delta^{2}$ in Theorem 2.7.

Corollary 2.8. For fixed $(x, t) \in D_{T}$, the function $(Q, s) \rightarrow K(x, t ; Q, s)$ is continuous on $\partial_{p} D_{T}$.

Proof. Let $\left(Q_{n}, s_{n}\right) \in \partial_{p} D_{T}$ with $\left(Q_{n}, s_{n}\right) \rightarrow(Q, s)$ as $n \rightarrow \infty$, and set

$$
v_{n}(x, t)=K\left(x, t ; Q_{n}, s_{n}\right)
$$

The sequence $\left\{v_{n}\right\}$ is equicontinuous and equibounded in each compact subset of D_{+}; therefore it has a subsequence converging uniformly to a function v on compact subdomains of D_{+}. Since v is a kernel function at (Q, s) normalized at $\left(X_{0}, T_{1}\right)$ we deduce $v(x, t)=K(x, t ; Q, s)$.
Q.E.D.

Lemma 2.9. Let $\left(Q_{0}, s_{0}\right) \in \partial_{p} D_{T}$. For r sufficiently small we have

$$
\begin{equation*}
\lim _{\substack{(x, t) \rightarrow\left(Q_{0}, s_{0}\right) \\(x, t) \in D_{T}}} \sup \left\{K(x, t ; Q, s) \mid(Q, s) \in \partial_{p} D_{T} \backslash \Delta_{r}\left(Q_{0}, s_{0}\right)\right\}=0 \tag{2.28}
\end{equation*}
$$

Proof. We confine ourselves to the case where the point (Q_{0}, s_{0}) belongs to the lateral boundary S_{T}, leaving to the reader the easier consideration of the case $\left(Q_{0}, 0\right) \in D \times\{0\}$. Let Γ be a cone in \mathbf{R}^{n} with vertex at $Q_{0} \in \partial D$ and exterior to D, and set $\Gamma_{T}=\Gamma \times(0, T)$. Define

$$
\Sigma_{r}=\left\{(x, t)| | x-Q_{0}\left|<r / 2,\left|t-s_{0}\right|<r^{2} / 4\right\} \backslash \Gamma_{T}\right.
$$

and let h_{r} be the L-caloric measure for Σ_{r} of the set $D_{T} \cap \partial_{p} \Sigma_{r}$. By Theorem 0.3 , the maximum principle and a Harnack inequality, we have

$$
\begin{equation*}
\sup \left\{K(x, t ; Q, s) \mid(Q, s) \in \partial_{p} D_{T} \backslash \Delta_{r}\left(Q_{0}, s_{0}\right)\right\} \leq C h_{r}(x, t) \tag{2.29}
\end{equation*}
$$

for $(x, t) \in \Sigma_{r} \cap D_{T}$. Now, (2.28) follows from the Hölder continuity of h_{r} and the fact that $h_{r}\left(Q_{0}, s_{0}\right)=0$.
Q.E.D.

Our next result is a theorem of representation for nonnegative solutions of $L u=0$ in D_{T}, where the basic domain D is assumed to be starlike with respect to a point $X_{0} \in D$.

Theorem 2.10. Let D_{T} be a Lipschitz cylinder and suppose that D is starlike with respect to X_{0}. If u is a nonnegative solution of $L u=0$ in D_{+}, there exists a Borel measure ν on $\partial_{p} D_{T}$ (depending on u) such that for each $(x, t) \in D_{T}$,

$$
\begin{equation*}
u(x, t)=\int_{\partial_{p} D_{T}} K(x, t ; Q, s) d \nu(Q, s) \tag{2.30}
\end{equation*}
$$

where K is the kernel function for L and D_{+}, normalized at $\left(X_{0}, T_{1}\right)$.
Proof. Set

$$
u_{r}(x, t)=u\left(x_{r}, t_{r}\right)
$$

where

$$
x_{r}=X_{0}+(1-r)\left(x-X_{0}\right)
$$

and

$$
t_{r}=\left(2 r-r^{2}\right) T_{1}+(1-r)^{2} t
$$

for $0<r<1$. Then u_{r} is in $C\left(\overline{D_{T}}\right)$ and is a solution of $L^{r} u_{r}=0$, where

$$
L^{r}=\sum_{i, j=1}^{n} D_{x_{i}}\left(a_{i j}\left(x_{r}\right) D_{x_{j}}\right)-D_{t}
$$

Therefore if ω_{r} is the L^{r}-caloric measure for D_{+}and K_{r} is the kernel function for L^{r} and D_{+}, normalized at (X_{0}, T_{1}), we have

$$
\begin{equation*}
u_{r}(x, t)=\int_{\partial_{p} D_{T}} K_{r}(x, t ; Q, s) u\left(Q_{r}, s_{r}\right) d \omega_{r}^{\left(X_{0}, T_{1}\right)}(Q, s) \tag{2.31}
\end{equation*}
$$

Notice that, since

$$
\begin{equation*}
\int_{\partial_{p} D_{+}} u_{r}(Q, s) d \omega_{r}^{\left(X_{0}, T_{1}\right)}(Q, s)=u\left(X_{0}, T_{1}\right) \tag{2.32}
\end{equation*}
$$

the family of measures $d \nu_{r}=u_{r} d \omega_{r}^{\left(X_{0}, T_{1}\right)}, 0<r<1$, has finite total mass
equal to $u\left(X_{0}, T_{1}\right)$. Therefore there exists a sequence $r_{j} \rightarrow 1$ such that $u_{r_{j}} d \omega_{r_{j}}^{\left(X_{0}, T_{1}\right)}$ converges weakly to a measure $d \nu$. Now consider $K_{j}=K_{r_{j}}$. For fixed $(Q, s) \in \partial_{p} D_{T}$, there is a subsequence, which we still call K_{j}, converging uniformly on compact subdomains of D_{+}to a function which is easily seen to be the kernel function K for L and D_{+}at (Q, s). Therefore for each $(Q, s) \in \partial_{p} D_{T}$ and $(x, t) \in D_{T}$ we have

$$
K_{j}(x, t ; Q, s) \rightarrow K(x, t ; Q, s)
$$

We now claim that if $\Omega \subset \subset D_{T}$, then

$$
\begin{equation*}
\sup _{\substack{(x, t) \in \Omega \\(Q, s) \in \partial_{p} D_{T}}}\left|K_{j}(x, t ; Q, s)-K(x, t ; Q, s)\right| \rightarrow 0 \quad \text { as } j \rightarrow \infty \tag{2.33}
\end{equation*}
$$

Suppose (2.33) holds; then for $(x, t) \in D_{T}$ fixed we have

$$
K_{j}(x, t ; Q, s) \rightarrow K(x, t ; Q, s) \text { as } j \rightarrow \infty,
$$

uniformly in $(Q, s) \in \partial_{p} D_{T}$, and hence

$$
\begin{aligned}
u(x, t) & =\lim _{j \rightarrow \infty} u_{r_{j}}(x, t)=\lim _{j \rightarrow \infty} \int_{\partial_{p} D_{T}} K_{j}(x, t ; Q, s) d \nu_{r_{j}}(Q, s) \\
& =\int_{\partial_{p} D_{T}} K(x, t ; Q, s) d \nu(Q, s)
\end{aligned}
$$

which would complete the proof. We are therefore left with proving (2.33). Assume it is false; then we can find $\Omega \subset \subset D_{T}, \varepsilon_{0}>0$ and two sequences $\left(x_{m}, t_{m}\right) \in \Omega,\left(Q_{m}, s_{m}\right) \in \partial_{p} D_{T}$, such that

$$
\left(x_{m}, t_{m}\right) \rightarrow(x, t) \in \bar{\Omega},\left(Q_{m}, s_{m}\right) \rightarrow(Q, s) \in \partial_{p} D_{T} \quad \text { as } m \rightarrow \infty
$$

and

$$
\begin{equation*}
\left|K_{j_{m}}\left(x_{m}, t_{m} ; Q_{m}, s_{m}\right)-K\left(x_{m}, t_{m} ; Q_{m}, s_{m}\right)\right|>\varepsilon_{0} \tag{2.34}
\end{equation*}
$$

for all $m \in \mathbf{N}$. On the other hand we have
(i) $K_{j_{m}}\left(x_{m}, t_{m} ; Q_{m}, s_{m}\right)-K_{j_{m}}\left(x, t ; Q_{m}, s_{m}\right) \rightarrow 0$ as $m \rightarrow \infty$ by the equiHölder continuity on Ω of the family of solutions $\left\{K_{j_{m}}\left(\cdot, \cdot ; Q_{m}, s_{m}\right)\right\}$;
(ii) $K_{j_{m}}\left(x, t ; Q_{m}, s_{m}\right)-K(x, t ; Q, s) \rightarrow 0$ as $m \rightarrow \infty$ since the sequence of solutions $\left\{K_{j_{m}}\left(\cdot, \cdot ; Q_{m}, s_{m}\right)\right\}$ is equibounded and equicontinuous on compact subdomains of D_{+}, hence converges to the kernel function at (Q, s) for L and D_{+};

$$
\begin{align*}
K\left(x_{m},\right. & \left.t_{m} ; Q_{m}, s_{m}\right)-K(x, t ; Q, s) \tag{iii}\\
= & \left\{K\left(x_{m}, t_{m} ; Q_{m}, s_{m}\right)-K\left(x, t ; Q_{m}, s_{m}\right)\right\} \\
& -\left\{K(x, t ; Q, s)-K\left(x, t ; Q_{m}, s_{m}\right)\right\}
\end{align*}
$$

and each addend in the last sum goes to zero as $m \rightarrow \infty$ because of the equi-Hölder continuity of the family of solutions $\left\{K\left(\cdot, \cdot ; Q_{m}, s_{m}\right)\right\}$ and the continuity of $K(x, t ; \cdot, \cdot)$ on $\partial_{p} D_{T}$.
(i), (ii), and (iii) contradict (2.34), hence (2.33) is true.
Q.E.D.

The next result is an estimate of the kernel function. Its consequence, Theorem 2.13, constitutes a basic tool when one searches a bound for the non-tangential maximal function in terms of the Hardy-Littlewood maximal function with respect to L-caloric measure.

Theorem 2.11. Let $(Q, s) \in \partial_{p} D_{T}$. Then there exists a constant

$$
C=C\left(\lambda, n, m, r_{0}, \operatorname{diam} D, T\right)
$$

such that for $r \leq r\left(\lambda, n, m, r_{0}, \operatorname{diam} D, T\right)$,

$$
\begin{equation*}
\sup _{(y, \tau) \in \Delta_{r}(Q, s)} K\left(\overline{A_{2 r}}(Q, s) ; y, \tau\right) \leq \frac{C}{\omega^{\left(X_{0}, T_{1}\right)}\left(\Delta_{r}(Q, s)\right)} . \tag{2.35}
\end{equation*}
$$

Proof. For $r \operatorname{small},(y, \tau) \in \Delta_{r}(Q, s)$ and $\varepsilon>0$ define

$$
u(x, t)=\omega^{(x, t)}\left(\Delta_{r}(Q, s)\right), \quad v(x, t)=\omega^{(x, t)}\left(\Delta_{\varepsilon}(y, \tau)\right)
$$

By Theorem 2.5, for ε sufficiently small we have

$$
\begin{equation*}
\omega^{\left(X_{0}, T_{1}\right)}\left(\Delta_{r}(Q, s)\right) \omega^{\bar{A}_{2} r}(Q, s)\left(\Delta_{\varepsilon}(y, \tau)\right) \leq C \omega^{\left(X_{0}, T_{1}\right)}\left(\Delta_{\varepsilon}(y, \tau)\right) \tag{2.36}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\lim _{\varepsilon \rightarrow 0^{+}} \frac{\omega^{\overline{A_{2 r}}(Q, s)}\left(\Delta_{\varepsilon}(y, \tau)\right)}{\omega^{\left(X_{0}, T_{1}\right)}\left(\Delta_{\varepsilon}(y, \tau)\right)} & =K\left(\overline{A_{2 r}}(Q, s) ; y, \tau\right) \tag{2.37}\\
& \leq \frac{C}{\omega^{\left(X_{0}, T_{1}\right)}\left(\Delta_{r}(Q, s)\right)}
\end{align*}
$$

Then (2.35) follows, since $(y, \tau) \in \Delta_{r}(Q, s)$ is arbitrary.
Now, for $(Q, s) \in \partial_{p} D_{T}$ and r small we set $\Delta_{j}(Q, s)=\Delta_{2^{j} r}(Q, s), j \in \mathbf{N}$ $\cup\{0\}$, and $R_{0}(Q, s)=\Delta_{0}(Q, s), R_{j}(Q, s)=\Delta_{j}(Q, s) \backslash \Delta_{j-1}(Q, s)$. By Theorem 2.11, we have the following result.

Theorem 2.12. Let $\left(Q_{0}, s_{0}\right) \in \partial_{p} D_{T}$ and let r, depending on $T-s$, be sufficiently small. There exists a sequence $\left\{C_{j}\right\}$ of positive numbers, independent
of r and $\left(Q_{0}, s_{0}\right)$, such that $\sum_{j} C_{j}<+\infty$ and

$$
\begin{equation*}
\sup _{(Q, s) \in R_{j}\left(Q_{0}, s_{0}\right)} K\left(\bar{A}_{2 r}\left(Q_{0}, s_{0}\right) ; Q, s\right) \leq \frac{C_{j}}{\omega^{\left(X_{0}, T_{1}\right)}\left(\Delta_{j}\left(Q_{0}, s_{0}\right)\right)} . \tag{2.38}
\end{equation*}
$$

Proof. Fix $(Q, s) \in R_{j}\left(Q_{0}, s_{0}\right)$ and for each $j \in \mathbf{N} \cup\{0\}$ set $\overline{A_{j}}=$ $\bar{A}_{2^{j+1} r}\left(Q_{0}, s_{0}\right)$. For $j=0,1,2, \ldots, 8$, say, a Harnack inequality and Theorem 2.11 give

$$
\begin{equation*}
\sup _{(Q, s) \in R_{j}\left(Q_{0}, s_{0}\right)} K\left(\overline{A_{2 r}}\left(Q_{0}, s_{0}\right) ; Q, s\right) \leq \frac{C_{j}}{\omega^{\left(X_{0}, T_{1}\right)}\left(\Delta_{j}\left(Q_{0}, s_{0}\right)\right)} \tag{2.39}
\end{equation*}
$$

Now, let $j \geq 8$. Using Theorem 2.11 again we obtain

$$
\begin{equation*}
\sup _{(Q, s) \in R_{j}\left(Q_{0}, s_{0}\right)} K\left(\overline{A_{j+1}} ; Q, s\right) \leq \frac{C}{\omega^{\left(X_{0}, T_{1}\right)}\left(\Delta_{j}\left(Q_{0}, s_{0}\right)\right)} \tag{2.40}
\end{equation*}
$$

Now observe that for $(Q, s) \in R_{j}\left(Q_{0}, s_{0}\right), K(\cdot, \cdot ; Q, s)$ is a nonnegative solution which vanishes on $\partial_{p} D_{T} \backslash \Delta_{2^{j-5} r}(Q, s)$; then by Theorem 1.1 we have

$$
\begin{align*}
& K(x, t ; Q, s) \leq C K\left(\bar{A}_{2^{j-4} r}(Q, s)\right) \tag{2.41}\\
& \quad \text { for each }(x, t) \in D_{T} \backslash \Psi_{2^{j-4} r}(Q, s) .
\end{align*}
$$

Now for $(Q, s) \in R_{j}\left(Q_{0}, s_{0}\right)$ let $\left(Q_{r}, s_{r}\right)=\bar{A}_{2^{j-4} r}(Q, s)$, and

$$
\left(Q_{0_{r}}, s_{0_{r}}\right)=\bar{A}_{j+1}=\bar{A}_{2^{j+1} r}\left(Q_{0}, s_{0}\right)
$$

We have $\left|Q_{0_{r}}-Q_{r}\right| \sim 2^{j} r$, while

$$
\begin{aligned}
s_{0_{r}}-s_{r} & \geq 2^{2(j+1)} r^{2}-2^{2(j-1)} r^{2}-2^{2(j-4)} r^{2} \\
& =2^{2 j r^{2}}\left(2^{2}-2^{-2}-2^{-8}\right) \\
& >2^{2 j+1} r^{2} .
\end{aligned}
$$

Then by the Harnack Principle we get

$$
\begin{equation*}
K\left(\bar{A}_{2^{j-4} r}(Q, s) ; Q, s\right) \leq C K\left(\bar{A}_{j+1} ; Q, s\right) \tag{2.42}
\end{equation*}
$$

For each $(x, t) \in D_{T} \backslash \Psi_{2^{j-4} r}(Q, s),(2.41),(2.42)$ imply

$$
\begin{equation*}
K(x, t ; Q, s) \leq C K\left(\overline{A_{j+1}} ; Q, s\right) \tag{2.43}
\end{equation*}
$$

Taking $(x, t)=\overline{A_{0}}=\overline{A_{2 r}}\left(Q_{0}, s_{0}\right)$ in (2.43) and using (2.40) we obtain

$$
\begin{equation*}
\sup _{(Q, s) \in R_{j}\left(Q_{0}, s_{0}\right)} K\left(\overline{A_{2 r}}\left(Q_{0}, s_{0}\right) ; Q, s\right) \leq \frac{C}{\omega^{\left(X_{0}, T_{1}\right)}\left(\Delta_{j}\left(Q_{0}, s_{0}\right)\right)} \tag{2.44}
\end{equation*}
$$

To get (2.38) from (2.44) we argue as follows. Let Γ be a fixed closed cone in \mathbf{R}^{n} exterior to D, having vertex at Q_{0} and axis along the x_{n}-direction in the local coordinates around Q_{0}. Set $\Gamma_{T}=\Gamma \times(0, T)$ and let

$$
\Sigma_{j}=\left\{(x, t)| | x-Q_{0}\left|<2^{j-1} r,\left|t-s_{0}\right|<4^{j-1} r^{2}\right\} \backslash \Gamma_{T}\right.
$$

If h_{j} is the L-caloric measure of the set $D_{T} \cap \partial_{p} \Sigma_{j}$ with respect to Σ_{j}, the maximum principle gives

$$
\begin{equation*}
\sup _{(Q, s) \in R_{j}\left(Q_{0}, s_{0}\right)} K\left(\overline{A_{2 r}}\left(Q_{0}, s_{0}\right) ; Q, s\right) \leq \frac{C h_{j}\left(\overline{A_{2 r}}\left(Q_{0}, s_{0}\right)\right)}{\omega^{\left(X_{0}, T_{1}\right)}\left(\Delta_{j}\left(Q_{0}, s_{0}\right)\right)} . \tag{2.45}
\end{equation*}
$$

for $(x, t) \in D_{T} \cap \Sigma_{j}$. To complete the proof we need to show that

$$
\begin{equation*}
\sum_{j=8}^{\infty} h_{j}\left(\bar{A}_{2 r}\left(Q_{0}, s_{0}\right)<+\infty\right. \tag{2.46}
\end{equation*}
$$

A rescaling argument and the Hölder continuity of h_{j} in $D_{T} \cap \Sigma_{j}$ give (2.46). Q.E.D.

At this point we have all the tools we need to study non-tangential limits. Since the theory is by now standard we will not give the details of the proofs, but we will limit ourselves to stating the theorems and giving an outline of their proofs (see also [3] for the case of the heat equation).

For $(Q, s) \in \partial_{p} D_{T}$ we introduce the definition of parabolic non-tangential cone with vertex at (Q, s). If $(Q, s) \in S_{T}$ set

$$
\Gamma(Q, s)=\left\{(x, t)\left|C_{1}>x_{n}-Q_{n}>C_{2}\right| x^{\prime}-Q^{\prime}\left|+C_{3}\right| t-\left.s\right|^{1 / 2}\right\}
$$

The constants C_{1}, C_{2} and C_{3} are chosen in dependence of the Lipschitz constant m. For u defined in D_{T} the non-tangential maximal function u^{*} defined on $\partial_{p} D_{T}$ is

$$
u^{*}(Q, s)=\sup \{|u(x, t)| \mid(x, t) \in \Gamma(Q, s)\}
$$

Finally we define the Hardy-Littlewood maximal function of a measure ν on $\partial_{p} D_{T}$ with respect to the L-caloric measure $\omega^{\left(X_{0}, T_{1}\right)}$ as

$$
M_{\omega}(\nu)(Q, s)=\sup _{r>0} \frac{\nu\left(\Delta_{r}(Q, s)\right)}{\omega^{\left(X_{0}, T_{1}\right)}\left(\Delta_{r}(Q, s)\right)}
$$

Theorem 2.13. If ν is a finite Borel measure on $\partial_{p} D_{T}$, with D starlike with respect to X_{0}, and $u(x, t)=\int_{\partial_{p} D_{T}} K(x, t ; Q, s) d \nu(Q, s)$, then

$$
\begin{equation*}
u^{*}(Q, s) \leq C M_{\omega}(\nu)(Q, s) \tag{2.47}
\end{equation*}
$$

for each $(Q, s) \in \partial_{p} D_{T} . C$ depends only on $\lambda, m, r_{0}, \operatorname{diam} D, T, C_{1}, C_{2}, C_{3}$ and $\omega^{\left(X_{0}, T_{1}\right)}$.

Proof. By a Harnack inequality, if C_{1}, C_{2}, C_{3} are fixed suitably, we get

$$
\begin{equation*}
u^{*}(Q, s) \leq C \sup _{0<r<\alpha} u\left(\bar{A}_{2 r}(Q, s)\right) \tag{2.48}
\end{equation*}
$$

where α depends on C_{1}, C_{2}, C_{3}. Theorems 2.10, 2.12 give

$$
\begin{aligned}
u\left(\overline{A_{2 r}}(Q, s)\right) & =\int_{\partial_{p} D_{T}} K\left(\overline{A_{2 r}}(Q, s) ; \bar{Q}, \bar{s}\right) d \nu(\bar{Q}, \bar{s}) \\
& =\sum_{j=0}^{N} \int_{R_{j}(Q, s)} K\left(\overline{A_{2 r}}(Q, s) ; \bar{Q}, \bar{s}\right) d \nu(\bar{Q}, \bar{s}) \\
& \leq \sum_{j=0}^{N} c_{j} \frac{\nu\left(\Delta_{j}(Q, s)\right)}{\omega^{\left(X_{0}, T\right)}\left(\Delta_{j}(Q, s)\right)} \\
& \leq C M_{\omega}(\nu)(Q, s)
\end{aligned}
$$

Notice that N depends on $|D|, T$ and r, and that we have used the same notation introduced for Theorem 2.12.
Q.E.D.

Theorem 2.14. Let u be a nonnegative solution of $L u=0$ in D_{T}; then u has non-tangential limit along the parabolic cone $\Gamma(Q, s)$ for almost every $\left(d \omega^{\left(X_{0}, T_{1}\right)}\right)(Q, s) \in \partial_{p} D_{T}$.

Proof. Since D is locally Lipschitz we may assume D starlike with respect to X_{0}. In this case we write $d \nu=f d \omega^{\left(X_{0}, T_{1}\right)}+d \nu_{s}$ where $d \nu_{s} \perp d \omega^{\left(X_{0}, T_{1}\right)}$ and $f \in L^{1}\left(\partial_{p} D_{T}, d \omega^{\left(X_{0}, T_{1}\right)}\right)$. If $F=\operatorname{supp} \nu_{s}$, Theorem 2.10 gives

$$
\begin{aligned}
u(x, t)= & \int_{\partial_{p} D_{T}} f(Q, s) K(x, t ; Q, s) d \omega^{\left(X_{0}, T_{1}\right)}(Q, s) \\
& +\int_{F} K(x, t ; Q, s) d \nu_{s}(Q, s) \\
= & u_{a}(x, t)+u_{s}(x, t)
\end{aligned}
$$

Notice that $\omega^{\left(X_{0}, T_{1}\right)}(F)=0$. A standard strategy based on Theorem 2.13
implies $u_{a}(x, t) \rightarrow f(Q, s)$ for a.e. $\left(d \omega^{\left(X_{0}, T_{1}\right)}\right)(Q, s) \in \partial_{p} D_{T}$ and $(x, t) \in$ $\Gamma(Q, s)$, while for $(Q, s) \notin F$, Lemma 2.9 implies $u_{s}(x, t) \rightarrow 0$ as $(x, t) \rightarrow$ (Q, s) along $\Gamma(Q, s)$.
Q.E.D.

Theorem 2.15. If u is a bounded solution of $L u=0$ in D_{T}, then

$$
\begin{equation*}
u(x, t)=\int_{\partial_{p} D_{T}} K(x, t ; Q, s) f(Q, s) d \omega^{\left(X_{0}, T_{1}\right)}(Q, s) \tag{2.49}
\end{equation*}
$$

with $f \in L^{\infty}\left(\partial_{p} D_{T}, d \omega^{\left(X_{0}, T_{1}\right)}\right)$.
Proof. We may assume $0 \leq u \leq M$ in D_{T}. There exists a Borel measure ν on $\partial_{p} D_{T}$ such that

$$
u(x, t)=\int_{\partial_{p} D_{T}} K(x, t ; Q, s) d \nu(Q, s)
$$

Write $d \nu=d \nu_{s}+f d \omega^{\left(X_{0}, T_{1}\right)}$, where

$$
d \nu_{s} \perp d \omega^{\left(X_{0}, T_{1}\right)} \quad \text { and } \quad f \in L^{1}\left(\partial_{p} D_{T}, d \omega^{\left(X_{0}, T_{1}\right)}\right)
$$

and let

$$
u_{a}=\int_{\partial_{p} D_{T}} K f d \omega^{\left(X_{0}, T_{1}\right)}, \quad u_{s}=\int_{\partial_{p} D_{T}} K d \nu_{s}
$$

We have $0 \leq u_{a} \leq M, 0 \leq u_{s} \leq M$. Theorem 2.15 implies $u_{a}(x, t) \rightarrow f(Q, s)$ non-tangentially for a.e. $\left(d \omega^{\left(X_{0}, T_{1}\right)}\right)(Q, s) \in \partial_{p} D_{T}$. Then

$$
f \in L^{\infty}\left(\partial_{p} D_{T}, d \omega^{\left(X_{0}, T_{1}\right)}\right)
$$

We want to show $d \nu_{s}=0$. If not, there exists $\left(Q_{0}, s_{0}\right) \in \partial_{p} D_{T}$ such that

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{\nu_{s}\left(\Delta_{r}\left(Q_{0}, s_{0}\right)\right)}{\omega^{\left(X_{0}, T_{1}\right)}\left(\Delta_{r}\left(Q_{0}, s_{0}\right)\right)}=+\infty \tag{2.50}
\end{equation*}
$$

On the other hand we have
(2.51) $M \geq u_{s}\left(\bar{A}_{2 r}\left(Q_{0}, s_{0}\right)\right) \geq \int_{\Delta_{r}\left(Q_{0}, s_{0}\right)} K\left(\overline{A_{2 r}}\left(Q_{0}, s_{0}\right) ; Q, s\right) d \nu_{s}(Q, s)$.

For $(Q, s) \in \Delta_{r}\left(Q_{0}, s_{0}\right)$, Corollary 1.2 gives

$$
K\left(\bar{A}_{r}(Q, s) ; Q, s\right) \geq \frac{C}{\omega^{\left(X_{0}, T_{1}\right)}\left(\Delta_{r}(Q, s)\right)}
$$

It is clear that

$$
\omega^{\left(X_{0}, T_{1}\right)}\left(\Delta_{r}(Q, s)\right) \leq \omega^{\left(X_{0}, T_{1}\right)}\left(\Delta_{2 r}\left(Q_{0}, s_{0}\right)\right) \leq C \omega^{\left(X_{0}, T_{1}\right)}\left(\Delta_{r}\left(Q_{0}, s_{0}\right)\right) ;
$$

therefore, using Harnack inequality,

$$
K\left(\bar{A}_{2 r}\left(Q_{0}, s_{0}\right) ; Q, s\right) \geq \frac{C}{\omega^{\left(X_{0}, T_{1}\right)}\left(\Delta_{r}\left(Q_{0}, s_{0}\right)\right)}
$$

for each $(Q, s) \in \Delta_{r}\left(Q_{0}, s_{0}\right)$. This leads to a contradiction since by (2.51),

$$
M \geq u_{s}\left(\bar{A}_{2 r}\left(Q_{0}, s_{0}\right)\right) \geq C \frac{\nu_{s}\left(\Delta_{r}\left(Q_{0}, s_{0}\right)\right)}{\omega^{\left(X_{0}, T_{1}\right)}\left(\Delta_{r}\left(Q_{0}, s_{0}\right)\right)}
$$

Q.E.D.

References

1. D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa, vol. 22 (1968), pp. 607-694.
2. L. Caffarelli, E. B. Fabes, S. Mortola and S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J., vol. 30 (1981), pp. 621-640.
3. J. T. Kemper, Temperatures in several variables: Kernel functions, representations, and parabolic boundary values, Trans. Amer. Math. Soc., vol. 167 (1972), pp. 243-262.
4. \qquad , A boundary Harnack Principle for Lipschitz domains and the principle of positive singularities, Comm. Pure Appl. Math., vol. XXV (1972), pp. 247-255.
5. S. Salsa, Some properties of nonnegative solutions of parabolic differential operators, Ann. Mat. Pura Appl., vol. 128 (1981), pp. 193-206.

University of Minnesota
Minneapolis, Minnesota
University of Minnesota
Minneapolis, Minnesota
University of Bologna
Bologna, Italy
University of Milano
Milano, Italy

[^0]: Received October 5, 1983
 ${ }^{1}$ Partially supported by a grant from the National Science Foundation
 ${ }^{2}$ Partially supported by the Italian C.N.R., G.N.A.F.A.

